Properties

Label 2736.3.de
Level $2736$
Weight $3$
Character orbit 2736.de
Rep. character $\chi_{2736}(673,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $476$
Sturm bound $1440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2736.de (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 171 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(2736, [\chi])\).

Total New Old
Modular forms 1944 484 1460
Cusp forms 1896 476 1420
Eisenstein series 48 8 40

Trace form

\( 476q + 3q^{3} - 2q^{5} + 2q^{7} - 5q^{9} + O(q^{10}) \) \( 476q + 3q^{3} - 2q^{5} + 2q^{7} - 5q^{9} + 2q^{11} - 3q^{13} + 3q^{15} - 26q^{17} + 4q^{19} - 3q^{21} - q^{23} + 2298q^{25} - 72q^{31} + 57q^{33} - 23q^{35} - 5q^{39} - 49q^{43} - 29q^{45} + 2q^{47} - 1584q^{49} + 3q^{51} - 6q^{53} - 23q^{55} + 25q^{57} - 2q^{61} - 94q^{63} - 6q^{65} + 3q^{67} + 27q^{69} + 6q^{71} + 10q^{73} + 534q^{75} + 194q^{77} + 3q^{79} - 133q^{81} + 2q^{83} - 49q^{85} - 117q^{87} - 6q^{89} - 429q^{91} + 8q^{93} + 242q^{95} + 177q^{97} - 46q^{99} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(2736, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(2736, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(2736, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(342, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(684, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(1368, [\chi])\)\(^{\oplus 2}\)