# Properties

 Label 2736.2.ee Level $2736$ Weight $2$ Character orbit 2736.ee Rep. character $\chi_{2736}(797,\cdot)$ Character field $\Q(\zeta_{12})$ Dimension $1904$ Sturm bound $960$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$2736 = 2^{4} \cdot 3^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2736.ee (of order $$12$$ and degree $$4$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$2736$$ Character field: $$\Q(\zeta_{12})$$ Sturm bound: $$960$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(2736, [\chi])$$.

Total New Old
Modular forms 1936 1936 0
Cusp forms 1904 1904 0
Eisenstein series 32 32 0

## Trace form

 $$1904q - 4q^{4} - 12q^{5} - 8q^{6} + O(q^{10})$$ $$1904q - 4q^{4} - 12q^{5} - 8q^{6} - 12q^{11} - 4q^{16} - 8q^{19} + 72q^{20} + 8q^{24} - 48q^{28} + 28q^{30} - 24q^{36} - 6q^{38} - 72q^{42} - 4q^{43} + 12q^{45} - 24q^{47} + 896q^{49} - 52q^{54} - 4q^{58} - 4q^{61} - 72q^{63} - 16q^{64} + 8q^{66} + 36q^{68} - 180q^{74} + 10q^{76} - 12q^{77} - 16q^{81} - 32q^{82} - 12q^{83} + 16q^{85} - 12q^{92} - 20q^{93} - 12q^{95} + 84q^{96} - 4q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(2736, [\chi])$$ into newform subspaces

The newforms in this space have not yet been added to the LMFDB.