Properties

Label 2736.3.dr
Level $2736$
Weight $3$
Character orbit 2736.dr
Rep. character $\chi_{2736}(227,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $3824$
Sturm bound $1440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2736.dr (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 2736 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(2736, [\chi])\).

Total New Old
Modular forms 3856 3856 0
Cusp forms 3824 3824 0
Eisenstein series 32 32 0

Trace form

\( 3824q - 4q^{4} - 12q^{5} - 8q^{6} - 8q^{7} + O(q^{10}) \) \( 3824q - 4q^{4} - 12q^{5} - 8q^{6} - 8q^{7} - 12q^{11} - 4q^{16} - 8q^{19} - 264q^{20} - 24q^{23} + 8q^{24} + 112q^{28} + 172q^{30} - 72q^{36} - 6q^{38} - 16q^{39} + 336q^{42} - 4q^{43} + 92q^{45} - 13056q^{49} - 316q^{54} - 32q^{55} - 4q^{58} - 4q^{61} - 16q^{64} + 864q^{66} + 180q^{68} - 516q^{74} + 154q^{76} - 12q^{77} - 16q^{81} - 48q^{82} - 12q^{83} + 96q^{85} - 912q^{87} - 12q^{92} + 28q^{93} - 812q^{96} + 188q^{99} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(2736, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.