Properties

Label 2736.2.s.m
Level $2736$
Weight $2$
Character orbit 2736.s
Analytic conductor $21.847$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(21.8470699930\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 q^{7} + 3 q^{11} - 2 \zeta_{6} q^{13} + (6 \zeta_{6} - 6) q^{17} + (3 \zeta_{6} + 2) q^{19} + 6 \zeta_{6} q^{23} + 5 \zeta_{6} q^{25} - 2 q^{31} - 10 q^{37} + ( - 9 \zeta_{6} + 9) q^{41} + (4 \zeta_{6} - 4) q^{43} + 9 q^{49} + 6 \zeta_{6} q^{53} + ( - 9 \zeta_{6} + 9) q^{59} + 4 \zeta_{6} q^{61} - 7 \zeta_{6} q^{67} + ( - 6 \zeta_{6} + 6) q^{71} + ( - \zeta_{6} + 1) q^{73} + 12 q^{77} + (4 \zeta_{6} - 4) q^{79} + 3 q^{83} + 6 \zeta_{6} q^{89} - 8 \zeta_{6} q^{91} + (17 \zeta_{6} - 17) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{7} + 6 q^{11} - 2 q^{13} - 6 q^{17} + 7 q^{19} + 6 q^{23} + 5 q^{25} - 4 q^{31} - 20 q^{37} + 9 q^{41} - 4 q^{43} + 18 q^{49} + 6 q^{53} + 9 q^{59} + 4 q^{61} - 7 q^{67} + 6 q^{71} + q^{73} + 24 q^{77} - 4 q^{79} + 6 q^{83} + 6 q^{89} - 8 q^{91} - 17 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
577.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 0 0 4.00000 0 0 0
1873.1 0 0 0 0 0 4.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2736.2.s.m 2
3.b odd 2 1 304.2.i.c 2
4.b odd 2 1 342.2.g.b 2
12.b even 2 1 38.2.c.a 2
19.c even 3 1 inner 2736.2.s.m 2
24.f even 2 1 1216.2.i.h 2
24.h odd 2 1 1216.2.i.d 2
57.f even 6 1 5776.2.a.n 1
57.h odd 6 1 304.2.i.c 2
57.h odd 6 1 5776.2.a.g 1
60.h even 2 1 950.2.e.d 2
60.l odd 4 2 950.2.j.e 4
76.f even 6 1 6498.2.a.e 1
76.g odd 6 1 342.2.g.b 2
76.g odd 6 1 6498.2.a.s 1
228.b odd 2 1 722.2.c.b 2
228.m even 6 1 38.2.c.a 2
228.m even 6 1 722.2.a.c 1
228.n odd 6 1 722.2.a.d 1
228.n odd 6 1 722.2.c.b 2
228.u odd 18 6 722.2.e.i 6
228.v even 18 6 722.2.e.j 6
456.u even 6 1 1216.2.i.h 2
456.x odd 6 1 1216.2.i.d 2
1140.bn even 6 1 950.2.e.d 2
1140.bu odd 12 2 950.2.j.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.2.c.a 2 12.b even 2 1
38.2.c.a 2 228.m even 6 1
304.2.i.c 2 3.b odd 2 1
304.2.i.c 2 57.h odd 6 1
342.2.g.b 2 4.b odd 2 1
342.2.g.b 2 76.g odd 6 1
722.2.a.c 1 228.m even 6 1
722.2.a.d 1 228.n odd 6 1
722.2.c.b 2 228.b odd 2 1
722.2.c.b 2 228.n odd 6 1
722.2.e.i 6 228.u odd 18 6
722.2.e.j 6 228.v even 18 6
950.2.e.d 2 60.h even 2 1
950.2.e.d 2 1140.bn even 6 1
950.2.j.e 4 60.l odd 4 2
950.2.j.e 4 1140.bu odd 12 2
1216.2.i.d 2 24.h odd 2 1
1216.2.i.d 2 456.x odd 6 1
1216.2.i.h 2 24.f even 2 1
1216.2.i.h 2 456.u even 6 1
2736.2.s.m 2 1.a even 1 1 trivial
2736.2.s.m 2 19.c even 3 1 inner
5776.2.a.g 1 57.h odd 6 1
5776.2.a.n 1 57.f even 6 1
6498.2.a.e 1 76.f even 6 1
6498.2.a.s 1 76.g odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2736, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7} - 4 \) Copy content Toggle raw display
\( T_{11} - 3 \) Copy content Toggle raw display
\( T_{13}^{2} + 2T_{13} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T - 4)^{2} \) Copy content Toggle raw display
$11$ \( (T - 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$19$ \( T^{2} - 7T + 19 \) Copy content Toggle raw display
$23$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T + 2)^{2} \) Copy content Toggle raw display
$37$ \( (T + 10)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$43$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$59$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$61$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$67$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$71$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$73$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$79$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$83$ \( (T - 3)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$97$ \( T^{2} + 17T + 289 \) Copy content Toggle raw display
show more
show less