Properties

Label 2736.3.fj
Level $2736$
Weight $3$
Character orbit 2736.fj
Rep. character $\chi_{2736}(17,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $480$
Sturm bound $1440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2736.fj (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 57 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(2736, [\chi])\).

Total New Old
Modular forms 5904 480 5424
Cusp forms 5616 480 5136
Eisenstein series 288 0 288

Trace form

\( 480q + O(q^{10}) \) \( 480q - 96q^{19} - 96q^{43} - 1680q^{49} + 288q^{55} + 1344q^{67} + 240q^{73} - 672q^{79} - 864q^{85} - 384q^{91} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(2736, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(2736, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(2736, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(228, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(342, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(456, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(684, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(912, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(1368, [\chi])\)\(^{\oplus 2}\)