Properties

Label 2736.2.q
Level $2736$
Weight $2$
Character orbit 2736.q
Rep. character $\chi_{2736}(913,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $216$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.q (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2736, [\chi])\).

Total New Old
Modular forms 984 216 768
Cusp forms 936 216 720
Eisenstein series 48 0 48

Trace form

\( 216 q - 12 q^{11} - 12 q^{15} + 8 q^{21} + 12 q^{23} - 108 q^{25} + 36 q^{27} - 8 q^{29} + 48 q^{35} + 60 q^{39} - 16 q^{45} + 32 q^{47} - 108 q^{49} - 4 q^{51} - 12 q^{59} - 40 q^{63} - 24 q^{69} - 48 q^{71}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2736, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2736, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2736, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(342, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(684, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1368, [\chi])\)\(^{\oplus 2}\)