Properties

Label 2736.2.di
Level $2736$
Weight $2$
Character orbit 2736.di
Rep. character $\chi_{2736}(31,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $240$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.di (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 684 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2736, [\chi])\).

Total New Old
Modular forms 984 240 744
Cusp forms 936 240 696
Eisenstein series 48 0 48

Trace form

\( 240q - 6q^{9} + O(q^{10}) \) \( 240q - 6q^{9} + 12q^{17} + 240q^{25} + 18q^{33} + 120q^{49} - 66q^{57} - 72q^{65} + 18q^{73} - 42q^{81} + 54q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2736, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2736, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2736, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(684, [\chi])\)\(^{\oplus 3}\)