Properties

Label 2736.2.f.e.1025.3
Level $2736$
Weight $2$
Character 2736.1025
Analytic conductor $21.847$
Analytic rank $0$
Dimension $4$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2736,2,Mod(1025,2736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2736, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2736.1025");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.8470699930\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 20x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 171)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1025.3
Root \(2.37510i\) of defining polynomial
Character \(\chi\) \(=\) 2736.1025
Dual form 2736.2.f.e.1025.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.37510i q^{5} -4.35890 q^{7} +O(q^{10})\) \(q+2.37510i q^{5} -4.35890 q^{7} -6.61774i q^{11} -1.86754i q^{17} +4.35890 q^{19} +8.99284i q^{23} -0.641101 q^{25} -10.3528i q^{35} +1.00000 q^{43} +6.11018i q^{47} +12.0000 q^{49} +15.7178 q^{55} +4.35890 q^{61} +11.0000 q^{73} +28.8461i q^{77} +17.4781i q^{83} +4.43560 q^{85} +10.3528i q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 20 q^{25} + 4 q^{43} + 48 q^{49} + 28 q^{55} + 44 q^{73} - 52 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.37510i 1.06218i 0.847316 + 0.531089i \(0.178217\pi\)
−0.847316 + 0.531089i \(0.821783\pi\)
\(6\) 0 0
\(7\) −4.35890 −1.64751 −0.823754 0.566947i \(-0.808125\pi\)
−0.823754 + 0.566947i \(0.808125\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 6.61774i − 1.99532i −0.0683416 0.997662i \(-0.521771\pi\)
0.0683416 0.997662i \(-0.478229\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 1.86754i − 0.452945i −0.974018 0.226473i \(-0.927281\pi\)
0.974018 0.226473i \(-0.0727194\pi\)
\(18\) 0 0
\(19\) 4.35890 1.00000
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.99284i 1.87514i 0.347801 + 0.937568i \(0.386929\pi\)
−0.347801 + 0.937568i \(0.613071\pi\)
\(24\) 0 0
\(25\) −0.641101 −0.128220
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 10.3528i − 1.74995i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 1.00000 0.152499 0.0762493 0.997089i \(-0.475706\pi\)
0.0762493 + 0.997089i \(0.475706\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.11018i 0.891262i 0.895217 + 0.445631i \(0.147021\pi\)
−0.895217 + 0.445631i \(0.852979\pi\)
\(48\) 0 0
\(49\) 12.0000 1.71429
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 15.7178 2.11939
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 4.35890 0.558100 0.279050 0.960277i \(-0.409981\pi\)
0.279050 + 0.960277i \(0.409981\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 11.0000 1.28745 0.643726 0.765256i \(-0.277388\pi\)
0.643726 + 0.765256i \(0.277388\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 28.8461i 3.28731i
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 17.4781i 1.91847i 0.282604 + 0.959237i \(0.408802\pi\)
−0.282604 + 0.959237i \(0.591198\pi\)
\(84\) 0 0
\(85\) 4.43560 0.481108
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 10.3528i 1.06218i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.25776i 0.523167i 0.965181 + 0.261583i \(0.0842446\pi\)
−0.965181 + 0.261583i \(0.915755\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) −21.3589 −1.99173
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 8.14042i 0.746231i
\(120\) 0 0
\(121\) −32.7945 −2.98132
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.3528i 0.925985i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 20.3608i 1.77893i 0.457003 + 0.889465i \(0.348923\pi\)
−0.457003 + 0.889465i \(0.651077\pi\)
\(132\) 0 0
\(133\) −19.0000 −1.64751
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 19.3457i 1.65281i 0.563075 + 0.826406i \(0.309618\pi\)
−0.563075 + 0.826406i \(0.690382\pi\)
\(138\) 0 0
\(139\) 21.7945 1.84858 0.924292 0.381685i \(-0.124656\pi\)
0.924292 + 0.381685i \(0.124656\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 7.63286i − 0.625308i −0.949867 0.312654i \(-0.898782\pi\)
0.949867 0.312654i \(-0.101218\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 17.4356 1.39151 0.695756 0.718278i \(-0.255069\pi\)
0.695756 + 0.718278i \(0.255069\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 39.1989i − 3.08930i
\(162\) 0 0
\(163\) 8.71780 0.682831 0.341415 0.939913i \(-0.389094\pi\)
0.341415 + 0.939913i \(0.389094\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 2.79449 0.211244
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −12.3589 −0.903772
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.39022i 0.245308i 0.992450 + 0.122654i \(0.0391405\pi\)
−0.992450 + 0.122654i \(0.960860\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 3.22752i − 0.229951i −0.993368 0.114976i \(-0.963321\pi\)
0.993368 0.114976i \(-0.0366790\pi\)
\(198\) 0 0
\(199\) 25.0000 1.77220 0.886102 0.463491i \(-0.153403\pi\)
0.886102 + 0.463491i \(0.153403\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 28.8461i − 1.99532i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.37510i 0.161980i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −21.7945 −1.44022 −0.720110 0.693860i \(-0.755909\pi\)
−0.720110 + 0.693860i \(0.755909\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.8683i 1.36713i 0.729889 + 0.683565i \(0.239572\pi\)
−0.729889 + 0.683565i \(0.760428\pi\)
\(234\) 0 0
\(235\) −14.5123 −0.946678
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 25.1110i − 1.62429i −0.583453 0.812147i \(-0.698299\pi\)
0.583453 0.812147i \(-0.301701\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 28.5012i 1.82088i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 0.852421i − 0.0538043i −0.999638 0.0269022i \(-0.991436\pi\)
0.999638 0.0269022i \(-0.00856426\pi\)
\(252\) 0 0
\(253\) 59.5123 3.74151
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 29.3536i − 1.81002i −0.425388 0.905011i \(-0.639862\pi\)
0.425388 0.905011i \(-0.360138\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.24264i 0.255841i
\(276\) 0 0
\(277\) 4.35890 0.261901 0.130950 0.991389i \(-0.458197\pi\)
0.130950 + 0.991389i \(0.458197\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 31.0000 1.84276 0.921379 0.388664i \(-0.127063\pi\)
0.921379 + 0.388664i \(0.127063\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 13.5123 0.794841
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −4.35890 −0.251243
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.3528i 0.592801i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 27.8309i − 1.57815i −0.614298 0.789074i \(-0.710561\pi\)
0.614298 0.789074i \(-0.289439\pi\)
\(312\) 0 0
\(313\) −34.8712 −1.97104 −0.985518 0.169570i \(-0.945762\pi\)
−0.985518 + 0.169570i \(0.945762\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 8.14042i − 0.452945i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 26.6337i − 1.46836i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −21.7945 −1.17679
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 23.0807i 1.23904i 0.784981 + 0.619520i \(0.212673\pi\)
−0.784981 + 0.619520i \(0.787327\pi\)
\(348\) 0 0
\(349\) 35.0000 1.87351 0.936754 0.349990i \(-0.113815\pi\)
0.936754 + 0.349990i \(0.113815\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 14.7582i − 0.785498i −0.919646 0.392749i \(-0.871524\pi\)
0.919646 0.392749i \(-0.128476\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 37.3313i 1.97027i 0.171773 + 0.985137i \(0.445050\pi\)
−0.171773 + 0.985137i \(0.554950\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 26.1261i 1.36750i
\(366\) 0 0
\(367\) 28.0000 1.46159 0.730794 0.682598i \(-0.239150\pi\)
0.730794 + 0.682598i \(0.239150\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) −68.5123 −3.49171
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.89778i 0.197625i 0.995106 + 0.0988126i \(0.0315044\pi\)
−0.995106 + 0.0988126i \(0.968496\pi\)
\(390\) 0 0
\(391\) 16.7945 0.849334
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −7.00000 −0.351320 −0.175660 0.984451i \(-0.556206\pi\)
−0.175660 + 0.984451i \(0.556206\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −41.5123 −2.03776
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 34.4487i 1.68293i 0.540313 + 0.841464i \(0.318306\pi\)
−0.540313 + 0.841464i \(0.681694\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.19728i 0.0580767i
\(426\) 0 0
\(427\) −19.0000 −0.919474
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 39.1989i 1.87514i
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 42.0815i − 1.99935i −0.0254032 0.999677i \(-0.508087\pi\)
0.0254032 0.999677i \(-0.491913\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 17.0000 0.795226 0.397613 0.917553i \(-0.369839\pi\)
0.397613 + 0.917553i \(0.369839\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 41.5740i − 1.93629i −0.250383 0.968147i \(-0.580557\pi\)
0.250383 0.968147i \(-0.419443\pi\)
\(462\) 0 0
\(463\) −41.0000 −1.90543 −0.952716 0.303863i \(-0.901724\pi\)
−0.952716 + 0.303863i \(0.901724\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 27.3234i 1.26438i 0.774815 + 0.632188i \(0.217843\pi\)
−0.774815 + 0.632188i \(0.782157\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 6.61774i − 0.304284i
\(474\) 0 0
\(475\) −2.79449 −0.128220
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 27.9936i − 1.27906i −0.768765 0.639531i \(-0.779129\pi\)
0.768765 0.639531i \(-0.220871\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 36.4789i − 1.64627i −0.567845 0.823135i \(-0.692223\pi\)
0.567845 0.823135i \(-0.307777\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 21.7945 0.975656 0.487828 0.872940i \(-0.337789\pi\)
0.487828 + 0.872940i \(0.337789\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 24.9483i − 1.11239i −0.831052 0.556195i \(-0.812261\pi\)
0.831052 0.556195i \(-0.187739\pi\)
\(504\) 0 0
\(505\) −12.4877 −0.555696
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) −47.9479 −2.12109
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 40.4356 1.77836
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −57.8712 −2.51614
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 79.4129i − 3.42056i
\(540\) 0 0
\(541\) −25.0000 −1.07483 −0.537417 0.843317i \(-0.680600\pi\)
−0.537417 + 0.843317i \(0.680600\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 36.3162i 1.53877i 0.638787 + 0.769384i \(0.279437\pi\)
−0.638787 + 0.769384i \(0.720563\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 40.0000 1.67395 0.836974 0.547243i \(-0.184323\pi\)
0.836974 + 0.547243i \(0.184323\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 5.76532i − 0.240430i
\(576\) 0 0
\(577\) −47.9479 −1.99610 −0.998048 0.0624458i \(-0.980110\pi\)
−0.998048 + 0.0624458i \(0.980110\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 76.1854i − 3.16070i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 38.8540i 1.60368i 0.597541 + 0.801839i \(0.296145\pi\)
−0.597541 + 0.801839i \(0.703855\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 48.6993i − 1.99984i −0.0126486 0.999920i \(-0.504026\pi\)
0.0126486 0.999920i \(-0.495974\pi\)
\(594\) 0 0
\(595\) −19.3343 −0.792630
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 77.8902i − 3.16669i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 30.5123 1.23238 0.616190 0.787598i \(-0.288675\pi\)
0.616190 + 0.787598i \(0.288675\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 43.0967i − 1.73501i −0.497432 0.867503i \(-0.665723\pi\)
0.497432 0.867503i \(-0.334277\pi\)
\(618\) 0 0
\(619\) −43.5890 −1.75199 −0.875995 0.482321i \(-0.839794\pi\)
−0.875995 + 0.482321i \(0.839794\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −27.7945 −1.11178
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 47.9479 1.90878 0.954388 0.298570i \(-0.0965097\pi\)
0.954388 + 0.298570i \(0.0965097\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 49.0000 1.93237 0.966186 0.257847i \(-0.0830131\pi\)
0.966186 + 0.257847i \(0.0830131\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 21.8835i 0.860328i 0.902751 + 0.430164i \(0.141544\pi\)
−0.902751 + 0.430164i \(0.858456\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 50.5668i 1.97883i 0.145104 + 0.989416i \(0.453648\pi\)
−0.145104 + 0.989416i \(0.546352\pi\)
\(654\) 0 0
\(655\) −48.3589 −1.88954
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 45.1269i − 1.74995i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 28.8461i − 1.11359i
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) −45.9479 −1.75558
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −35.0000 −1.33146 −0.665731 0.746191i \(-0.731880\pi\)
−0.665731 + 0.746191i \(0.731880\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 51.7641i 1.96352i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 47.6842i 1.80101i 0.434850 + 0.900503i \(0.356802\pi\)
−0.434850 + 0.900503i \(0.643198\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 22.9180i − 0.861922i
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 50.0593i 1.86690i 0.358713 + 0.933448i \(0.383216\pi\)
−0.358713 + 0.933448i \(0.616784\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 37.0000 1.37225 0.686127 0.727482i \(-0.259309\pi\)
0.686127 + 0.727482i \(0.259309\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 1.86754i − 0.0690735i
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −30.5123 −1.12241 −0.561206 0.827676i \(-0.689663\pi\)
−0.561206 + 0.827676i \(0.689663\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 18.1288 0.664188
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −47.9479 −1.74270 −0.871348 0.490666i \(-0.836754\pi\)
−0.871348 + 0.490666i \(0.836754\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 35.8087i − 1.29806i −0.760761 0.649032i \(-0.775174\pi\)
0.760761 0.649032i \(-0.224826\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −21.7945 −0.785930 −0.392965 0.919554i \(-0.628551\pi\)
−0.392965 + 0.919554i \(0.628551\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 41.4113i 1.47803i
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 11.4110 0.403693
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 72.7951i − 2.56889i
\(804\) 0 0
\(805\) 93.1013 3.28139
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 43.6042i 1.53304i 0.642219 + 0.766521i \(0.278014\pi\)
−0.642219 + 0.766521i \(0.721986\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 20.7056i 0.725287i
\(816\) 0 0
\(817\) 4.35890 0.152499
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22.0656i 0.770096i 0.922897 + 0.385048i \(0.125815\pi\)
−0.922897 + 0.385048i \(0.874185\pi\)
\(822\) 0 0
\(823\) −56.6657 −1.97524 −0.987621 0.156860i \(-0.949863\pi\)
−0.987621 + 0.156860i \(0.949863\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 22.4105i − 0.776477i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 30.8763i 1.06218i
\(846\) 0 0
\(847\) 142.948 4.91175
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −56.6657 −1.93341 −0.966704 0.255897i \(-0.917629\pi\)
−0.966704 + 0.255897i \(0.917629\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 45.1269i − 1.52557i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 9.15554i − 0.308458i −0.988035 0.154229i \(-0.950711\pi\)
0.988035 0.154229i \(-0.0492893\pi\)
\(882\) 0 0
\(883\) −30.5123 −1.02682 −0.513410 0.858143i \(-0.671618\pi\)
−0.513410 + 0.858143i \(0.671618\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 26.6337i 0.891262i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 115.666 3.82798
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 88.7506i − 2.93080i
\(918\) 0 0
\(919\) 8.71780 0.287574 0.143787 0.989609i \(-0.454072\pi\)
0.143787 + 0.989609i \(0.454072\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10.6977i 0.350980i 0.984481 + 0.175490i \(0.0561509\pi\)
−0.984481 + 0.175490i \(0.943849\pi\)
\(930\) 0 0
\(931\) 52.3068 1.71429
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 29.3536i − 0.959966i
\(936\) 0 0
\(937\) 47.0000 1.53542 0.767712 0.640796i \(-0.221395\pi\)
0.767712 + 0.640796i \(0.221395\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 37.4940i 1.21839i 0.793019 + 0.609196i \(0.208508\pi\)
−0.793019 + 0.609196i \(0.791492\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) −8.05211 −0.260560
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 84.3258i − 2.72302i
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 61.0246 1.96242 0.981209 0.192947i \(-0.0618045\pi\)
0.981209 + 0.192947i \(0.0618045\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −95.0000 −3.04556
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 7.66569 0.244249
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.99284i 0.285956i
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 59.3775i 1.88239i
\(996\) 0 0
\(997\) 4.35890 0.138048 0.0690239 0.997615i \(-0.478012\pi\)
0.0690239 + 0.997615i \(0.478012\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2736.2.f.e.1025.3 4
3.2 odd 2 inner 2736.2.f.e.1025.2 4
4.3 odd 2 171.2.d.a.170.3 yes 4
12.11 even 2 171.2.d.a.170.2 4
19.18 odd 2 CM 2736.2.f.e.1025.3 4
57.56 even 2 inner 2736.2.f.e.1025.2 4
76.75 even 2 171.2.d.a.170.3 yes 4
228.227 odd 2 171.2.d.a.170.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.2.d.a.170.2 4 12.11 even 2
171.2.d.a.170.2 4 228.227 odd 2
171.2.d.a.170.3 yes 4 4.3 odd 2
171.2.d.a.170.3 yes 4 76.75 even 2
2736.2.f.e.1025.2 4 3.2 odd 2 inner
2736.2.f.e.1025.2 4 57.56 even 2 inner
2736.2.f.e.1025.3 4 1.1 even 1 trivial
2736.2.f.e.1025.3 4 19.18 odd 2 CM