Properties

Label 2736.3.fq
Level $2736$
Weight $3$
Character orbit 2736.fq
Rep. character $\chi_{2736}(367,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $1440$
Sturm bound $1440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2736.fq (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 684 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(2736, [\chi])\).

Total New Old
Modular forms 5832 1440 4392
Cusp forms 5688 1440 4248
Eisenstein series 144 0 144

Trace form

\( 1440q + 72q^{9} + O(q^{10}) \) \( 1440q + 72q^{9} + 360q^{33} + 216q^{41} + 5040q^{49} - 216q^{73} - 504q^{81} - 1080q^{97} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(2736, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(2736, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(2736, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(684, [\chi])\)\(^{\oplus 3}\)