Properties

Label 2736.2.er
Level $2736$
Weight $2$
Character orbit 2736.er
Rep. character $\chi_{2736}(467,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $640$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.er (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 912 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2736, [\chi])\).

Total New Old
Modular forms 1952 640 1312
Cusp forms 1888 640 1248
Eisenstein series 64 0 64

Trace form

\( 640q + O(q^{10}) \) \( 640q - 8q^{10} - 8q^{16} - 16q^{19} + 16q^{34} - 80q^{46} + 640q^{49} + 32q^{52} + 64q^{61} + 96q^{64} + 96q^{76} - 80q^{82} - 32q^{85} - 80q^{88} - 96q^{94} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2736, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2736, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2736, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(912, [\chi])\)\(^{\oplus 2}\)