Properties

Label 2736.2.k.m.2431.4
Level $2736$
Weight $2$
Character 2736.2431
Analytic conductor $21.847$
Analytic rank $0$
Dimension $4$
CM discriminant -19
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2736,2,Mod(2431,2736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2736, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2736.2431");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.8470699930\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 2431.4
Root \(-2.17945 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2736.2431
Dual form 2736.2.k.m.2431.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.35890 q^{5} +4.35890i q^{7} +O(q^{10})\) \(q+4.35890 q^{5} +4.35890i q^{7} +5.00000i q^{11} -4.35890 q^{17} -4.35890i q^{19} +4.00000i q^{23} +14.0000 q^{25} +19.0000i q^{35} +13.0767i q^{43} -13.0000i q^{47} -12.0000 q^{49} +21.7945i q^{55} -15.0000 q^{61} +11.0000 q^{73} -21.7945 q^{77} -16.0000i q^{83} -19.0000 q^{85} -19.0000i q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 56 q^{25} - 48 q^{49} - 60 q^{61} + 44 q^{73} - 76 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.35890 1.94936 0.974679 0.223607i \(-0.0717831\pi\)
0.974679 + 0.223607i \(0.0717831\pi\)
\(6\) 0 0
\(7\) 4.35890i 1.64751i 0.566947 + 0.823754i \(0.308125\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.00000i 1.50756i 0.657129 + 0.753778i \(0.271771\pi\)
−0.657129 + 0.753778i \(0.728229\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.35890 −1.05719 −0.528594 0.848875i \(-0.677281\pi\)
−0.528594 + 0.848875i \(0.677281\pi\)
\(18\) 0 0
\(19\) − 4.35890i − 1.00000i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 0 0
\(25\) 14.0000 2.80000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 19.0000i 3.21159i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 13.0767i 1.99418i 0.0762493 + 0.997089i \(0.475706\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 13.0000i − 1.89624i −0.317905 0.948122i \(-0.602979\pi\)
0.317905 0.948122i \(-0.397021\pi\)
\(48\) 0 0
\(49\) −12.0000 −1.71429
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 21.7945i 2.93877i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −15.0000 −1.92055 −0.960277 0.279050i \(-0.909981\pi\)
−0.960277 + 0.279050i \(0.909981\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 11.0000 1.28745 0.643726 0.765256i \(-0.277388\pi\)
0.643726 + 0.765256i \(0.277388\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −21.7945 −2.48371
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 16.0000i − 1.75623i −0.478451 0.878114i \(-0.658802\pi\)
0.478451 0.878114i \(-0.341198\pi\)
\(84\) 0 0
\(85\) −19.0000 −2.06084
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 19.0000i − 1.94936i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 17.4356 1.73491 0.867453 0.497519i \(-0.165755\pi\)
0.867453 + 0.497519i \(0.165755\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 17.4356i 1.62588i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 19.0000i − 1.74173i
\(120\) 0 0
\(121\) −14.0000 −1.27273
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 39.2301 3.50885
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.00000i 0.611593i 0.952097 + 0.305796i \(0.0989227\pi\)
−0.952097 + 0.305796i \(0.901077\pi\)
\(132\) 0 0
\(133\) 19.0000 1.64751
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.35890 0.372406 0.186203 0.982511i \(-0.440382\pi\)
0.186203 + 0.982511i \(0.440382\pi\)
\(138\) 0 0
\(139\) 21.7945i 1.84858i 0.381685 + 0.924292i \(0.375344\pi\)
−0.381685 + 0.924292i \(0.624656\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −21.7945 −1.78547 −0.892737 0.450578i \(-0.851218\pi\)
−0.892737 + 0.450578i \(0.851218\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 18.0000 1.43656 0.718278 0.695756i \(-0.244931\pi\)
0.718278 + 0.695756i \(0.244931\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −17.4356 −1.37412
\(162\) 0 0
\(163\) − 8.71780i − 0.682831i −0.939913 0.341415i \(-0.889094\pi\)
0.939913 0.341415i \(-0.110906\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 61.0246i 4.61303i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 21.7945i − 1.59377i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 17.0000i − 1.23008i −0.788497 0.615038i \(-0.789140\pi\)
0.788497 0.615038i \(-0.210860\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −17.4356 −1.24223 −0.621117 0.783718i \(-0.713321\pi\)
−0.621117 + 0.783718i \(0.713321\pi\)
\(198\) 0 0
\(199\) 13.0767i 0.926982i 0.886102 + 0.463491i \(0.153403\pi\)
−0.886102 + 0.463491i \(0.846597\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 21.7945 1.50756
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 57.0000i 3.88737i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 21.0000 1.38772 0.693860 0.720110i \(-0.255909\pi\)
0.693860 + 0.720110i \(0.255909\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 30.5123 1.99893 0.999463 0.0327561i \(-0.0104285\pi\)
0.999463 + 0.0327561i \(0.0104285\pi\)
\(234\) 0 0
\(235\) − 56.6657i − 3.69646i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 5.00000i − 0.323423i −0.986838 0.161712i \(-0.948299\pi\)
0.986838 0.161712i \(-0.0517014\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −52.3068 −3.34176
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 23.0000i − 1.45175i −0.687828 0.725874i \(-0.741436\pi\)
0.687828 0.725874i \(-0.258564\pi\)
\(252\) 0 0
\(253\) −20.0000 −1.25739
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 11.0000i − 0.678289i −0.940734 0.339145i \(-0.889862\pi\)
0.940734 0.339145i \(-0.110138\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 26.1534i 1.58871i 0.607457 + 0.794353i \(0.292190\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 70.0000i 4.22116i
\(276\) 0 0
\(277\) 33.0000 1.98278 0.991389 0.130950i \(-0.0418029\pi\)
0.991389 + 0.130950i \(0.0418029\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 13.0767i 0.777329i 0.921379 + 0.388664i \(0.127063\pi\)
−0.921379 + 0.388664i \(0.872937\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 2.00000 0.117647
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −57.0000 −3.28543
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −65.3835 −3.74385
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 35.0000i 1.98467i 0.123585 + 0.992334i \(0.460561\pi\)
−0.123585 + 0.992334i \(0.539439\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 19.0000i 1.05719i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 56.6657 3.12408
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 21.7945i − 1.17679i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 37.0000i − 1.98626i −0.116999 0.993132i \(-0.537327\pi\)
0.116999 0.993132i \(-0.462673\pi\)
\(348\) 0 0
\(349\) 35.0000 1.87351 0.936754 0.349990i \(-0.113815\pi\)
0.936754 + 0.349990i \(0.113815\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 34.8712 1.85601 0.928003 0.372572i \(-0.121524\pi\)
0.928003 + 0.372572i \(0.121524\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 31.0000i 1.63612i 0.575135 + 0.818059i \(0.304950\pi\)
−0.575135 + 0.818059i \(0.695050\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 47.9479 2.50971
\(366\) 0 0
\(367\) 26.1534i 1.36520i 0.730794 + 0.682598i \(0.239150\pi\)
−0.730794 + 0.682598i \(0.760850\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) −95.0000 −4.84165
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 30.5123 1.54703 0.773517 0.633775i \(-0.218496\pi\)
0.773517 + 0.633775i \(0.218496\pi\)
\(390\) 0 0
\(391\) − 17.4356i − 0.881756i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 7.00000 0.351320 0.175660 0.984451i \(-0.443794\pi\)
0.175660 + 0.984451i \(0.443794\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) − 69.7424i − 3.42352i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 40.0000i − 1.95413i −0.212946 0.977064i \(-0.568306\pi\)
0.212946 0.977064i \(-0.431694\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −61.0246 −2.96013
\(426\) 0 0
\(427\) − 65.3835i − 3.16413i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17.4356 0.834058
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 29.0000i − 1.37783i −0.724841 0.688916i \(-0.758087\pi\)
0.724841 0.688916i \(-0.241913\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −17.0000 −0.795226 −0.397613 0.917553i \(-0.630161\pi\)
−0.397613 + 0.917553i \(0.630161\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −21.7945 −1.01507 −0.507535 0.861631i \(-0.669443\pi\)
−0.507535 + 0.861631i \(0.669443\pi\)
\(462\) 0 0
\(463\) 13.0767i 0.607726i 0.952716 + 0.303863i \(0.0982765\pi\)
−0.952716 + 0.303863i \(0.901724\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 43.0000i − 1.98980i −0.100853 0.994901i \(-0.532157\pi\)
0.100853 0.994901i \(-0.467843\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −65.3835 −3.00634
\(474\) 0 0
\(475\) − 61.0246i − 2.80000i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 4.00000i − 0.182765i −0.995816 0.0913823i \(-0.970871\pi\)
0.995816 0.0913823i \(-0.0291285\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 8.00000i − 0.361035i −0.983572 0.180517i \(-0.942223\pi\)
0.983572 0.180517i \(-0.0577772\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 21.7945i 0.975656i 0.872940 + 0.487828i \(0.162211\pi\)
−0.872940 + 0.487828i \(0.837789\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 44.0000i − 1.96186i −0.194354 0.980932i \(-0.562261\pi\)
0.194354 0.980932i \(-0.437739\pi\)
\(504\) 0 0
\(505\) 76.0000 3.38196
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 47.9479i 2.12109i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 65.0000 2.85870
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 60.0000i − 2.58438i
\(540\) 0 0
\(541\) −25.0000 −1.07483 −0.537417 0.843317i \(-0.680600\pi\)
−0.537417 + 0.843317i \(0.680600\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.35890 0.184692 0.0923462 0.995727i \(-0.470563\pi\)
0.0923462 + 0.995727i \(0.470563\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) − 26.1534i − 1.09449i −0.836974 0.547243i \(-0.815677\pi\)
0.836974 0.547243i \(-0.184323\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 56.0000i 2.33536i
\(576\) 0 0
\(577\) −3.00000 −0.124892 −0.0624458 0.998048i \(-0.519890\pi\)
−0.0624458 + 0.998048i \(0.519890\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 69.7424 2.89340
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 7.00000i − 0.288921i −0.989511 0.144460i \(-0.953855\pi\)
0.989511 0.144460i \(-0.0461446\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 34.8712 1.43199 0.715994 0.698106i \(-0.245974\pi\)
0.715994 + 0.698106i \(0.245974\pi\)
\(594\) 0 0
\(595\) − 82.8191i − 3.39525i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −61.0246 −2.48100
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −39.0000 −1.57520 −0.787598 0.616190i \(-0.788675\pi\)
−0.787598 + 0.616190i \(0.788675\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −47.9479 −1.93031 −0.965155 0.261680i \(-0.915723\pi\)
−0.965155 + 0.261680i \(0.915723\pi\)
\(618\) 0 0
\(619\) − 43.5890i − 1.75199i −0.482321 0.875995i \(-0.660206\pi\)
0.482321 0.875995i \(-0.339794\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 101.000 4.04000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) − 47.9479i − 1.90878i −0.298570 0.954388i \(-0.596510\pi\)
0.298570 0.954388i \(-0.403490\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 13.0767i 0.515695i 0.966186 + 0.257847i \(0.0830131\pi\)
−0.966186 + 0.257847i \(0.916987\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17.0000i 0.668339i 0.942513 + 0.334169i \(0.108456\pi\)
−0.942513 + 0.334169i \(0.891544\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −30.5123 −1.19404 −0.597019 0.802227i \(-0.703648\pi\)
−0.597019 + 0.802227i \(0.703648\pi\)
\(654\) 0 0
\(655\) 30.5123i 1.19221i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 82.8191 3.21159
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 75.0000i − 2.89534i
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 19.0000 0.725953
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 39.2301i − 1.49238i −0.665731 0.746191i \(-0.731880\pi\)
0.665731 0.746191i \(-0.268120\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 95.0000i 3.60356i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −17.4356 −0.658533 −0.329267 0.944237i \(-0.606802\pi\)
−0.329267 + 0.944237i \(0.606802\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 76.0000i 2.85827i
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 49.0000i 1.82739i 0.406399 + 0.913696i \(0.366784\pi\)
−0.406399 + 0.913696i \(0.633216\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 39.2301i − 1.45496i −0.686127 0.727482i \(-0.740691\pi\)
0.686127 0.727482i \(-0.259309\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 57.0000i − 2.10822i
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 30.5123i − 1.12241i −0.827676 0.561206i \(-0.810337\pi\)
0.827676 0.561206i \(-0.189663\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −95.0000 −3.48053
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −27.0000 −0.981332 −0.490666 0.871348i \(-0.663246\pi\)
−0.490666 + 0.871348i \(0.663246\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −4.35890 −0.158010 −0.0790050 0.996874i \(-0.525174\pi\)
−0.0790050 + 0.996874i \(0.525174\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −51.0000 −1.83911 −0.919554 0.392965i \(-0.871449\pi\)
−0.919554 + 0.392965i \(0.871449\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 78.4602 2.80036
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 56.6657i 2.00469i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 55.0000i 1.94091i
\(804\) 0 0
\(805\) −76.0000 −2.67865
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −56.6657 −1.99226 −0.996130 0.0878953i \(-0.971986\pi\)
−0.996130 + 0.0878953i \(0.971986\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 38.0000i − 1.33108i
\(816\) 0 0
\(817\) 57.0000 1.99418
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 21.7945 0.760633 0.380317 0.924856i \(-0.375815\pi\)
0.380317 + 0.924856i \(0.375815\pi\)
\(822\) 0 0
\(823\) 56.6657i 1.97524i 0.156860 + 0.987621i \(0.449863\pi\)
−0.156860 + 0.987621i \(0.550137\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 52.3068 1.81232
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 56.6657 1.94936
\(846\) 0 0
\(847\) − 61.0246i − 2.09683i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 56.6657i 1.93341i 0.255897 + 0.966704i \(0.417629\pi\)
−0.255897 + 0.966704i \(0.582371\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 171.000i 5.78086i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −47.9479 −1.61541 −0.807703 0.589590i \(-0.799289\pi\)
−0.807703 + 0.589590i \(0.799289\pi\)
\(882\) 0 0
\(883\) − 30.5123i − 1.02682i −0.858143 0.513410i \(-0.828382\pi\)
0.858143 0.513410i \(-0.171618\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −56.6657 −1.89624
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 80.0000 2.64761
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −30.5123 −1.00760
\(918\) 0 0
\(919\) 8.71780i 0.287574i 0.989609 + 0.143787i \(0.0459280\pi\)
−0.989609 + 0.143787i \(0.954072\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −34.8712 −1.14409 −0.572043 0.820223i \(-0.693849\pi\)
−0.572043 + 0.820223i \(0.693849\pi\)
\(930\) 0 0
\(931\) 52.3068i 1.71429i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 95.0000i − 3.10683i
\(936\) 0 0
\(937\) 47.0000 1.53542 0.767712 0.640796i \(-0.221395\pi\)
0.767712 + 0.640796i \(0.221395\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 8.00000i − 0.259965i −0.991516 0.129983i \(-0.958508\pi\)
0.991516 0.129983i \(-0.0414921\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) − 74.1013i − 2.39786i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 19.0000i 0.613542i
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 61.0246i − 1.96242i −0.192947 0.981209i \(-0.561805\pi\)
0.192947 0.981209i \(-0.438195\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −95.0000 −3.04556
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) −76.0000 −2.42156
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −52.3068 −1.66326
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 57.0000i 1.80702i
\(996\) 0 0
\(997\) −63.0000 −1.99523 −0.997615 0.0690239i \(-0.978012\pi\)
−0.997615 + 0.0690239i \(0.978012\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2736.2.k.m.2431.4 yes 4
3.2 odd 2 inner 2736.2.k.m.2431.2 yes 4
4.3 odd 2 inner 2736.2.k.m.2431.3 yes 4
12.11 even 2 inner 2736.2.k.m.2431.1 4
19.18 odd 2 CM 2736.2.k.m.2431.4 yes 4
57.56 even 2 inner 2736.2.k.m.2431.2 yes 4
76.75 even 2 inner 2736.2.k.m.2431.3 yes 4
228.227 odd 2 inner 2736.2.k.m.2431.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2736.2.k.m.2431.1 4 12.11 even 2 inner
2736.2.k.m.2431.1 4 228.227 odd 2 inner
2736.2.k.m.2431.2 yes 4 3.2 odd 2 inner
2736.2.k.m.2431.2 yes 4 57.56 even 2 inner
2736.2.k.m.2431.3 yes 4 4.3 odd 2 inner
2736.2.k.m.2431.3 yes 4 76.75 even 2 inner
2736.2.k.m.2431.4 yes 4 1.1 even 1 trivial
2736.2.k.m.2431.4 yes 4 19.18 odd 2 CM