Properties

 Label 2736.2.s.g Level $2736$ Weight $2$ Character orbit 2736.s Analytic conductor $21.847$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$2736 = 2^{4} \cdot 3^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2736.s (of order $$3$$, degree $$2$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$21.8470699930$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 76) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -1 + \zeta_{6} ) q^{5} +O(q^{10})$$ $$q + ( -1 + \zeta_{6} ) q^{5} -4 q^{11} + \zeta_{6} q^{13} + ( 3 - 3 \zeta_{6} ) q^{17} + ( 5 - 2 \zeta_{6} ) q^{19} -5 \zeta_{6} q^{23} + 4 \zeta_{6} q^{25} + 7 \zeta_{6} q^{29} -4 q^{31} + 10 q^{37} + ( -5 + 5 \zeta_{6} ) q^{41} + ( -5 + 5 \zeta_{6} ) q^{43} + 7 \zeta_{6} q^{47} -7 q^{49} + 11 \zeta_{6} q^{53} + ( 4 - 4 \zeta_{6} ) q^{55} + ( -3 + 3 \zeta_{6} ) q^{59} -11 \zeta_{6} q^{61} - q^{65} -3 \zeta_{6} q^{67} + ( -11 + 11 \zeta_{6} ) q^{71} + ( -15 + 15 \zeta_{6} ) q^{73} + ( -13 + 13 \zeta_{6} ) q^{79} + 3 \zeta_{6} q^{85} + 3 \zeta_{6} q^{89} + ( -3 + 5 \zeta_{6} ) q^{95} + ( 5 - 5 \zeta_{6} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - q^{5} + O(q^{10})$$ $$2q - q^{5} - 8q^{11} + q^{13} + 3q^{17} + 8q^{19} - 5q^{23} + 4q^{25} + 7q^{29} - 8q^{31} + 20q^{37} - 5q^{41} - 5q^{43} + 7q^{47} - 14q^{49} + 11q^{53} + 4q^{55} - 3q^{59} - 11q^{61} - 2q^{65} - 3q^{67} - 11q^{71} - 15q^{73} - 13q^{79} + 3q^{85} + 3q^{89} - q^{95} + 5q^{97} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times$$.

 $$n$$ $$1009$$ $$1217$$ $$1711$$ $$2053$$ $$\chi(n)$$ $$-\zeta_{6}$$ $$1$$ $$1$$ $$1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
577.1
 0.5 − 0.866025i 0.5 + 0.866025i
0 0 0 −0.500000 0.866025i 0 0 0 0 0
1873.1 0 0 0 −0.500000 + 0.866025i 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2736.2.s.g 2
3.b odd 2 1 304.2.i.a 2
4.b odd 2 1 684.2.k.b 2
12.b even 2 1 76.2.e.a 2
19.c even 3 1 inner 2736.2.s.g 2
24.f even 2 1 1216.2.i.c 2
24.h odd 2 1 1216.2.i.g 2
57.f even 6 1 5776.2.a.f 1
57.h odd 6 1 304.2.i.a 2
57.h odd 6 1 5776.2.a.k 1
60.h even 2 1 1900.2.i.a 2
60.l odd 4 2 1900.2.s.a 4
76.g odd 6 1 684.2.k.b 2
228.b odd 2 1 1444.2.e.b 2
228.m even 6 1 76.2.e.a 2
228.m even 6 1 1444.2.a.b 1
228.n odd 6 1 1444.2.a.c 1
228.n odd 6 1 1444.2.e.b 2
456.u even 6 1 1216.2.i.c 2
456.x odd 6 1 1216.2.i.g 2
1140.bn even 6 1 1900.2.i.a 2
1140.bu odd 12 2 1900.2.s.a 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.2.e.a 2 12.b even 2 1
76.2.e.a 2 228.m even 6 1
304.2.i.a 2 3.b odd 2 1
304.2.i.a 2 57.h odd 6 1
684.2.k.b 2 4.b odd 2 1
684.2.k.b 2 76.g odd 6 1
1216.2.i.c 2 24.f even 2 1
1216.2.i.c 2 456.u even 6 1
1216.2.i.g 2 24.h odd 2 1
1216.2.i.g 2 456.x odd 6 1
1444.2.a.b 1 228.m even 6 1
1444.2.a.c 1 228.n odd 6 1
1444.2.e.b 2 228.b odd 2 1
1444.2.e.b 2 228.n odd 6 1
1900.2.i.a 2 60.h even 2 1
1900.2.i.a 2 1140.bn even 6 1
1900.2.s.a 4 60.l odd 4 2
1900.2.s.a 4 1140.bu odd 12 2
2736.2.s.g 2 1.a even 1 1 trivial
2736.2.s.g 2 19.c even 3 1 inner
5776.2.a.f 1 57.f even 6 1
5776.2.a.k 1 57.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2736, [\chi])$$:

 $$T_{5}^{2} + T_{5} + 1$$ $$T_{7}$$ $$T_{11} + 4$$ $$T_{13}^{2} - T_{13} + 1$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$1 + T + T^{2}$$
$7$ $$T^{2}$$
$11$ $$( 4 + T )^{2}$$
$13$ $$1 - T + T^{2}$$
$17$ $$9 - 3 T + T^{2}$$
$19$ $$19 - 8 T + T^{2}$$
$23$ $$25 + 5 T + T^{2}$$
$29$ $$49 - 7 T + T^{2}$$
$31$ $$( 4 + T )^{2}$$
$37$ $$( -10 + T )^{2}$$
$41$ $$25 + 5 T + T^{2}$$
$43$ $$25 + 5 T + T^{2}$$
$47$ $$49 - 7 T + T^{2}$$
$53$ $$121 - 11 T + T^{2}$$
$59$ $$9 + 3 T + T^{2}$$
$61$ $$121 + 11 T + T^{2}$$
$67$ $$9 + 3 T + T^{2}$$
$71$ $$121 + 11 T + T^{2}$$
$73$ $$225 + 15 T + T^{2}$$
$79$ $$169 + 13 T + T^{2}$$
$83$ $$T^{2}$$
$89$ $$9 - 3 T + T^{2}$$
$97$ $$25 - 5 T + T^{2}$$