Properties

Label 2736.2.cn
Level $2736$
Weight $2$
Character orbit 2736.cn
Rep. character $\chi_{2736}(113,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $236$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.cn (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 171 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2736, [\chi])\).

Total New Old
Modular forms 984 244 740
Cusp forms 936 236 700
Eisenstein series 48 8 40

Trace form

\( 236 q - 6 q^{5} + 2 q^{7} - 8 q^{9} + 6 q^{11} + 4 q^{19} + 6 q^{23} + 108 q^{25} + 10 q^{39} + 14 q^{43} - 14 q^{45} + 6 q^{47} - 108 q^{49} + 28 q^{55} - 2 q^{57} - 2 q^{61} - 46 q^{63} + 16 q^{73} - 6 q^{77}+ \cdots + 38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2736, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2736, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2736, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(171, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(342, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(684, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1368, [\chi])\)\(^{\oplus 2}\)