Properties

Label 2736.2.f.i.1025.3
Level $2736$
Weight $2$
Character 2736.1025
Analytic conductor $21.847$
Analytic rank $0$
Dimension $8$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2736,2,Mod(1025,2736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2736, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2736.1025");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.8470699930\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.691798081536.4
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 14x^{6} - 12x^{5} + 127x^{4} - 144x^{3} - 282x^{2} + 900x + 1350 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 684)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1025.3
Root \(1.31342 + 1.93185i\) of defining polynomial
Character \(\chi\) \(=\) 2736.1025
Dual form 2736.2.f.i.1025.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.09409i q^{5} +4.77753 q^{7} +O(q^{10})\) \(q-2.09409i q^{5} +4.77753 q^{7} -2.91628i q^{11} +6.02211i q^{17} +4.35890 q^{19} -8.99284i q^{23} +0.614779 q^{25} -10.0046i q^{35} +10.8248 q^{43} +13.6852i q^{47} +15.8248 q^{49} -6.10695 q^{55} -15.1698 q^{61} -16.8248 q^{73} -13.9326i q^{77} -17.4781i q^{83} +12.6108 q^{85} -9.12793i q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 40 q^{25} - 4 q^{43} + 36 q^{49} - 28 q^{55} - 44 q^{73} + 52 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 2.09409i − 0.936506i −0.883594 0.468253i \(-0.844884\pi\)
0.883594 0.468253i \(-0.155116\pi\)
\(6\) 0 0
\(7\) 4.77753 1.80573 0.902867 0.429919i \(-0.141458\pi\)
0.902867 + 0.429919i \(0.141458\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 2.91628i − 0.879291i −0.898171 0.439645i \(-0.855104\pi\)
0.898171 0.439645i \(-0.144896\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.02211i 1.46058i 0.683140 + 0.730288i \(0.260614\pi\)
−0.683140 + 0.730288i \(0.739386\pi\)
\(18\) 0 0
\(19\) 4.35890 1.00000
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 8.99284i − 1.87514i −0.347801 0.937568i \(-0.613071\pi\)
0.347801 0.937568i \(-0.386929\pi\)
\(24\) 0 0
\(25\) 0.614779 0.122956
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 10.0046i − 1.69108i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 10.8248 1.65076 0.825380 0.564578i \(-0.190961\pi\)
0.825380 + 0.564578i \(0.190961\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 13.6852i 1.99619i 0.0616809 + 0.998096i \(0.480354\pi\)
−0.0616809 + 0.998096i \(0.519646\pi\)
\(48\) 0 0
\(49\) 15.8248 2.26068
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) −6.10695 −0.823461
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −15.1698 −1.94230 −0.971149 0.238474i \(-0.923353\pi\)
−0.971149 + 0.238474i \(0.923353\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −16.8248 −1.96919 −0.984594 0.174855i \(-0.944054\pi\)
−0.984594 + 0.174855i \(0.944054\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 13.9326i − 1.58777i
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 17.4781i − 1.91847i −0.282604 0.959237i \(-0.591198\pi\)
0.282604 0.959237i \(-0.408802\pi\)
\(84\) 0 0
\(85\) 12.6108 1.36784
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 9.12793i − 0.936506i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 5.25776i − 0.523167i −0.965181 0.261583i \(-0.915755\pi\)
0.965181 0.261583i \(-0.0842446\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) −18.8318 −1.75608
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 28.7708i 2.63741i
\(120\) 0 0
\(121\) 2.49532 0.226848
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 11.7579i − 1.05166i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.12065i 0.0979117i 0.998801 + 0.0489558i \(0.0155894\pi\)
−0.998801 + 0.0489558i \(0.984411\pi\)
\(132\) 0 0
\(133\) 20.8248 1.80573
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 21.0881i 1.80168i 0.434151 + 0.900840i \(0.357048\pi\)
−0.434151 + 0.900840i \(0.642952\pi\)
\(138\) 0 0
\(139\) −3.10302 −0.263195 −0.131597 0.991303i \(-0.542011\pi\)
−0.131597 + 0.991303i \(0.542011\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 23.8989i − 1.95787i −0.204167 0.978936i \(-0.565449\pi\)
0.204167 0.978936i \(-0.434551\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 17.4356 1.39151 0.695756 0.718278i \(-0.255069\pi\)
0.695756 + 0.718278i \(0.255069\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 42.9635i − 3.38600i
\(162\) 0 0
\(163\) 8.71780 0.682831 0.341415 0.939913i \(-0.389094\pi\)
0.341415 + 0.939913i \(0.389094\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 2.93712 0.222026
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 17.5621 1.28427
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 22.0616i − 1.59632i −0.602446 0.798160i \(-0.705807\pi\)
0.602446 0.798160i \(-0.294193\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.22752i 0.229951i 0.993368 + 0.114976i \(0.0366790\pi\)
−0.993368 + 0.114976i \(0.963321\pi\)
\(198\) 0 0
\(199\) −1.17525 −0.0833111 −0.0416556 0.999132i \(-0.513263\pi\)
−0.0416556 + 0.999132i \(0.513263\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 12.7118i − 0.879291i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 22.6680i − 1.54595i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −7.28929 −0.481690 −0.240845 0.970564i \(-0.577424\pi\)
−0.240845 + 0.970564i \(0.577424\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 29.7314i 1.94777i 0.227040 + 0.973885i \(0.427095\pi\)
−0.227040 + 0.973885i \(0.572905\pi\)
\(234\) 0 0
\(235\) 28.6581 1.86945
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.06753i 0.198422i 0.995066 + 0.0992111i \(0.0316319\pi\)
−0.995066 + 0.0992111i \(0.968368\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 33.1385i − 2.11714i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.0047i 1.70452i 0.523117 + 0.852261i \(0.324769\pi\)
−0.523117 + 0.852261i \(0.675231\pi\)
\(252\) 0 0
\(253\) −26.2256 −1.64879
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 26.6256i − 1.64180i −0.571068 0.820902i \(-0.693471\pi\)
0.571068 0.820902i \(-0.306529\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 1.79287i − 0.108114i
\(276\) 0 0
\(277\) 26.3994 1.58619 0.793093 0.609101i \(-0.208470\pi\)
0.793093 + 0.609101i \(0.208470\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) −26.8248 −1.59457 −0.797283 0.603606i \(-0.793730\pi\)
−0.797283 + 0.603606i \(0.793730\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −19.2658 −1.13328
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 51.7155 2.98083
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 31.7670i 1.81897i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 32.6792i − 1.85307i −0.376209 0.926535i \(-0.622773\pi\)
0.376209 0.926535i \(-0.377227\pi\)
\(312\) 0 0
\(313\) −34.8712 −1.97104 −0.985518 0.169570i \(-0.945762\pi\)
−0.985518 + 0.169570i \(0.945762\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 26.2498i 1.46058i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 65.3814i 3.60459i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 42.1605 2.27645
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 36.8674i 1.97915i 0.144029 + 0.989573i \(0.453994\pi\)
−0.144029 + 0.989573i \(0.546006\pi\)
\(348\) 0 0
\(349\) −28.8248 −1.54295 −0.771477 0.636257i \(-0.780482\pi\)
−0.771477 + 0.636257i \(0.780482\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.7582i 0.785498i 0.919646 + 0.392749i \(0.128476\pi\)
−0.919646 + 0.392749i \(0.871524\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.3029i 1.28266i 0.767267 + 0.641328i \(0.221616\pi\)
−0.767267 + 0.641328i \(0.778384\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 35.2326i 1.84416i
\(366\) 0 0
\(367\) 28.0000 1.46159 0.730794 0.682598i \(-0.239150\pi\)
0.730794 + 0.682598i \(0.239150\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) −29.1761 −1.48695
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 35.9431i 1.82239i 0.411979 + 0.911193i \(0.364838\pi\)
−0.411979 + 0.911193i \(0.635162\pi\)
\(390\) 0 0
\(391\) 54.1558 2.73878
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −30.4743 −1.52946 −0.764730 0.644351i \(-0.777127\pi\)
−0.764730 + 0.644351i \(0.777127\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −36.6008 −1.79666
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 34.4487i − 1.68293i −0.540313 0.841464i \(-0.681694\pi\)
0.540313 0.841464i \(-0.318306\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.70227i 0.179586i
\(426\) 0 0
\(427\) −72.4743 −3.50728
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 39.1989i − 1.87514i
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 20.1147i − 0.955678i −0.878448 0.477839i \(-0.841420\pi\)
0.878448 0.477839i \(-0.158580\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −42.4743 −1.98686 −0.993431 0.114433i \(-0.963495\pi\)
−0.993431 + 0.114433i \(0.963495\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 11.4756i − 0.534470i −0.963631 0.267235i \(-0.913890\pi\)
0.963631 0.267235i \(-0.0861100\pi\)
\(462\) 0 0
\(463\) 9.17525 0.426410 0.213205 0.977007i \(-0.431610\pi\)
0.213205 + 0.977007i \(0.431610\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 15.3396i − 0.709832i −0.934898 0.354916i \(-0.884510\pi\)
0.934898 0.354916i \(-0.115490\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 31.5680i − 1.45150i
\(474\) 0 0
\(475\) 2.67976 0.122956
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 27.9936i 1.27906i 0.768765 + 0.639531i \(0.220871\pi\)
−0.768765 + 0.639531i \(0.779129\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 36.4789i 1.64627i 0.567845 + 0.823135i \(0.307777\pi\)
−0.567845 + 0.823135i \(0.692223\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −44.6722 −1.99980 −0.999902 0.0139987i \(-0.995544\pi\)
−0.999902 + 0.0139987i \(0.995544\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 24.9483i 1.11239i 0.831052 + 0.556195i \(0.187739\pi\)
−0.831052 + 0.556195i \(0.812261\pi\)
\(504\) 0 0
\(505\) −11.0102 −0.489949
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) −80.3807 −3.55583
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 39.9099 1.75523
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −57.8712 −2.51614
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 46.1494i − 1.98779i
\(540\) 0 0
\(541\) 46.4743 1.99808 0.999042 0.0437584i \(-0.0139332\pi\)
0.999042 + 0.0437584i \(0.0139332\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 44.2703i 1.87579i 0.346913 + 0.937897i \(0.387230\pi\)
−0.346913 + 0.937897i \(0.612770\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 40.0000 1.67395 0.836974 0.547243i \(-0.184323\pi\)
0.836974 + 0.547243i \(0.184323\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 5.52861i − 0.230559i
\(576\) 0 0
\(577\) 21.3759 0.889889 0.444945 0.895558i \(-0.353223\pi\)
0.444945 + 0.895558i \(0.353223\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 83.5022i − 3.46425i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 44.5024i 1.83681i 0.395642 + 0.918405i \(0.370522\pi\)
−0.395642 + 0.918405i \(0.629478\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 48.6993i 1.99984i 0.0126486 + 0.999920i \(0.495974\pi\)
−0.0126486 + 0.999920i \(0.504026\pi\)
\(594\) 0 0
\(595\) 60.2486 2.46995
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 5.22544i − 0.212444i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 18.5188 0.747969 0.373985 0.927435i \(-0.377991\pi\)
0.373985 + 0.927435i \(0.377991\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 0.147209i − 0.00592641i −0.999996 0.00296321i \(-0.999057\pi\)
0.999996 0.00296321i \(-0.000943219\pi\)
\(618\) 0 0
\(619\) −43.5890 −1.75199 −0.875995 0.482321i \(-0.839794\pi\)
−0.875995 + 0.482321i \(0.839794\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −21.5482 −0.861926
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −10.9836 −0.437249 −0.218624 0.975809i \(-0.570157\pi\)
−0.218624 + 0.975809i \(0.570157\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) −13.1752 −0.519581 −0.259791 0.965665i \(-0.583654\pi\)
−0.259791 + 0.965665i \(0.583654\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 50.7140i 1.99377i 0.0788426 + 0.996887i \(0.474878\pi\)
−0.0788426 + 0.996887i \(0.525122\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 31.7058i 1.24074i 0.784308 + 0.620372i \(0.213018\pi\)
−0.784308 + 0.620372i \(0.786982\pi\)
\(654\) 0 0
\(655\) 2.34675 0.0916949
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 43.6089i − 1.69108i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 44.2394i 1.70784i
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 44.1605 1.68729
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −16.4743 −0.626710 −0.313355 0.949636i \(-0.601453\pi\)
−0.313355 + 0.949636i \(0.601453\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.49801i 0.246483i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 47.6842i − 1.80101i −0.434850 0.900503i \(-0.643198\pi\)
0.434850 0.900503i \(-0.356802\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 25.1191i − 0.944700i
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 8.36973i 0.312138i 0.987746 + 0.156069i \(0.0498823\pi\)
−0.987746 + 0.156069i \(0.950118\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −52.4743 −1.94616 −0.973081 0.230463i \(-0.925976\pi\)
−0.973081 + 0.230463i \(0.925976\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 65.1878i 2.41106i
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 54.2273 1.99478 0.997392 0.0721811i \(-0.0229959\pi\)
0.997392 + 0.0721811i \(0.0229959\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −50.0464 −1.83356
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0.591258 0.0214896 0.0107448 0.999942i \(-0.496580\pi\)
0.0107448 + 0.999942i \(0.496580\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18.4454i 0.668646i 0.942459 + 0.334323i \(0.108508\pi\)
−0.942459 + 0.334323i \(0.891492\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 55.0645 1.98568 0.992839 0.119459i \(-0.0381161\pi\)
0.992839 + 0.119459i \(0.0381161\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 36.5117i − 1.30316i
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) −82.4137 −2.91559
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 49.0657i 1.73149i
\(804\) 0 0
\(805\) −89.9696 −3.17101
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 53.4408i 1.87888i 0.342718 + 0.939438i \(0.388653\pi\)
−0.342718 + 0.939438i \(0.611347\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 18.2559i − 0.639475i
\(816\) 0 0
\(817\) 47.1840 1.65076
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 56.8349i 1.98355i 0.127987 + 0.991776i \(0.459148\pi\)
−0.127987 + 0.991776i \(0.540852\pi\)
\(822\) 0 0
\(823\) 20.5386 0.715931 0.357966 0.933735i \(-0.383471\pi\)
0.357966 + 0.933735i \(0.383471\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 95.2983i 3.30189i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 27.2232i − 0.936506i
\(846\) 0 0
\(847\) 11.9215 0.409627
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 41.3232 1.40993 0.704965 0.709242i \(-0.250963\pi\)
0.704965 + 0.709242i \(0.250963\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 56.1735i − 1.89901i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 46.2172i 1.55710i 0.627584 + 0.778549i \(0.284044\pi\)
−0.627584 + 0.778549i \(0.715956\pi\)
\(882\) 0 0
\(883\) −28.9111 −0.972938 −0.486469 0.873698i \(-0.661715\pi\)
−0.486469 + 0.873698i \(0.661715\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 59.6524i 1.99619i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −50.9711 −1.68690
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.35394i 0.176803i
\(918\) 0 0
\(919\) 8.71780 0.287574 0.143787 0.989609i \(-0.454072\pi\)
0.143787 + 0.989609i \(0.454072\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 10.6977i − 0.350980i −0.984481 0.175490i \(-0.943849\pi\)
0.984481 0.175490i \(-0.0561509\pi\)
\(930\) 0 0
\(931\) 68.9785 2.26068
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 36.7767i − 1.20273i
\(936\) 0 0
\(937\) 10.4743 0.342179 0.171089 0.985255i \(-0.445271\pi\)
0.171089 + 0.985255i \(0.445271\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 37.4940i − 1.21839i −0.793019 0.609196i \(-0.791492\pi\)
0.793019 0.609196i \(-0.208508\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) −46.1990 −1.49496
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 100.749i 3.25336i
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 61.0246 1.96242 0.981209 0.192947i \(-0.0618045\pi\)
0.981209 + 0.192947i \(0.0618045\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −14.8248 −0.475260
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 6.75873 0.215351
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 97.3453i − 3.09540i
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.46108i 0.0780214i
\(996\) 0 0
\(997\) −56.7390 −1.79694 −0.898472 0.439031i \(-0.855322\pi\)
−0.898472 + 0.439031i \(0.855322\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2736.2.f.i.1025.3 8
3.2 odd 2 inner 2736.2.f.i.1025.6 8
4.3 odd 2 684.2.d.a.341.3 8
12.11 even 2 684.2.d.a.341.6 yes 8
19.18 odd 2 CM 2736.2.f.i.1025.3 8
57.56 even 2 inner 2736.2.f.i.1025.6 8
76.75 even 2 684.2.d.a.341.3 8
228.227 odd 2 684.2.d.a.341.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
684.2.d.a.341.3 8 4.3 odd 2
684.2.d.a.341.3 8 76.75 even 2
684.2.d.a.341.6 yes 8 12.11 even 2
684.2.d.a.341.6 yes 8 228.227 odd 2
2736.2.f.i.1025.3 8 1.1 even 1 trivial
2736.2.f.i.1025.3 8 19.18 odd 2 CM
2736.2.f.i.1025.6 8 3.2 odd 2 inner
2736.2.f.i.1025.6 8 57.56 even 2 inner