Properties

Label 2736.2.s.a.577.1
Level $2736$
Weight $2$
Character 2736.577
Analytic conductor $21.847$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(21.8470699930\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 577.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2736.577
Dual form 2736.2.s.a.1873.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.00000 - 3.46410i) q^{5} +O(q^{10})\) \(q+(-2.00000 - 3.46410i) q^{5} +3.00000 q^{11} +(-1.00000 + 1.73205i) q^{13} +(1.00000 + 1.73205i) q^{17} +(-0.500000 + 4.33013i) q^{19} +(-3.00000 + 5.19615i) q^{23} +(-5.50000 + 9.52628i) q^{25} +(-2.00000 + 3.46410i) q^{29} +10.0000 q^{31} +2.00000 q^{37} +(4.50000 + 7.79423i) q^{41} +(-2.00000 - 3.46410i) q^{43} +(6.00000 - 10.3923i) q^{47} -7.00000 q^{49} +(-1.00000 + 1.73205i) q^{53} +(-6.00000 - 10.3923i) q^{55} +(0.500000 + 0.866025i) q^{59} +(4.00000 - 6.92820i) q^{61} +8.00000 q^{65} +(4.50000 - 7.79423i) q^{67} +(3.00000 + 5.19615i) q^{71} +(4.50000 + 7.79423i) q^{73} +(-2.00000 - 3.46410i) q^{79} -5.00000 q^{83} +(4.00000 - 6.92820i) q^{85} +(-9.00000 + 15.5885i) q^{89} +(16.0000 - 6.92820i) q^{95} +(-0.500000 - 0.866025i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4q^{5} + O(q^{10}) \) \( 2q - 4q^{5} + 6q^{11} - 2q^{13} + 2q^{17} - q^{19} - 6q^{23} - 11q^{25} - 4q^{29} + 20q^{31} + 4q^{37} + 9q^{41} - 4q^{43} + 12q^{47} - 14q^{49} - 2q^{53} - 12q^{55} + q^{59} + 8q^{61} + 16q^{65} + 9q^{67} + 6q^{71} + 9q^{73} - 4q^{79} - 10q^{83} + 8q^{85} - 18q^{89} + 32q^{95} - q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.00000 3.46410i −0.894427 1.54919i −0.834512 0.550990i \(-0.814250\pi\)
−0.0599153 0.998203i \(-0.519083\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) −1.00000 + 1.73205i −0.277350 + 0.480384i −0.970725 0.240192i \(-0.922790\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 + 1.73205i 0.242536 + 0.420084i 0.961436 0.275029i \(-0.0886875\pi\)
−0.718900 + 0.695113i \(0.755354\pi\)
\(18\) 0 0
\(19\) −0.500000 + 4.33013i −0.114708 + 0.993399i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.00000 + 5.19615i −0.625543 + 1.08347i 0.362892 + 0.931831i \(0.381789\pi\)
−0.988436 + 0.151642i \(0.951544\pi\)
\(24\) 0 0
\(25\) −5.50000 + 9.52628i −1.10000 + 1.90526i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 + 3.46410i −0.371391 + 0.643268i −0.989780 0.142605i \(-0.954452\pi\)
0.618389 + 0.785872i \(0.287786\pi\)
\(30\) 0 0
\(31\) 10.0000 1.79605 0.898027 0.439941i \(-0.145001\pi\)
0.898027 + 0.439941i \(0.145001\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.50000 + 7.79423i 0.702782 + 1.21725i 0.967486 + 0.252924i \(0.0813924\pi\)
−0.264704 + 0.964330i \(0.585274\pi\)
\(42\) 0 0
\(43\) −2.00000 3.46410i −0.304997 0.528271i 0.672264 0.740312i \(-0.265322\pi\)
−0.977261 + 0.212041i \(0.931989\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.00000 10.3923i 0.875190 1.51587i 0.0186297 0.999826i \(-0.494070\pi\)
0.856560 0.516047i \(-0.172597\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.00000 + 1.73205i −0.137361 + 0.237915i −0.926497 0.376303i \(-0.877195\pi\)
0.789136 + 0.614218i \(0.210529\pi\)
\(54\) 0 0
\(55\) −6.00000 10.3923i −0.809040 1.40130i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.500000 + 0.866025i 0.0650945 + 0.112747i 0.896736 0.442566i \(-0.145932\pi\)
−0.831641 + 0.555313i \(0.812598\pi\)
\(60\) 0 0
\(61\) 4.00000 6.92820i 0.512148 0.887066i −0.487753 0.872982i \(-0.662183\pi\)
0.999901 0.0140840i \(-0.00448323\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.00000 0.992278
\(66\) 0 0
\(67\) 4.50000 7.79423i 0.549762 0.952217i −0.448528 0.893769i \(-0.648052\pi\)
0.998290 0.0584478i \(-0.0186151\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.00000 + 5.19615i 0.356034 + 0.616670i 0.987294 0.158901i \(-0.0507952\pi\)
−0.631260 + 0.775571i \(0.717462\pi\)
\(72\) 0 0
\(73\) 4.50000 + 7.79423i 0.526685 + 0.912245i 0.999517 + 0.0310925i \(0.00989865\pi\)
−0.472831 + 0.881153i \(0.656768\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2.00000 3.46410i −0.225018 0.389742i 0.731307 0.682048i \(-0.238911\pi\)
−0.956325 + 0.292306i \(0.905577\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.00000 −0.548821 −0.274411 0.961613i \(-0.588483\pi\)
−0.274411 + 0.961613i \(0.588483\pi\)
\(84\) 0 0
\(85\) 4.00000 6.92820i 0.433861 0.751469i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.00000 + 15.5885i −0.953998 + 1.65237i −0.217354 + 0.976093i \(0.569742\pi\)
−0.736644 + 0.676280i \(0.763591\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 16.0000 6.92820i 1.64157 0.710819i
\(96\) 0 0
\(97\) −0.500000 0.866025i −0.0507673 0.0879316i 0.839525 0.543321i \(-0.182833\pi\)
−0.890292 + 0.455389i \(0.849500\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.00000 10.3923i 0.597022 1.03407i −0.396236 0.918149i \(-0.629684\pi\)
0.993258 0.115924i \(-0.0369830\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.0000 1.54678 0.773389 0.633932i \(-0.218560\pi\)
0.773389 + 0.633932i \(0.218560\pi\)
\(108\) 0 0
\(109\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.00000 0.0940721 0.0470360 0.998893i \(-0.485022\pi\)
0.0470360 + 0.998893i \(0.485022\pi\)
\(114\) 0 0
\(115\) 24.0000 2.23801
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 24.0000 2.14663
\(126\) 0 0
\(127\) −3.00000 + 5.19615i −0.266207 + 0.461084i −0.967879 0.251416i \(-0.919104\pi\)
0.701672 + 0.712500i \(0.252437\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.50000 + 12.9904i 0.655278 + 1.13497i 0.981824 + 0.189794i \(0.0607819\pi\)
−0.326546 + 0.945181i \(0.605885\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.50000 7.79423i 0.384461 0.665906i −0.607233 0.794524i \(-0.707721\pi\)
0.991694 + 0.128618i \(0.0410540\pi\)
\(138\) 0 0
\(139\) −6.50000 + 11.2583i −0.551323 + 0.954919i 0.446857 + 0.894606i \(0.352543\pi\)
−0.998179 + 0.0603135i \(0.980790\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.00000 + 5.19615i −0.250873 + 0.434524i
\(144\) 0 0
\(145\) 16.0000 1.32873
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.00000 8.66025i −0.409616 0.709476i 0.585231 0.810867i \(-0.301004\pi\)
−0.994847 + 0.101391i \(0.967671\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −20.0000 34.6410i −1.60644 2.78243i
\(156\) 0 0
\(157\) −4.00000 6.92820i −0.319235 0.552931i 0.661094 0.750303i \(-0.270093\pi\)
−0.980329 + 0.197372i \(0.936759\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 11.0000 0.861586 0.430793 0.902451i \(-0.358234\pi\)
0.430793 + 0.902451i \(0.358234\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.00000 + 13.8564i −0.619059 + 1.07224i 0.370599 + 0.928793i \(0.379152\pi\)
−0.989658 + 0.143448i \(0.954181\pi\)
\(168\) 0 0
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −13.0000 22.5167i −0.988372 1.71191i −0.625871 0.779926i \(-0.715256\pi\)
−0.362500 0.931984i \(-0.618077\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.00000 0.672692 0.336346 0.941739i \(-0.390809\pi\)
0.336346 + 0.941739i \(0.390809\pi\)
\(180\) 0 0
\(181\) −7.00000 + 12.1244i −0.520306 + 0.901196i 0.479415 + 0.877588i \(0.340849\pi\)
−0.999721 + 0.0236082i \(0.992485\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.00000 6.92820i −0.294086 0.509372i
\(186\) 0 0
\(187\) 3.00000 + 5.19615i 0.219382 + 0.379980i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) 3.00000 + 5.19615i 0.215945 + 0.374027i 0.953564 0.301189i \(-0.0973836\pi\)
−0.737620 + 0.675216i \(0.764050\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −9.00000 + 15.5885i −0.637993 + 1.10504i 0.347879 + 0.937539i \(0.386902\pi\)
−0.985873 + 0.167497i \(0.946431\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 18.0000 31.1769i 1.25717 2.17749i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.50000 + 12.9904i −0.103757 + 0.898563i
\(210\) 0 0
\(211\) −6.00000 10.3923i −0.413057 0.715436i 0.582165 0.813070i \(-0.302206\pi\)
−0.995222 + 0.0976347i \(0.968872\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.00000 + 13.8564i −0.545595 + 0.944999i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) 5.00000 + 8.66025i 0.334825 + 0.579934i 0.983451 0.181173i \(-0.0579895\pi\)
−0.648626 + 0.761107i \(0.724656\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 19.0000 1.26107 0.630537 0.776159i \(-0.282835\pi\)
0.630537 + 0.776159i \(0.282835\pi\)
\(228\) 0 0
\(229\) −8.00000 −0.528655 −0.264327 0.964433i \(-0.585150\pi\)
−0.264327 + 0.964433i \(0.585150\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.50000 + 9.52628i 0.360317 + 0.624087i 0.988013 0.154371i \(-0.0493352\pi\)
−0.627696 + 0.778459i \(0.716002\pi\)
\(234\) 0 0
\(235\) −48.0000 −3.13117
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) −10.5000 + 18.1865i −0.676364 + 1.17150i 0.299704 + 0.954032i \(0.403112\pi\)
−0.976068 + 0.217465i \(0.930221\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 14.0000 + 24.2487i 0.894427 + 1.54919i
\(246\) 0 0
\(247\) −7.00000 5.19615i −0.445399 0.330623i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.50000 + 4.33013i −0.157799 + 0.273315i −0.934075 0.357078i \(-0.883773\pi\)
0.776276 + 0.630393i \(0.217106\pi\)
\(252\) 0 0
\(253\) −9.00000 + 15.5885i −0.565825 + 0.980038i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.50000 2.59808i 0.0935674 0.162064i −0.815442 0.578838i \(-0.803506\pi\)
0.909010 + 0.416775i \(0.136840\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −8.00000 13.8564i −0.493301 0.854423i 0.506669 0.862141i \(-0.330877\pi\)
−0.999970 + 0.00771799i \(0.997543\pi\)
\(264\) 0 0
\(265\) 8.00000 0.491436
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.00000 + 3.46410i 0.121942 + 0.211210i 0.920534 0.390664i \(-0.127754\pi\)
−0.798591 + 0.601874i \(0.794421\pi\)
\(270\) 0 0
\(271\) −10.0000 17.3205i −0.607457 1.05215i −0.991658 0.128897i \(-0.958856\pi\)
0.384201 0.923249i \(-0.374477\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −16.5000 + 28.5788i −0.994987 + 1.72337i
\(276\) 0 0
\(277\) 12.0000 0.721010 0.360505 0.932757i \(-0.382604\pi\)
0.360505 + 0.932757i \(0.382604\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.50000 + 11.2583i −0.387757 + 0.671616i −0.992148 0.125073i \(-0.960084\pi\)
0.604390 + 0.796689i \(0.293417\pi\)
\(282\) 0 0
\(283\) 6.50000 + 11.2583i 0.386385 + 0.669238i 0.991960 0.126550i \(-0.0403903\pi\)
−0.605575 + 0.795788i \(0.707057\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.00000 0.233682 0.116841 0.993151i \(-0.462723\pi\)
0.116841 + 0.993151i \(0.462723\pi\)
\(294\) 0 0
\(295\) 2.00000 3.46410i 0.116445 0.201688i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.00000 10.3923i −0.346989 0.601003i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −32.0000 −1.83231
\(306\) 0 0
\(307\) 12.5000 + 21.6506i 0.713413 + 1.23567i 0.963569 + 0.267461i \(0.0861848\pi\)
−0.250156 + 0.968206i \(0.580482\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.00000 −0.113410 −0.0567048 0.998391i \(-0.518059\pi\)
−0.0567048 + 0.998391i \(0.518059\pi\)
\(312\) 0 0
\(313\) 9.50000 16.4545i 0.536972 0.930062i −0.462093 0.886831i \(-0.652902\pi\)
0.999065 0.0432311i \(-0.0137652\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.00000 5.19615i 0.168497 0.291845i −0.769395 0.638774i \(-0.779442\pi\)
0.937892 + 0.346929i \(0.112775\pi\)
\(318\) 0 0
\(319\) −6.00000 + 10.3923i −0.335936 + 0.581857i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.00000 + 3.46410i −0.445132 + 0.192748i
\(324\) 0 0
\(325\) −11.0000 19.0526i −0.610170 1.05685i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −13.0000 −0.714545 −0.357272 0.934000i \(-0.616293\pi\)
−0.357272 + 0.934000i \(0.616293\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −36.0000 −1.96689
\(336\) 0 0
\(337\) −1.50000 2.59808i −0.0817102 0.141526i 0.822274 0.569091i \(-0.192705\pi\)
−0.903985 + 0.427565i \(0.859372\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 30.0000 1.62459
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.50000 + 7.79423i 0.241573 + 0.418416i 0.961162 0.275983i \(-0.0890035\pi\)
−0.719590 + 0.694399i \(0.755670\pi\)
\(348\) 0 0
\(349\) −28.0000 −1.49881 −0.749403 0.662114i \(-0.769659\pi\)
−0.749403 + 0.662114i \(0.769659\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −11.0000 −0.585471 −0.292735 0.956193i \(-0.594566\pi\)
−0.292735 + 0.956193i \(0.594566\pi\)
\(354\) 0 0
\(355\) 12.0000 20.7846i 0.636894 1.10313i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.00000 + 1.73205i 0.0527780 + 0.0914141i 0.891207 0.453596i \(-0.149859\pi\)
−0.838429 + 0.545010i \(0.816526\pi\)
\(360\) 0 0
\(361\) −18.5000 4.33013i −0.973684 0.227901i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 18.0000 31.1769i 0.942163 1.63187i
\(366\) 0 0
\(367\) −13.0000 + 22.5167i −0.678594 + 1.17536i 0.296810 + 0.954937i \(0.404077\pi\)
−0.975404 + 0.220423i \(0.929256\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.00000 6.92820i −0.206010 0.356821i
\(378\) 0 0
\(379\) 12.0000 0.616399 0.308199 0.951322i \(-0.400274\pi\)
0.308199 + 0.951322i \(0.400274\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.00000 + 6.92820i 0.204390 + 0.354015i 0.949938 0.312437i \(-0.101145\pi\)
−0.745548 + 0.666452i \(0.767812\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.00000 3.46410i 0.101404 0.175637i −0.810859 0.585241i \(-0.801000\pi\)
0.912263 + 0.409604i \(0.134333\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8.00000 + 13.8564i −0.402524 + 0.697191i
\(396\) 0 0
\(397\) 7.00000 + 12.1244i 0.351320 + 0.608504i 0.986481 0.163876i \(-0.0523996\pi\)
−0.635161 + 0.772380i \(0.719066\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.50000 2.59808i −0.0749064 0.129742i 0.826139 0.563466i \(-0.190532\pi\)
−0.901046 + 0.433724i \(0.857199\pi\)
\(402\) 0 0
\(403\) −10.0000 + 17.3205i −0.498135 + 0.862796i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) 17.5000 30.3109i 0.865319 1.49878i −0.00141047 0.999999i \(-0.500449\pi\)
0.866730 0.498778i \(-0.166218\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 10.0000 + 17.3205i 0.490881 + 0.850230i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) 11.0000 + 19.0526i 0.536107 + 0.928565i 0.999109 + 0.0422075i \(0.0134391\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −22.0000 −1.06716
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 15.0000 25.9808i 0.722525 1.25145i −0.237460 0.971397i \(-0.576315\pi\)
0.959985 0.280052i \(-0.0903517\pi\)
\(432\) 0 0
\(433\) −5.00000 + 8.66025i −0.240285 + 0.416185i −0.960795 0.277259i \(-0.910574\pi\)
0.720511 + 0.693444i \(0.243907\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −21.0000 15.5885i −1.00457 0.745697i
\(438\) 0 0
\(439\) −7.00000 12.1244i −0.334092 0.578664i 0.649218 0.760602i \(-0.275096\pi\)
−0.983310 + 0.181938i \(0.941763\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.500000 + 0.866025i −0.0237557 + 0.0411461i −0.877659 0.479286i \(-0.840896\pi\)
0.853903 + 0.520432i \(0.174229\pi\)
\(444\) 0 0
\(445\) 72.0000 3.41313
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −33.0000 −1.55737 −0.778683 0.627417i \(-0.784112\pi\)
−0.778683 + 0.627417i \(0.784112\pi\)
\(450\) 0 0
\(451\) 13.5000 + 23.3827i 0.635690 + 1.10105i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −11.0000 −0.514558 −0.257279 0.966337i \(-0.582826\pi\)
−0.257279 + 0.966337i \(0.582826\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.00000 + 5.19615i 0.139724 + 0.242009i 0.927392 0.374091i \(-0.122045\pi\)
−0.787668 + 0.616100i \(0.788712\pi\)
\(462\) 0 0
\(463\) 34.0000 1.58011 0.790057 0.613033i \(-0.210051\pi\)
0.790057 + 0.613033i \(0.210051\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.00000 0.231372 0.115686 0.993286i \(-0.463093\pi\)
0.115686 + 0.993286i \(0.463093\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −6.00000 10.3923i −0.275880 0.477839i
\(474\) 0 0
\(475\) −38.5000 28.5788i −1.76650 1.31129i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10.0000 + 17.3205i −0.456912 + 0.791394i −0.998796 0.0490589i \(-0.984378\pi\)
0.541884 + 0.840453i \(0.317711\pi\)
\(480\) 0 0
\(481\) −2.00000 + 3.46410i −0.0911922 + 0.157949i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.00000 + 3.46410i −0.0908153 + 0.157297i
\(486\) 0 0
\(487\) 26.0000 1.17817 0.589086 0.808070i \(-0.299488\pi\)
0.589086 + 0.808070i \(0.299488\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8.00000 13.8564i −0.361035 0.625331i 0.627096 0.778942i \(-0.284243\pi\)
−0.988131 + 0.153611i \(0.950910\pi\)
\(492\) 0 0
\(493\) −8.00000 −0.360302
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 3.50000 + 6.06218i 0.156682 + 0.271380i 0.933670 0.358134i \(-0.116587\pi\)
−0.776989 + 0.629515i \(0.783254\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3.00000 5.19615i 0.133763 0.231685i −0.791361 0.611349i \(-0.790627\pi\)
0.925124 + 0.379664i \(0.123960\pi\)
\(504\) 0 0
\(505\) −48.0000 −2.13597
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8.00000 13.8564i 0.354594 0.614174i −0.632455 0.774597i \(-0.717953\pi\)
0.987048 + 0.160423i \(0.0512858\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −28.0000 48.4974i −1.23383 2.13705i
\(516\) 0 0
\(517\) 18.0000 31.1769i 0.791639 1.37116i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.00000 −0.0438108 −0.0219054 0.999760i \(-0.506973\pi\)
−0.0219054 + 0.999760i \(0.506973\pi\)
\(522\) 0 0
\(523\) 10.0000 17.3205i 0.437269 0.757373i −0.560208 0.828352i \(-0.689279\pi\)
0.997478 + 0.0709788i \(0.0226123\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10.0000 + 17.3205i 0.435607 + 0.754493i
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −18.0000 −0.779667
\(534\) 0 0
\(535\) −32.0000 55.4256i −1.38348 2.39626i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −21.0000 −0.904534
\(540\) 0 0
\(541\) −2.00000 + 3.46410i −0.0859867 + 0.148933i −0.905811 0.423681i \(-0.860738\pi\)
0.819825 + 0.572615i \(0.194071\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 14.0000 24.2487i 0.598597 1.03680i −0.394432 0.918925i \(-0.629059\pi\)
0.993028 0.117875i \(-0.0376081\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −14.0000 10.3923i −0.596420 0.442727i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −20.0000 + 34.6410i −0.847427 + 1.46779i 0.0360693 + 0.999349i \(0.488516\pi\)
−0.883497 + 0.468438i \(0.844817\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11.0000 0.463595 0.231797 0.972764i \(-0.425539\pi\)
0.231797 + 0.972764i \(0.425539\pi\)
\(564\) 0 0
\(565\) −2.00000 3.46410i −0.0841406 0.145736i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 46.0000 1.92842 0.964210 0.265139i \(-0.0854179\pi\)
0.964210 + 0.265139i \(0.0854179\pi\)
\(570\) 0 0
\(571\) −17.0000 −0.711428 −0.355714 0.934595i \(-0.615762\pi\)
−0.355714 + 0.934595i \(0.615762\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −33.0000 57.1577i −1.37620 2.38364i
\(576\) 0 0
\(577\) −37.0000 −1.54033 −0.770165 0.637845i \(-0.779826\pi\)
−0.770165 + 0.637845i \(0.779826\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −3.00000 + 5.19615i −0.124247 + 0.215203i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.00000 3.46410i −0.0825488 0.142979i 0.821795 0.569783i \(-0.192973\pi\)
−0.904344 + 0.426804i \(0.859639\pi\)
\(588\) 0 0
\(589\) −5.00000 + 43.3013i −0.206021 + 1.78420i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −10.5000 + 18.1865i −0.431183 + 0.746831i −0.996976 0.0777165i \(-0.975237\pi\)
0.565792 + 0.824548i \(0.308570\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −19.0000 + 32.9090i −0.776319 + 1.34462i 0.157731 + 0.987482i \(0.449582\pi\)
−0.934050 + 0.357142i \(0.883751\pi\)
\(600\) 0 0
\(601\) −13.0000 −0.530281 −0.265141 0.964210i \(-0.585418\pi\)
−0.265141 + 0.964210i \(0.585418\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.00000 + 6.92820i 0.162623 + 0.281672i
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.0000 + 20.7846i 0.485468 + 0.840855i
\(612\) 0 0
\(613\) 11.0000 + 19.0526i 0.444286 + 0.769526i 0.998002 0.0631797i \(-0.0201241\pi\)
−0.553716 + 0.832705i \(0.686791\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.50000 2.59808i 0.0603877 0.104595i −0.834251 0.551385i \(-0.814100\pi\)
0.894639 + 0.446790i \(0.147433\pi\)
\(618\) 0 0
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −20.5000 35.5070i −0.820000 1.42028i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.00000 + 3.46410i 0.0797452 + 0.138123i
\(630\) 0 0
\(631\) −4.00000 + 6.92820i −0.159237 + 0.275807i −0.934594 0.355716i \(-0.884237\pi\)
0.775356 + 0.631524i \(0.217570\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 24.0000 0.952411
\(636\) 0 0
\(637\) 7.00000 12.1244i 0.277350 0.480384i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 16.5000 + 28.5788i 0.651711 + 1.12880i 0.982708 + 0.185164i \(0.0592817\pi\)
−0.330997 + 0.943632i \(0.607385\pi\)
\(642\) 0 0
\(643\) 2.50000 + 4.33013i 0.0985904 + 0.170764i 0.911101 0.412182i \(-0.135233\pi\)
−0.812511 + 0.582946i \(0.801900\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −14.0000 −0.550397 −0.275198 0.961387i \(-0.588744\pi\)
−0.275198 + 0.961387i \(0.588744\pi\)
\(648\) 0 0
\(649\) 1.50000 + 2.59808i 0.0588802 + 0.101983i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −36.0000 −1.40879 −0.704394 0.709809i \(-0.748781\pi\)
−0.704394 + 0.709809i \(0.748781\pi\)
\(654\) 0 0
\(655\) 30.0000 51.9615i 1.17220 2.03030i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −6.00000 + 10.3923i −0.233727 + 0.404827i −0.958902 0.283738i \(-0.908425\pi\)
0.725175 + 0.688565i \(0.241759\pi\)
\(660\) 0 0
\(661\) −10.0000 + 17.3205i −0.388955 + 0.673690i −0.992309 0.123784i \(-0.960497\pi\)
0.603354 + 0.797473i \(0.293830\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −12.0000 20.7846i −0.464642 0.804783i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 12.0000 20.7846i 0.463255 0.802381i
\(672\) 0 0
\(673\) 30.0000 1.15642 0.578208 0.815890i \(-0.303752\pi\)
0.578208 + 0.815890i \(0.303752\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.00000 0.0768662 0.0384331 0.999261i \(-0.487763\pi\)
0.0384331 + 0.999261i \(0.487763\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −28.0000 −1.07139 −0.535695 0.844411i \(-0.679950\pi\)
−0.535695 + 0.844411i \(0.679950\pi\)
\(684\) 0 0
\(685\) −36.0000 −1.37549
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.00000 3.46410i −0.0761939 0.131972i
\(690\) 0 0
\(691\) −36.0000 −1.36950 −0.684752 0.728776i \(-0.740090\pi\)
−0.684752 + 0.728776i \(0.740090\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 52.0000 1.97247
\(696\) 0 0
\(697\) −9.00000 + 15.5885i −0.340899 + 0.590455i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6.00000 10.3923i −0.226617 0.392512i 0.730186 0.683248i \(-0.239433\pi\)
−0.956803 + 0.290736i \(0.906100\pi\)
\(702\) 0 0
\(703\) −1.00000 + 8.66025i −0.0377157 + 0.326628i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −9.00000 + 15.5885i −0.338002 + 0.585437i −0.984057 0.177854i \(-0.943084\pi\)
0.646055 + 0.763291i \(0.276418\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −30.0000 + 51.9615i −1.12351 + 1.94597i
\(714\) 0 0
\(715\) 24.0000 0.897549
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17.0000 + 29.4449i 0.633993 + 1.09811i 0.986728 + 0.162385i \(0.0519185\pi\)
−0.352735 + 0.935723i \(0.614748\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −22.0000 38.1051i −0.817059 1.41519i
\(726\) 0 0
\(727\) −4.00000 6.92820i −0.148352 0.256953i 0.782267 0.622944i \(-0.214063\pi\)
−0.930618 + 0.365991i \(0.880730\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.00000 6.92820i 0.147945 0.256249i
\(732\) 0 0
\(733\) 22.0000 0.812589 0.406294 0.913742i \(-0.366821\pi\)
0.406294 + 0.913742i \(0.366821\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.5000 23.3827i 0.497279 0.861312i
\(738\) 0 0
\(739\) −2.50000 4.33013i −0.0919640 0.159286i 0.816373 0.577524i \(-0.195981\pi\)
−0.908337 + 0.418238i \(0.862648\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.00000 + 5.19615i 0.110059 + 0.190628i 0.915794 0.401648i \(-0.131563\pi\)
−0.805735 + 0.592277i \(0.798229\pi\)
\(744\) 0 0
\(745\) −20.0000 + 34.6410i −0.732743 + 1.26915i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 19.0000 32.9090i 0.693320 1.20087i −0.277424 0.960748i \(-0.589481\pi\)
0.970744 0.240118i \(-0.0771860\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.00000 + 6.92820i 0.145575 + 0.252143i
\(756\) 0 0
\(757\) −7.00000 12.1244i −0.254419 0.440667i 0.710318 0.703881i \(-0.248551\pi\)
−0.964738 + 0.263213i \(0.915218\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −17.0000 −0.616250 −0.308125 0.951346i \(-0.599701\pi\)
−0.308125 + 0.951346i \(0.599701\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.00000 −0.0722158
\(768\) 0 0
\(769\) −1.00000 + 1.73205i −0.0360609 + 0.0624593i −0.883493 0.468445i \(-0.844814\pi\)
0.847432 + 0.530904i \(0.178148\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 26.0000 45.0333i 0.935155 1.61974i 0.160798 0.986987i \(-0.448593\pi\)
0.774357 0.632749i \(-0.218073\pi\)
\(774\) 0 0
\(775\) −55.0000 + 95.2628i −1.97566 + 3.42194i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −36.0000 + 15.5885i −1.28983 + 0.558514i
\(780\) 0 0
\(781\) 9.00000 + 15.5885i 0.322045 + 0.557799i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −16.0000 + 27.7128i −0.571064 + 0.989113i
\(786\) 0 0
\(787\) −41.0000 −1.46149 −0.730746 0.682649i \(-0.760828\pi\)
−0.730746 + 0.682649i \(0.760828\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 8.00000 + 13.8564i 0.284088 + 0.492055i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13.5000 + 23.3827i 0.476405 + 0.825157i
\(804\) 0 0