Properties

Label 2736.2.f.i.1025.2
Level $2736$
Weight $2$
Character 2736.1025
Analytic conductor $21.847$
Analytic rank $0$
Dimension $8$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2736,2,Mod(1025,2736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2736, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2736.1025");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.8470699930\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.691798081536.4
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 14x^{6} - 12x^{5} + 127x^{4} - 144x^{3} - 282x^{2} + 900x + 1350 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 684)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1025.2
Root \(-1.31342 - 0.517638i\) of defining polynomial
Character \(\chi\) \(=\) 2736.1025
Dual form 2736.2.f.i.1025.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.95155i q^{5} -4.77753 q^{7} +O(q^{10})\) \(q-3.95155i q^{5} -4.77753 q^{7} -5.95780i q^{11} -5.63331i q^{17} -4.35890 q^{19} +3.33599i q^{23} -10.6148 q^{25} +18.8787i q^{35} +10.8248 q^{43} +0.845725i q^{47} +15.8248 q^{49} -23.5425 q^{55} +15.1698 q^{61} -16.8248 q^{73} +28.4635i q^{77} -5.14929i q^{83} -22.2603 q^{85} +17.2244i q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 40 q^{25} - 4 q^{43} + 36 q^{49} - 28 q^{55} - 44 q^{73} + 52 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 3.95155i − 1.76719i −0.468253 0.883594i \(-0.655116\pi\)
0.468253 0.883594i \(-0.344884\pi\)
\(6\) 0 0
\(7\) −4.77753 −1.80573 −0.902867 0.429919i \(-0.858542\pi\)
−0.902867 + 0.429919i \(0.858542\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 5.95780i − 1.79634i −0.439645 0.898171i \(-0.644896\pi\)
0.439645 0.898171i \(-0.355104\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 5.63331i − 1.36628i −0.730288 0.683140i \(-0.760614\pi\)
0.730288 0.683140i \(-0.239386\pi\)
\(18\) 0 0
\(19\) −4.35890 −1.00000
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.33599i 0.695601i 0.937568 + 0.347801i \(0.113071\pi\)
−0.937568 + 0.347801i \(0.886929\pi\)
\(24\) 0 0
\(25\) −10.6148 −2.12296
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 18.8787i 3.19107i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 10.8248 1.65076 0.825380 0.564578i \(-0.190961\pi\)
0.825380 + 0.564578i \(0.190961\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.845725i 0.123362i 0.998096 + 0.0616809i \(0.0196461\pi\)
−0.998096 + 0.0616809i \(0.980354\pi\)
\(48\) 0 0
\(49\) 15.8248 2.26068
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) −23.5425 −3.17448
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 15.1698 1.94230 0.971149 0.238474i \(-0.0766472\pi\)
0.971149 + 0.238474i \(0.0766472\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −16.8248 −1.96919 −0.984594 0.174855i \(-0.944054\pi\)
−0.984594 + 0.174855i \(0.944054\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 28.4635i 3.24372i
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 5.14929i − 0.565208i −0.959237 0.282604i \(-0.908802\pi\)
0.959237 0.282604i \(-0.0911983\pi\)
\(84\) 0 0
\(85\) −22.2603 −2.41447
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 17.2244i 1.76719i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 19.3999i 1.93036i 0.261583 + 0.965181i \(0.415755\pi\)
−0.261583 + 0.965181i \(0.584245\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 13.1823 1.22926
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 26.9133i 2.46714i
\(120\) 0 0
\(121\) −24.4953 −2.22685
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 22.1871i 1.98447i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 22.8636i − 1.99760i −0.0489558 0.998801i \(-0.515589\pi\)
0.0489558 0.998801i \(-0.484411\pi\)
\(132\) 0 0
\(133\) 20.8248 1.80573
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 10.1632i − 0.868302i −0.900840 0.434151i \(-0.857048\pi\)
0.900840 0.434151i \(-0.142952\pi\)
\(138\) 0 0
\(139\) 3.10302 0.263195 0.131597 0.991303i \(-0.457989\pi\)
0.131597 + 0.991303i \(0.457989\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.98435i 0.408334i 0.978936 + 0.204167i \(0.0654486\pi\)
−0.978936 + 0.204167i \(0.934551\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −17.4356 −1.39151 −0.695756 0.718278i \(-0.744931\pi\)
−0.695756 + 0.718278i \(0.744931\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 15.9378i − 1.25607i
\(162\) 0 0
\(163\) −8.71780 −0.682831 −0.341415 0.939913i \(-0.610906\pi\)
−0.341415 + 0.939913i \(0.610906\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 50.7124 3.83350
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −33.5621 −2.45431
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 16.6519i − 1.20489i −0.798160 0.602446i \(-0.794193\pi\)
0.798160 0.602446i \(-0.205807\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 27.8852i 1.98674i 0.114976 + 0.993368i \(0.463321\pi\)
−0.114976 + 0.993368i \(0.536679\pi\)
\(198\) 0 0
\(199\) −1.17525 −0.0833111 −0.0416556 0.999132i \(-0.513263\pi\)
−0.0416556 + 0.999132i \(0.513263\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 25.9694i 1.79634i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 42.7746i − 2.91720i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 7.28929 0.481690 0.240845 0.970564i \(-0.422576\pi\)
0.240845 + 0.970564i \(0.422576\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.93124i 0.454080i 0.973885 + 0.227040i \(0.0729049\pi\)
−0.973885 + 0.227040i \(0.927095\pi\)
\(234\) 0 0
\(235\) 3.34193 0.218003
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 30.7667i 1.99013i 0.0992111 + 0.995066i \(0.468368\pi\)
−0.0992111 + 0.995066i \(0.531632\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 62.5324i − 3.99505i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 16.5755i − 1.04623i −0.852261 0.523117i \(-0.824769\pi\)
0.852261 0.523117i \(-0.175231\pi\)
\(252\) 0 0
\(253\) 19.8751 1.24954
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 18.5223i − 1.14214i −0.820902 0.571068i \(-0.806529\pi\)
0.820902 0.571068i \(-0.193471\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 63.2407i 3.81356i
\(276\) 0 0
\(277\) −26.3994 −1.58619 −0.793093 0.609101i \(-0.791530\pi\)
−0.793093 + 0.609101i \(0.791530\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) −26.8248 −1.59457 −0.797283 0.603606i \(-0.793730\pi\)
−0.797283 + 0.603606i \(0.793730\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −14.7342 −0.866720
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −51.7155 −2.98083
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 59.9444i − 3.43241i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 13.2690i 0.752418i 0.926535 + 0.376209i \(0.122773\pi\)
−0.926535 + 0.376209i \(0.877227\pi\)
\(312\) 0 0
\(313\) 34.8712 1.97104 0.985518 0.169570i \(-0.0542379\pi\)
0.985518 + 0.169570i \(0.0542379\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 24.5550i 1.36628i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 4.04048i − 0.222759i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −42.1605 −2.27645
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 5.36593i − 0.288058i −0.989573 0.144029i \(-0.953994\pi\)
0.989573 0.144029i \(-0.0460059\pi\)
\(348\) 0 0
\(349\) −28.8248 −1.54295 −0.771477 0.636257i \(-0.780482\pi\)
−0.771477 + 0.636257i \(0.780482\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 34.5572i − 1.83929i −0.392749 0.919646i \(-0.628476\pi\)
0.392749 0.919646i \(-0.371524\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 29.0753i − 1.53453i −0.641328 0.767267i \(-0.721616\pi\)
0.641328 0.767267i \(-0.278384\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 66.4839i 3.47993i
\(366\) 0 0
\(367\) 28.0000 1.46159 0.730794 0.682598i \(-0.239150\pi\)
0.730794 + 0.682598i \(0.239150\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 112.475 5.73226
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 16.2510i − 0.823958i −0.911193 0.411979i \(-0.864838\pi\)
0.911193 0.411979i \(-0.135162\pi\)
\(390\) 0 0
\(391\) 18.7927 0.950386
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −30.4743 −1.52946 −0.764730 0.644351i \(-0.777127\pi\)
−0.764730 + 0.644351i \(0.777127\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −20.3477 −0.998830
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 22.1199i − 1.08063i −0.841464 0.540313i \(-0.818306\pi\)
0.841464 0.540313i \(-0.181694\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 59.7964i 2.90055i
\(426\) 0 0
\(427\) −72.4743 −3.50728
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 14.5412i − 0.695601i
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 36.9784i 1.75690i 0.477839 + 0.878448i \(0.341420\pi\)
−0.477839 + 0.878448i \(0.658580\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −42.4743 −1.98686 −0.993431 0.114433i \(-0.963495\pi\)
−0.993431 + 0.114433i \(0.963495\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 41.3801i − 1.92726i −0.267235 0.963631i \(-0.586110\pi\)
0.267235 0.963631i \(-0.413890\pi\)
\(462\) 0 0
\(463\) 9.17525 0.426410 0.213205 0.977007i \(-0.431610\pi\)
0.213205 + 0.977007i \(0.431610\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 40.4066i 1.86980i 0.354916 + 0.934898i \(0.384510\pi\)
−0.354916 + 0.934898i \(0.615490\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 64.4917i − 2.96533i
\(474\) 0 0
\(475\) 46.2687 2.12296
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 33.6505i − 1.53753i −0.639531 0.768765i \(-0.720871\pi\)
0.639531 0.768765i \(-0.279129\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 25.1652i − 1.13569i −0.823135 0.567845i \(-0.807777\pi\)
0.823135 0.567845i \(-0.192223\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 44.6722 1.99980 0.999902 0.0139987i \(-0.00445607\pi\)
0.999902 + 0.0139987i \(0.00445607\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 37.2771i 1.66210i 0.556195 + 0.831052i \(0.312261\pi\)
−0.556195 + 0.831052i \(0.687739\pi\)
\(504\) 0 0
\(505\) 76.6597 3.41131
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 80.3807 3.55583
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 5.03866 0.221600
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.8712 0.516139
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 94.2806i − 4.06095i
\(540\) 0 0
\(541\) 46.4743 1.99808 0.999042 0.0437584i \(-0.0139332\pi\)
0.999042 + 0.0437584i \(0.0139332\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 16.3749i − 0.693825i −0.937897 0.346913i \(-0.887230\pi\)
0.937897 0.346913i \(-0.112770\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 40.0000 1.67395 0.836974 0.547243i \(-0.184323\pi\)
0.836974 + 0.547243i \(0.184323\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 35.4108i − 1.47673i
\(576\) 0 0
\(577\) −21.3759 −0.889889 −0.444945 0.895558i \(-0.646777\pi\)
−0.444945 + 0.895558i \(0.646777\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 24.6009i 1.02062i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 19.1713i 0.791285i 0.918405 + 0.395642i \(0.129478\pi\)
−0.918405 + 0.395642i \(0.870522\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 0.616025i − 0.0252971i −0.999920 0.0126486i \(-0.995974\pi\)
0.999920 0.0126486i \(-0.00402627\pi\)
\(594\) 0 0
\(595\) 106.349 4.35990
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 96.7946i 3.93526i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −18.5188 −0.747969 −0.373985 0.927435i \(-0.622009\pi\)
−0.373985 + 0.927435i \(0.622009\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 49.6788i 1.99999i 0.00296321 + 0.999996i \(0.499057\pi\)
−0.00296321 + 0.999996i \(0.500943\pi\)
\(618\) 0 0
\(619\) 43.5890 1.75199 0.875995 0.482321i \(-0.160206\pi\)
0.875995 + 0.482321i \(0.160206\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 34.5996 1.38399
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 10.9836 0.437249 0.218624 0.975809i \(-0.429843\pi\)
0.218624 + 0.975809i \(0.429843\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) −13.1752 −0.519581 −0.259791 0.965665i \(-0.583654\pi\)
−0.259791 + 0.965665i \(0.583654\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 4.01091i − 0.157685i −0.996887 0.0788426i \(-0.974878\pi\)
0.996887 0.0788426i \(-0.0251225\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 40.0842i − 1.56862i −0.620372 0.784308i \(-0.713018\pi\)
0.620372 0.784308i \(-0.286982\pi\)
\(654\) 0 0
\(655\) −90.3467 −3.53014
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 82.2901i − 3.19107i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 90.3787i − 3.48903i
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) −40.1605 −1.53445
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −16.4743 −0.626710 −0.313355 0.949636i \(-0.601453\pi\)
−0.313355 + 0.949636i \(0.601453\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 12.2617i − 0.465115i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 23.0265i − 0.869699i −0.900503 0.434850i \(-0.856802\pi\)
0.900503 0.434850i \(-0.143198\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 92.6835i − 3.48572i
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 52.9712i 1.97549i 0.156069 + 0.987746i \(0.450118\pi\)
−0.156069 + 0.987746i \(0.549882\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −52.4743 −1.94616 −0.973081 0.230463i \(-0.925976\pi\)
−0.973081 + 0.230463i \(0.925976\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 60.9792i − 2.25540i
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −54.2273 −1.99478 −0.997392 0.0721811i \(-0.977004\pi\)
−0.997392 + 0.0721811i \(0.977004\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 19.6959 0.721604
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −0.591258 −0.0214896 −0.0107448 0.999942i \(-0.503420\pi\)
−0.0107448 + 0.999942i \(0.503420\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 51.9978i − 1.88492i −0.334323 0.942459i \(-0.608508\pi\)
0.334323 0.942459i \(-0.391492\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −55.0645 −1.98568 −0.992839 0.119459i \(-0.961884\pi\)
−0.992839 + 0.119459i \(0.961884\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 68.8977i 2.45906i
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 4.76424 0.168547
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 100.238i 3.53734i
\(804\) 0 0
\(805\) −62.9789 −2.21972
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 19.4958i 0.685435i 0.939438 + 0.342718i \(0.111347\pi\)
−0.939438 + 0.342718i \(0.888653\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 34.4488i 1.20669i
\(816\) 0 0
\(817\) −47.1840 −1.65076
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.33446i 0.255974i 0.991776 + 0.127987i \(0.0408516\pi\)
−0.991776 + 0.127987i \(0.959148\pi\)
\(822\) 0 0
\(823\) −20.5386 −0.715931 −0.357966 0.933735i \(-0.616529\pi\)
−0.357966 + 0.933735i \(0.616529\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 89.1458i − 3.08872i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 51.3702i − 1.76719i
\(846\) 0 0
\(847\) 117.027 4.02110
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −41.3232 −1.40993 −0.704965 0.709242i \(-0.749037\pi\)
−0.704965 + 0.709242i \(0.749037\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 105.999i − 3.58344i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 37.2554i 1.25517i 0.778549 + 0.627584i \(0.215956\pi\)
−0.778549 + 0.627584i \(0.784044\pi\)
\(882\) 0 0
\(883\) 28.9111 0.972938 0.486469 0.873698i \(-0.338285\pi\)
0.486469 + 0.873698i \(0.338285\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 3.68643i − 0.123362i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −30.6784 −1.01531
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 109.231i 3.60714i
\(918\) 0 0
\(919\) −8.71780 −0.287574 −0.143787 0.989609i \(-0.545928\pi\)
−0.143787 + 0.989609i \(0.545928\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 60.0130i − 1.96896i −0.175490 0.984481i \(-0.556151\pi\)
0.175490 0.984481i \(-0.443849\pi\)
\(930\) 0 0
\(931\) −68.9785 −2.26068
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 132.623i 4.33722i
\(936\) 0 0
\(937\) 10.4743 0.342179 0.171089 0.985255i \(-0.445271\pi\)
0.171089 + 0.985255i \(0.445271\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 48.8078i 1.58604i 0.609196 + 0.793019i \(0.291492\pi\)
−0.609196 + 0.793019i \(0.708508\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) −65.8010 −2.12927
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 48.5550i 1.56792i
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −61.0246 −1.96242 −0.981209 0.192947i \(-0.938195\pi\)
−0.981209 + 0.192947i \(0.938195\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −14.8248 −0.475260
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 110.190 3.51094
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 36.1112i 1.14827i
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.64406i 0.147227i
\(996\) 0 0
\(997\) 56.7390 1.79694 0.898472 0.439031i \(-0.144678\pi\)
0.898472 + 0.439031i \(0.144678\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2736.2.f.i.1025.2 8
3.2 odd 2 inner 2736.2.f.i.1025.7 8
4.3 odd 2 684.2.d.a.341.2 8
12.11 even 2 684.2.d.a.341.7 yes 8
19.18 odd 2 CM 2736.2.f.i.1025.2 8
57.56 even 2 inner 2736.2.f.i.1025.7 8
76.75 even 2 684.2.d.a.341.2 8
228.227 odd 2 684.2.d.a.341.7 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
684.2.d.a.341.2 8 4.3 odd 2
684.2.d.a.341.2 8 76.75 even 2
684.2.d.a.341.7 yes 8 12.11 even 2
684.2.d.a.341.7 yes 8 228.227 odd 2
2736.2.f.i.1025.2 8 1.1 even 1 trivial
2736.2.f.i.1025.2 8 19.18 odd 2 CM
2736.2.f.i.1025.7 8 3.2 odd 2 inner
2736.2.f.i.1025.7 8 57.56 even 2 inner