Properties

Label 2736.2.s.bb
Level $2736$
Weight $2$
Character orbit 2736.s
Analytic conductor $21.847$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2736,2,Mod(577,2736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2736, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2736.577");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.8470699930\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.764411904.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 6x^{6} + 21x^{4} - 54x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 171)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{5} + (\beta_{5} + 1) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{5} + (\beta_{5} + 1) q^{7} + ( - \beta_{7} + \beta_{6} + \cdots + \beta_1) q^{11}+ \cdots + (2 \beta_{4} + 8 \beta_{3}) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8 q^{7} + 4 q^{13} - 8 q^{19} - 4 q^{25} + 56 q^{31} - 8 q^{37} - 4 q^{43} - 24 q^{55} - 20 q^{61} - 28 q^{67} - 20 q^{73} - 28 q^{79} + 48 q^{85} + 4 q^{91} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 6x^{6} + 21x^{4} - 54x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{7} - 21\nu^{5} + 87\nu^{3} - 162\nu ) / 135 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} - 24\nu^{5} + 48\nu^{3} + 27\nu ) / 135 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{6} + 3\nu^{4} - 6\nu^{2} - 9 ) / 45 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 2\nu^{6} - 3\nu^{4} + 51\nu^{2} - 81 ) / 45 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{6} + 6\nu^{4} - 12\nu^{2} + 27 ) / 9 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -8\nu^{7} + 12\nu^{5} - 114\nu^{3} + 54\nu ) / 135 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -22\nu^{7} + 78\nu^{5} - 246\nu^{3} + 486\nu ) / 135 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} - 2\beta_{6} + 4\beta_{2} - 2\beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} + \beta_{3} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{7} - 3\beta_{6} + 2\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{5} + 2\beta_{4} - 3\beta_{3} - 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 2\beta_{7} - 7\beta_{6} - 10\beta_{2} + 2\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 3\beta_{5} - 30\beta_{3} - 15 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -9\beta_{7} - 6\beta_{6} - 6\beta_{2} - 30\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(-1 - \beta_{3}\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
577.1
−1.27970 + 1.16721i
−1.69185 0.370982i
1.69185 + 0.370982i
1.27970 1.16721i
−1.27970 1.16721i
−1.69185 + 0.370982i
1.69185 0.370982i
1.27970 + 1.16721i
0 0 0 −1.65068 2.85906i 0 −1.44949 0 0 0
577.2 0 0 0 −0.524648 0.908716i 0 3.44949 0 0 0
577.3 0 0 0 0.524648 + 0.908716i 0 3.44949 0 0 0
577.4 0 0 0 1.65068 + 2.85906i 0 −1.44949 0 0 0
1873.1 0 0 0 −1.65068 + 2.85906i 0 −1.44949 0 0 0
1873.2 0 0 0 −0.524648 + 0.908716i 0 3.44949 0 0 0
1873.3 0 0 0 0.524648 0.908716i 0 3.44949 0 0 0
1873.4 0 0 0 1.65068 2.85906i 0 −1.44949 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 577.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
19.c even 3 1 inner
57.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2736.2.s.bb 8
3.b odd 2 1 inner 2736.2.s.bb 8
4.b odd 2 1 171.2.f.c 8
12.b even 2 1 171.2.f.c 8
19.c even 3 1 inner 2736.2.s.bb 8
57.h odd 6 1 inner 2736.2.s.bb 8
76.f even 6 1 3249.2.a.be 4
76.g odd 6 1 171.2.f.c 8
76.g odd 6 1 3249.2.a.bd 4
228.m even 6 1 171.2.f.c 8
228.m even 6 1 3249.2.a.bd 4
228.n odd 6 1 3249.2.a.be 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
171.2.f.c 8 4.b odd 2 1
171.2.f.c 8 12.b even 2 1
171.2.f.c 8 76.g odd 6 1
171.2.f.c 8 228.m even 6 1
2736.2.s.bb 8 1.a even 1 1 trivial
2736.2.s.bb 8 3.b odd 2 1 inner
2736.2.s.bb 8 19.c even 3 1 inner
2736.2.s.bb 8 57.h odd 6 1 inner
3249.2.a.bd 4 76.g odd 6 1
3249.2.a.bd 4 228.m even 6 1
3249.2.a.be 4 76.f even 6 1
3249.2.a.be 4 228.n odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2736, [\chi])\):

\( T_{5}^{8} + 12T_{5}^{6} + 132T_{5}^{4} + 144T_{5}^{2} + 144 \) Copy content Toggle raw display
\( T_{7}^{2} - 2T_{7} - 5 \) Copy content Toggle raw display
\( T_{11}^{4} - 36T_{11}^{2} + 108 \) Copy content Toggle raw display
\( T_{13}^{2} - T_{13} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 12 T^{6} + \cdots + 144 \) Copy content Toggle raw display
$7$ \( (T^{2} - 2 T - 5)^{4} \) Copy content Toggle raw display
$11$ \( (T^{4} - 36 T^{2} + 108)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{8} + 48 T^{6} + \cdots + 36864 \) Copy content Toggle raw display
$19$ \( (T^{2} + 2 T + 19)^{4} \) Copy content Toggle raw display
$23$ \( T^{8} + 36 T^{6} + \cdots + 90000 \) Copy content Toggle raw display
$29$ \( T^{8} + 144 T^{6} + \cdots + 23040000 \) Copy content Toggle raw display
$31$ \( (T^{2} - 14 T + 43)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 2 T - 23)^{4} \) Copy content Toggle raw display
$41$ \( T^{8} + 96 T^{6} + \cdots + 589824 \) Copy content Toggle raw display
$43$ \( (T^{4} + 2 T^{3} + \cdots + 2809)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 96 T^{6} + \cdots + 589824 \) Copy content Toggle raw display
$53$ \( T^{8} + 12 T^{6} + \cdots + 144 \) Copy content Toggle raw display
$59$ \( T^{8} + 132 T^{6} + \cdots + 18766224 \) Copy content Toggle raw display
$61$ \( (T^{2} + 5 T + 25)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 14 T^{3} + \cdots + 25)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + 144 T^{6} + \cdots + 23040000 \) Copy content Toggle raw display
$73$ \( (T^{2} + 5 T + 25)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} + 14 T^{3} + \cdots + 25)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} - 144 T^{2} + 1728)^{2} \) Copy content Toggle raw display
$89$ \( T^{8} + 300 T^{6} + \cdots + 56250000 \) Copy content Toggle raw display
$97$ \( (T^{4} + 16 T^{3} + \cdots + 1600)^{2} \) Copy content Toggle raw display
show more
show less