Properties

Label 2736.2.eh
Level $2736$
Weight $2$
Character orbit 2736.eh
Rep. character $\chi_{2736}(277,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $1904$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.eh (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 2736 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2736, [\chi])\).

Total New Old
Modular forms 1936 1936 0
Cusp forms 1904 1904 0
Eisenstein series 32 32 0

Trace form

\( 1904q + 2q^{2} - 2q^{3} + 2q^{4} - 4q^{5} - 2q^{6} - 16q^{8} + O(q^{10}) \) \( 1904q + 2q^{2} - 2q^{3} + 2q^{4} - 4q^{5} - 2q^{6} - 16q^{8} - 4q^{10} - 4q^{11} - 8q^{12} + 2q^{13} - 20q^{14} - 4q^{15} + 2q^{16} - 8q^{17} - 4q^{18} - 8q^{19} - 18q^{20} - 14q^{21} - 4q^{22} - 18q^{24} - 48q^{26} - 8q^{27} - 12q^{28} - 4q^{29} - 40q^{30} - 8q^{31} + 2q^{32} - 4q^{33} + 12q^{34} - 14q^{35} - 18q^{36} - 16q^{37} + 26q^{38} - 4q^{40} - 10q^{42} + 2q^{43} + 18q^{44} + 2q^{45} - 32q^{46} - 8q^{47} + 78q^{48} + 896q^{49} + 4q^{50} + 10q^{51} + 2q^{52} - 4q^{53} + 42q^{54} - 16q^{56} - 4q^{58} - 4q^{59} + 42q^{60} - 4q^{61} - 88q^{62} + 24q^{63} - 16q^{64} - 8q^{65} - 18q^{66} + 2q^{67} + 4q^{68} - 2q^{69} + 24q^{70} + 42q^{72} - 26q^{74} + 100q^{75} - 26q^{76} - 60q^{77} - 10q^{78} + 4q^{79} - 20q^{80} - 4q^{81} + 4q^{82} - 4q^{83} - 80q^{84} - 18q^{85} + 2q^{86} - 4q^{88} - 74q^{90} - 18q^{91} - 30q^{92} - 8q^{93} - 12q^{94} - 4q^{95} + 4q^{96} + 4q^{97} - 82q^{98} - 48q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2736, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.