Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2736,2,Mod(2431,2736)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2736, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2736.2431");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2736.k (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(21.8470699930\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\zeta_{6})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{19}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 912) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 2431.2 | ||
Root | \(0.500000 - 0.866025i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 2736.2431 |
Dual form | 2736.2.k.f.2431.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).
\(n\) | \(1009\) | \(1217\) | \(1711\) | \(2053\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(-1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 3.46410i | 1.30931i | 0.755929 | + | 0.654654i | \(0.227186\pi\) | ||||
−0.755929 | + | 0.654654i | \(0.772814\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | − | 3.46410i | − | 1.04447i | −0.852803 | − | 0.522233i | \(-0.825099\pi\) | ||
0.852803 | − | 0.522233i | \(-0.174901\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | − | 3.46410i | − | 0.960769i | −0.877058 | − | 0.480384i | \(-0.840497\pi\) | ||
0.877058 | − | 0.480384i | \(-0.159503\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 6.00000 | 1.45521 | 0.727607 | − | 0.685994i | \(-0.240633\pi\) | ||||
0.727607 | + | 0.685994i | \(0.240633\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.00000 | − | 1.73205i | 0.917663 | − | 0.397360i | ||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −5.00000 | −1.00000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | − | 6.92820i | − | 1.28654i | −0.765641 | − | 0.643268i | \(-0.777578\pi\) | ||
0.765641 | − | 0.643268i | \(-0.222422\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −10.0000 | −1.79605 | −0.898027 | − | 0.439941i | \(-0.854999\pi\) | ||||
−0.898027 | + | 0.439941i | \(0.854999\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − | 3.46410i | − | 0.569495i | −0.958603 | − | 0.284747i | \(-0.908090\pi\) | ||
0.958603 | − | 0.284747i | \(-0.0919097\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 6.92820i | 1.08200i | 0.841021 | + | 0.541002i | \(0.181955\pi\) | ||||
−0.841021 | + | 0.541002i | \(0.818045\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 10.3923i | 1.58481i | 0.609994 | + | 0.792406i | \(0.291172\pi\) | ||||
−0.609994 | + | 0.792406i | \(0.708828\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − | 6.92820i | − | 1.01058i | −0.862949 | − | 0.505291i | \(-0.831385\pi\) | ||
0.862949 | − | 0.505291i | \(-0.168615\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −5.00000 | −0.714286 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − | 13.8564i | − | 1.90332i | −0.307148 | − | 0.951662i | \(-0.599375\pi\) | ||
0.307148 | − | 0.951662i | \(-0.400625\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 12.0000 | 1.56227 | 0.781133 | − | 0.624364i | \(-0.214642\pi\) | ||||
0.781133 | + | 0.624364i | \(0.214642\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 10.0000 | 1.28037 | 0.640184 | − | 0.768221i | \(-0.278858\pi\) | ||||
0.640184 | + | 0.768221i | \(0.278858\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −4.00000 | −0.488678 | −0.244339 | − | 0.969690i | \(-0.578571\pi\) | ||||
−0.244339 | + | 0.969690i | \(0.578571\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 12.0000 | 1.42414 | 0.712069 | − | 0.702109i | \(-0.247758\pi\) | ||||
0.712069 | + | 0.702109i | \(0.247758\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −2.00000 | −0.234082 | −0.117041 | − | 0.993127i | \(-0.537341\pi\) | ||||
−0.117041 | + | 0.993127i | \(0.537341\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 12.0000 | 1.36753 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 10.0000 | 1.12509 | 0.562544 | − | 0.826767i | \(-0.309823\pi\) | ||||
0.562544 | + | 0.826767i | \(0.309823\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 3.46410i | 0.380235i | 0.981761 | + | 0.190117i | \(0.0608868\pi\) | ||||
−0.981761 | + | 0.190117i | \(0.939113\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | − | 6.92820i | − | 0.734388i | −0.930144 | − | 0.367194i | \(-0.880318\pi\) | ||
0.930144 | − | 0.367194i | \(-0.119682\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 12.0000 | 1.25794 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − | 6.92820i | − | 0.703452i | −0.936103 | − | 0.351726i | \(-0.885595\pi\) | ||
0.936103 | − | 0.351726i | \(-0.114405\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −2.00000 | −0.197066 | −0.0985329 | − | 0.995134i | \(-0.531415\pi\) | ||||
−0.0985329 | + | 0.995134i | \(0.531415\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 12.0000 | 1.16008 | 0.580042 | − | 0.814587i | \(-0.303036\pi\) | ||||
0.580042 | + | 0.814587i | \(0.303036\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | − | 10.3923i | − | 0.995402i | −0.867349 | − | 0.497701i | \(-0.834178\pi\) | ||
0.867349 | − | 0.497701i | \(-0.165822\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − | 6.92820i | − | 0.651751i | −0.945413 | − | 0.325875i | \(-0.894341\pi\) | ||
0.945413 | − | 0.325875i | \(-0.105659\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 20.7846i | 1.90532i | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −1.00000 | −0.0909091 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 2.00000 | 0.177471 | 0.0887357 | − | 0.996055i | \(-0.471717\pi\) | ||||
0.0887357 | + | 0.996055i | \(0.471717\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 10.3923i | 0.907980i | 0.891007 | + | 0.453990i | \(0.150000\pi\) | ||||
−0.891007 | + | 0.453990i | \(0.850000\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 6.00000 | + | 13.8564i | 0.520266 | + | 1.20150i | ||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 18.0000 | 1.53784 | 0.768922 | − | 0.639343i | \(-0.220793\pi\) | ||||
0.768922 | + | 0.639343i | \(0.220793\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 3.46410i | 0.293821i | 0.989150 | + | 0.146911i | \(0.0469330\pi\) | ||||
−0.989150 | + | 0.146911i | \(0.953067\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −12.0000 | −1.00349 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −24.0000 | −1.96616 | −0.983078 | − | 0.183186i | \(-0.941359\pi\) | ||||
−0.983078 | + | 0.183186i | \(0.941359\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 10.0000 | 0.813788 | 0.406894 | − | 0.913475i | \(-0.366612\pi\) | ||||
0.406894 | + | 0.913475i | \(0.366612\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 10.0000 | 0.798087 | 0.399043 | − | 0.916932i | \(-0.369342\pi\) | ||||
0.399043 | + | 0.916932i | \(0.369342\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 3.46410i | 0.271329i | 0.990755 | + | 0.135665i | \(0.0433170\pi\) | ||||
−0.990755 | + | 0.135665i | \(0.956683\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −12.0000 | −0.928588 | −0.464294 | − | 0.885681i | \(-0.653692\pi\) | ||||
−0.464294 | + | 0.885681i | \(0.653692\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 1.00000 | 0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − | 13.8564i | − | 1.05348i | −0.850026 | − | 0.526742i | \(-0.823414\pi\) | ||
0.850026 | − | 0.526742i | \(-0.176586\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | − | 17.3205i | − | 1.30931i | ||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −12.0000 | −0.896922 | −0.448461 | − | 0.893802i | \(-0.648028\pi\) | ||||
−0.448461 | + | 0.893802i | \(0.648028\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 3.46410i | 0.257485i | 0.991678 | + | 0.128742i | \(0.0410940\pi\) | ||||
−0.991678 | + | 0.128742i | \(0.958906\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − | 20.7846i | − | 1.51992i | ||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | − | 13.8564i | − | 1.00261i | −0.865269 | − | 0.501307i | \(-0.832853\pi\) | ||
0.865269 | − | 0.501307i | \(-0.167147\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − | 13.8564i | − | 0.997406i | −0.866773 | − | 0.498703i | \(-0.833810\pi\) | ||
0.866773 | − | 0.498703i | \(-0.166190\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −12.0000 | −0.854965 | −0.427482 | − | 0.904024i | \(-0.640599\pi\) | ||||
−0.427482 | + | 0.904024i | \(0.640599\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | − | 3.46410i | − | 0.245564i | −0.992434 | − | 0.122782i | \(-0.960818\pi\) | ||
0.992434 | − | 0.122782i | \(-0.0391815\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 24.0000 | 1.68447 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −6.00000 | − | 13.8564i | −0.415029 | − | 0.958468i | ||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −4.00000 | −0.275371 | −0.137686 | − | 0.990476i | \(-0.543966\pi\) | ||||
−0.137686 | + | 0.990476i | \(0.543966\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | − | 34.6410i | − | 2.35159i | ||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | − | 20.7846i | − | 1.39812i | ||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −2.00000 | −0.133930 | −0.0669650 | − | 0.997755i | \(-0.521332\pi\) | ||||
−0.0669650 | + | 0.997755i | \(0.521332\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −12.0000 | −0.796468 | −0.398234 | − | 0.917284i | \(-0.630377\pi\) | ||||
−0.398234 | + | 0.917284i | \(0.630377\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 26.0000 | 1.71813 | 0.859064 | − | 0.511868i | \(-0.171046\pi\) | ||||
0.859064 | + | 0.511868i | \(0.171046\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 18.0000 | 1.17922 | 0.589610 | − | 0.807688i | \(-0.299282\pi\) | ||||
0.589610 | + | 0.807688i | \(0.299282\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | − | 6.92820i | − | 0.448148i | −0.974572 | − | 0.224074i | \(-0.928064\pi\) | ||
0.974572 | − | 0.224074i | \(-0.0719358\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 27.7128i | 1.78514i | 0.450910 | + | 0.892570i | \(0.351100\pi\) | ||||
−0.450910 | + | 0.892570i | \(0.648900\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −6.00000 | − | 13.8564i | −0.381771 | − | 0.881662i | ||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 31.1769i | 1.96787i | 0.178529 | + | 0.983935i | \(0.442866\pi\) | ||||
−0.178529 | + | 0.983935i | \(0.557134\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | − | 20.7846i | − | 1.29651i | −0.761424 | − | 0.648254i | \(-0.775499\pi\) | ||
0.761424 | − | 0.648254i | \(-0.224501\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 12.0000 | 0.745644 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 6.92820i | 0.427211i | 0.976920 | + | 0.213606i | \(0.0685208\pi\) | ||||
−0.976920 | + | 0.213606i | \(0.931479\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 24.2487i | 1.47300i | 0.676435 | + | 0.736502i | \(0.263524\pi\) | ||||
−0.676435 | + | 0.736502i | \(0.736476\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 17.3205i | 1.04447i | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 2.00000 | 0.120168 | 0.0600842 | − | 0.998193i | \(-0.480863\pi\) | ||||
0.0600842 | + | 0.998193i | \(0.480863\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 20.7846i | 1.23991i | 0.784639 | + | 0.619953i | \(0.212848\pi\) | ||||
−0.784639 | + | 0.619953i | \(0.787152\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − | 10.3923i | − | 0.617758i | −0.951101 | − | 0.308879i | \(-0.900046\pi\) | ||
0.951101 | − | 0.308879i | \(-0.0999539\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −24.0000 | −1.41668 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 19.0000 | 1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 13.8564i | 0.809500i | 0.914427 | + | 0.404750i | \(0.132641\pi\) | ||||
−0.914427 | + | 0.404750i | \(0.867359\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −36.0000 | −2.07501 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 4.00000 | 0.228292 | 0.114146 | − | 0.993464i | \(-0.463587\pi\) | ||||
0.114146 | + | 0.993464i | \(0.463587\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | − | 13.8564i | − | 0.785725i | −0.919597 | − | 0.392862i | \(-0.871485\pi\) | ||
0.919597 | − | 0.392862i | \(-0.128515\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −26.0000 | −1.46961 | −0.734803 | − | 0.678280i | \(-0.762726\pi\) | ||||
−0.734803 | + | 0.678280i | \(0.762726\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −24.0000 | −1.34374 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 24.0000 | − | 10.3923i | 1.33540 | − | 0.578243i | ||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 17.3205i | 0.960769i | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 24.0000 | 1.32316 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 4.00000 | 0.219860 | 0.109930 | − | 0.993939i | \(-0.464937\pi\) | ||||
0.109930 | + | 0.993939i | \(0.464937\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 6.92820i | 0.377403i | 0.982034 | + | 0.188702i | \(0.0604279\pi\) | ||||
−0.982034 | + | 0.188702i | \(0.939572\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 34.6410i | 1.87592i | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 6.92820i | 0.374088i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 10.3923i | 0.557888i | 0.960307 | + | 0.278944i | \(0.0899844\pi\) | ||||
−0.960307 | + | 0.278944i | \(0.910016\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −10.0000 | −0.535288 | −0.267644 | − | 0.963518i | \(-0.586245\pi\) | ||||
−0.267644 | + | 0.963518i | \(0.586245\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −6.00000 | −0.319348 | −0.159674 | − | 0.987170i | \(-0.551044\pi\) | ||||
−0.159674 | + | 0.987170i | \(0.551044\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | − | 20.7846i | − | 1.09697i | −0.836160 | − | 0.548485i | \(-0.815205\pi\) | ||
0.836160 | − | 0.548485i | \(-0.184795\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 13.0000 | − | 13.8564i | 0.684211 | − | 0.729285i | ||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − | 3.46410i | − | 0.180825i | −0.995904 | − | 0.0904123i | \(-0.971182\pi\) | ||
0.995904 | − | 0.0904123i | \(-0.0288185\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 48.0000 | 2.49204 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 38.1051i | 1.97301i | 0.163737 | + | 0.986504i | \(0.447645\pi\) | ||||
−0.163737 | + | 0.986504i | \(0.552355\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −24.0000 | −1.23606 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 16.0000 | 0.821865 | 0.410932 | − | 0.911666i | \(-0.365203\pi\) | ||||
0.410932 | + | 0.911666i | \(0.365203\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −12.0000 | −0.613171 | −0.306586 | − | 0.951843i | \(-0.599187\pi\) | ||||
−0.306586 | + | 0.951843i | \(0.599187\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −12.0000 | −0.608424 | −0.304212 | − | 0.952604i | \(-0.598393\pi\) | ||||
−0.304212 | + | 0.952604i | \(0.598393\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 14.0000 | 0.702640 | 0.351320 | − | 0.936255i | \(-0.385733\pi\) | ||||
0.351320 | + | 0.936255i | \(0.385733\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 20.7846i | 1.03793i | 0.854794 | + | 0.518967i | \(0.173683\pi\) | ||||
−0.854794 | + | 0.518967i | \(0.826317\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 34.6410i | 1.72559i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −12.0000 | −0.594818 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 34.6410i | 1.71289i | 0.516240 | + | 0.856444i | \(0.327331\pi\) | ||||
−0.516240 | + | 0.856444i | \(0.672669\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 41.5692i | 2.04549i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | − | 17.3205i | − | 0.846162i | −0.906092 | − | 0.423081i | \(-0.860949\pi\) | ||
0.906092 | − | 0.423081i | \(-0.139051\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | − | 24.2487i | − | 1.18181i | −0.806741 | − | 0.590905i | \(-0.798771\pi\) | ||
0.806741 | − | 0.590905i | \(-0.201229\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −30.0000 | −1.45521 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 34.6410i | 1.67640i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | − | 20.7846i | − | 0.998845i | −0.866359 | − | 0.499422i | \(-0.833546\pi\) | ||
0.866359 | − | 0.499422i | \(-0.166454\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −2.00000 | −0.0954548 | −0.0477274 | − | 0.998860i | \(-0.515198\pi\) | ||||
−0.0477274 | + | 0.998860i | \(0.515198\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − | 17.3205i | − | 0.822922i | −0.911427 | − | 0.411461i | \(-0.865019\pi\) | ||
0.911427 | − | 0.411461i | \(-0.134981\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | − | 34.6410i | − | 1.63481i | −0.576063 | − | 0.817405i | \(-0.695412\pi\) | ||
0.576063 | − | 0.817405i | \(-0.304588\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 24.0000 | 1.13012 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −38.0000 | −1.77757 | −0.888783 | − | 0.458329i | \(-0.848448\pi\) | ||||
−0.888783 | + | 0.458329i | \(0.848448\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 12.0000 | 0.558896 | 0.279448 | − | 0.960161i | \(-0.409849\pi\) | ||||
0.279448 | + | 0.960161i | \(0.409849\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − | 3.46410i | − | 0.160990i | −0.996755 | − | 0.0804952i | \(-0.974350\pi\) | ||
0.996755 | − | 0.0804952i | \(-0.0256502\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − | 38.1051i | − | 1.76329i | −0.471909 | − | 0.881647i | \(-0.656435\pi\) | ||
0.471909 | − | 0.881647i | \(-0.343565\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | − | 13.8564i | − | 0.639829i | ||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 36.0000 | 1.65528 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | −20.0000 | + | 8.66025i | −0.917663 | + | 0.397360i | ||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 20.7846i | 0.949673i | 0.880074 | + | 0.474837i | \(0.157493\pi\) | ||||
−0.880074 | + | 0.474837i | \(0.842507\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −12.0000 | −0.547153 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −34.0000 | −1.54069 | −0.770344 | − | 0.637629i | \(-0.779915\pi\) | ||||
−0.770344 | + | 0.637629i | \(0.779915\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | − | 17.3205i | − | 0.781664i | −0.920462 | − | 0.390832i | \(-0.872187\pi\) | ||
0.920462 | − | 0.390832i | \(-0.127813\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − | 41.5692i | − | 1.87218i | ||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 41.5692i | 1.86463i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | − | 31.1769i | − | 1.39567i | −0.716258 | − | 0.697835i | \(-0.754147\pi\) | ||
0.716258 | − | 0.697835i | \(-0.245853\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | − | 13.8564i | − | 0.617827i | −0.951090 | − | 0.308913i | \(-0.900035\pi\) | ||
0.951090 | − | 0.308913i | \(-0.0999653\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 6.92820i | 0.307087i | 0.988142 | + | 0.153544i | \(0.0490686\pi\) | ||||
−0.988142 | + | 0.153544i | \(0.950931\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | − | 6.92820i | − | 0.306486i | ||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −24.0000 | −1.05552 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 20.7846i | 0.910590i | 0.890341 | + | 0.455295i | \(0.150466\pi\) | ||||
−0.890341 | + | 0.455295i | \(0.849534\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −16.0000 | −0.699631 | −0.349816 | − | 0.936819i | \(-0.613756\pi\) | ||||
−0.349816 | + | 0.936819i | \(0.613756\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −60.0000 | −2.61364 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 23.0000 | 1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 24.0000 | 1.03956 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 17.3205i | 0.746047i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −2.00000 | −0.0859867 | −0.0429934 | − | 0.999075i | \(-0.513689\pi\) | ||||
−0.0429934 | + | 0.999075i | \(0.513689\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −32.0000 | −1.36822 | −0.684111 | − | 0.729378i | \(-0.739809\pi\) | ||||
−0.684111 | + | 0.729378i | \(0.739809\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −12.0000 | − | 27.7128i | −0.511217 | − | 1.18061i | ||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 34.6410i | 1.47309i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −12.0000 | −0.508456 | −0.254228 | − | 0.967144i | \(-0.581821\pi\) | ||||
−0.254228 | + | 0.967144i | \(0.581821\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 36.0000 | 1.52264 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −12.0000 | −0.505740 | −0.252870 | − | 0.967500i | \(-0.581374\pi\) | ||||
−0.252870 | + | 0.967500i | \(0.581374\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 20.7846i | 0.871336i | 0.900107 | + | 0.435668i | \(0.143488\pi\) | ||||
−0.900107 | + | 0.435668i | \(0.856512\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 24.2487i | 1.01478i | 0.861717 | + | 0.507388i | \(0.169389\pi\) | ||||
−0.861717 | + | 0.507388i | \(0.830611\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 10.0000 | 0.416305 | 0.208153 | − | 0.978096i | \(-0.433255\pi\) | ||||
0.208153 | + | 0.978096i | \(0.433255\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −12.0000 | −0.497844 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −48.0000 | −1.98796 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − | 10.3923i | − | 0.428936i | −0.976731 | − | 0.214468i | \(-0.931198\pi\) | ||
0.976731 | − | 0.214468i | \(-0.0688018\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −40.0000 | + | 17.3205i | −1.64817 | + | 0.713679i | ||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −6.00000 | −0.246390 | −0.123195 | − | 0.992382i | \(-0.539314\pi\) | ||||
−0.123195 | + | 0.992382i | \(0.539314\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −12.0000 | −0.490307 | −0.245153 | − | 0.969484i | \(-0.578838\pi\) | ||||
−0.245153 | + | 0.969484i | \(0.578838\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 20.7846i | 0.847822i | 0.905704 | + | 0.423911i | \(0.139343\pi\) | ||||
−0.905704 | + | 0.423911i | \(0.860657\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −22.0000 | −0.892952 | −0.446476 | − | 0.894795i | \(-0.647321\pi\) | ||||
−0.446476 | + | 0.894795i | \(0.647321\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −24.0000 | −0.970936 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 10.0000 | 0.403896 | 0.201948 | − | 0.979396i | \(-0.435273\pi\) | ||||
0.201948 | + | 0.979396i | \(0.435273\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −42.0000 | −1.69086 | −0.845428 | − | 0.534089i | \(-0.820655\pi\) | ||||
−0.845428 | + | 0.534089i | \(0.820655\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | − | 45.0333i | − | 1.81004i | −0.425367 | − | 0.905021i | \(-0.639855\pi\) | ||
0.425367 | − | 0.905021i | \(-0.360145\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 24.0000 | 0.961540 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 25.0000 | 1.00000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | − | 20.7846i | − | 0.828737i | ||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 17.3205i | 0.689519i | 0.938691 | + | 0.344759i | \(0.112039\pi\) | ||||
−0.938691 | + | 0.344759i | \(0.887961\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 17.3205i | 0.686264i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | − | 6.92820i | − | 0.273648i | −0.990595 | − | 0.136824i | \(-0.956311\pi\) | ||
0.990595 | − | 0.136824i | \(-0.0436894\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 31.1769i | 1.22950i | 0.788723 | + | 0.614749i | \(0.210743\pi\) | ||||
−0.788723 | + | 0.614749i | \(0.789257\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 13.8564i | 0.544752i | 0.962191 | + | 0.272376i | \(0.0878094\pi\) | ||||
−0.962191 | + | 0.272376i | \(0.912191\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | − | 41.5692i | − | 1.63173i | ||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 36.0000 | 1.40879 | 0.704394 | − | 0.709809i | \(-0.251219\pi\) | ||||
0.704394 | + | 0.709809i | \(0.251219\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −36.0000 | −1.40236 | −0.701180 | − | 0.712984i | \(-0.747343\pi\) | ||||
−0.701180 | + | 0.712984i | \(0.747343\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 24.2487i | 0.943166i | 0.881822 | + | 0.471583i | \(0.156317\pi\) | ||||
−0.881822 | + | 0.471583i | \(0.843683\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | − | 34.6410i | − | 1.33730i | ||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 34.6410i | 1.33531i | 0.744469 | + | 0.667657i | \(0.232703\pi\) | ||||
−0.744469 | + | 0.667657i | \(0.767297\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 24.0000 | 0.921035 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 12.0000 | 0.459167 | 0.229584 | − | 0.973289i | \(-0.426264\pi\) | ||||
0.229584 | + | 0.973289i | \(0.426264\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −48.0000 | −1.82865 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | − | 31.1769i | − | 1.18603i | −0.805193 | − | 0.593013i | \(-0.797938\pi\) | ||
0.805193 | − | 0.593013i | \(-0.202062\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 41.5692i | 1.57455i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 36.0000 | 1.35970 | 0.679851 | − | 0.733351i | \(-0.262045\pi\) | ||||
0.679851 | + | 0.733351i | \(0.262045\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −6.00000 | − | 13.8564i | −0.226294 | − | 0.522604i | ||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 22.0000 | 0.826227 | 0.413114 | − | 0.910679i | \(-0.364441\pi\) | ||||
0.413114 | + | 0.910679i | \(0.364441\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 34.6410i | 1.29189i | 0.763383 | + | 0.645946i | \(0.223537\pi\) | ||||
−0.763383 | + | 0.645946i | \(0.776463\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | − | 6.92820i | − | 0.258020i | ||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 34.6410i | 1.28654i | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 10.3923i | 0.385429i | 0.981255 | + | 0.192715i | \(0.0617292\pi\) | ||||
−0.981255 | + | 0.192715i | \(0.938271\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 62.3538i | 2.30624i | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −26.0000 | −0.960332 | −0.480166 | − | 0.877178i | \(-0.659424\pi\) | ||||
−0.480166 | + | 0.877178i | \(0.659424\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 13.8564i | 0.510407i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | − | 10.3923i | − | 0.382287i | −0.981562 | − | 0.191144i | \(-0.938780\pi\) | ||
0.981562 | − | 0.191144i | \(-0.0612196\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 24.0000 | 0.880475 | 0.440237 | − | 0.897881i | \(-0.354894\pi\) | ||||
0.440237 | + | 0.897881i | \(0.354894\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 41.5692i | 1.51891i | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −38.0000 | −1.38664 | −0.693320 | − | 0.720630i | \(-0.743853\pi\) | ||||
−0.693320 | + | 0.720630i | \(0.743853\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 2.00000 | 0.0726912 | 0.0363456 | − | 0.999339i | \(-0.488428\pi\) | ||||
0.0363456 | + | 0.999339i | \(0.488428\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −30.0000 | −1.08750 | −0.543750 | − | 0.839248i | \(-0.682996\pi\) | ||||
−0.543750 | + | 0.839248i | \(0.682996\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 36.0000 | 1.30329 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | − | 41.5692i | − | 1.50098i | ||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −2.00000 | −0.0721218 | −0.0360609 | − | 0.999350i | \(-0.511481\pi\) | ||||
−0.0360609 | + | 0.999350i | \(0.511481\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − | 34.6410i | − | 1.24595i | −0.782241 | − | 0.622975i | \(-0.785924\pi\) | ||
0.782241 | − | 0.622975i | \(-0.214076\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 50.0000 | 1.79605 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 12.0000 | + | 27.7128i | 0.429945 | + | 0.992915i | ||||
\(780\) | 0 | 0 | ||||||||
\(781\) | − | 41.5692i | − | 1.48746i | ||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 32.0000 | 1.14068 | 0.570338 | − | 0.821410i | \(-0.306812\pi\) | ||||
0.570338 | + | 0.821410i | \(0.306812\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 24.0000 | 0.853342 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | − | 34.6410i | − | 1.23014i | ||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 48.4974i | 1.71787i | 0.512087 | + | 0.858933i | \(0.328872\pi\) | ||||
−0.512087 | + | 0.858933i | \(0.671128\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | − | 41.5692i | − | 1.47061i | ||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 6.92820i | 0.244491i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 |