Properties

Label 2736.2.ds
Level $2736$
Weight $2$
Character orbit 2736.ds
Rep. character $\chi_{2736}(419,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $1728$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.ds (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 144 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2736, [\chi])\).

Total New Old
Modular forms 1936 1728 208
Cusp forms 1904 1728 176
Eisenstein series 32 0 32

Trace form

\( 1728 q - 12 q^{6} + 24 q^{12} + 20 q^{18} - 24 q^{24} + 24 q^{27} + 40 q^{30} + 28 q^{36} + 48 q^{39} - 40 q^{42} - 52 q^{48} - 864 q^{49} - 156 q^{50} + 40 q^{51} + 112 q^{54} - 36 q^{58} + 72 q^{59} - 136 q^{60}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2736, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2736, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2736, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 2}\)