Properties

 Label 2736.2.x Level $2736$ Weight $2$ Character orbit 2736.x Rep. character $\chi_{2736}(685,\cdot)$ Character field $\Q(\zeta_{4})$ Dimension $360$ Sturm bound $960$

Learn more

Defining parameters

 Level: $$N$$ $$=$$ $$2736 = 2^{4} \cdot 3^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2736.x (of order $$4$$ and degree $$2$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$16$$ Character field: $$\Q(i)$$ Sturm bound: $$960$$

Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(2736, [\chi])$$.

Total New Old
Modular forms 976 360 616
Cusp forms 944 360 584
Eisenstein series 32 0 32

Trace form

 $$360q - 4q^{4} + O(q^{10})$$ $$360q - 4q^{4} - 8q^{11} + 12q^{14} + 4q^{16} + 16q^{20} + 12q^{22} + 16q^{26} + 24q^{28} - 16q^{29} + 20q^{32} + 32q^{34} - 16q^{37} + 8q^{40} + 40q^{43} - 12q^{44} + 40q^{47} - 360q^{49} - 80q^{50} - 44q^{52} + 16q^{53} + 28q^{56} + 56q^{59} - 36q^{62} - 64q^{64} - 16q^{65} + 8q^{67} + 64q^{68} + 20q^{70} + 72q^{74} + 16q^{77} - 76q^{82} - 40q^{83} - 60q^{86} + 8q^{88} - 80q^{91} - 80q^{92} + 24q^{94} - 32q^{95} - 80q^{98} + O(q^{100})$$

Decomposition of $$S_{2}^{\mathrm{new}}(2736, [\chi])$$ into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of $$S_{2}^{\mathrm{old}}(2736, [\chi])$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(2736, [\chi]) \cong$$ $$S_{2}^{\mathrm{new}}(16, [\chi])$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(48, [\chi])$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(144, [\chi])$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(304, [\chi])$$$$^{\oplus 3}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(912, [\chi])$$$$^{\oplus 2}$$