Properties

Label 2736.2.bm.o.1855.1
Level $2736$
Weight $2$
Character 2736.1855
Analytic conductor $21.847$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.bm (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(21.8470699930\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.954288.1
Defining polynomial: \(x^{6} - x^{5} - 2 x^{4} + 3 x^{3} - 6 x^{2} - 9 x + 27\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 912)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1855.1
Root \(-1.62241 - 0.606458i\) of defining polynomial
Character \(\chi\) \(=\) 2736.1855
Dual form 2736.2.bm.o.559.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.33641 - 2.31473i) q^{5} +3.93569i q^{7} +O(q^{10})\) \(q+(-1.33641 - 2.31473i) q^{5} +3.93569i q^{7} -2.20364i q^{11} +(-3.60083 - 2.07894i) q^{13} +(0.571993 + 0.990721i) q^{17} +(4.24482 + 0.990721i) q^{19} +(3.19243 + 1.84315i) q^{23} +(-1.07199 + 1.85675i) q^{25} +(2.10083 + 1.21292i) q^{29} -3.67282 q^{31} +(9.11007 - 5.25970i) q^{35} -10.0478i q^{37} +(-8.01847 + 4.62947i) q^{41} +(0.490764 - 0.283343i) q^{43} +(-10.6336 - 6.13932i) q^{47} -8.48963 q^{49} +(-4.09159 - 2.36228i) q^{53} +(-5.10083 + 2.94497i) q^{55} +(-1.33641 - 2.31473i) q^{59} +(-6.41764 + 11.1157i) q^{61} +11.1133i q^{65} +(-1.73558 + 3.00612i) q^{67} +(-6.24482 - 10.8163i) q^{71} +(1.35601 + 2.34868i) q^{73} +8.67282 q^{77} +(3.50924 + 6.07817i) q^{79} -1.98144i q^{83} +(1.52884 - 2.64802i) q^{85} +(-12.9269 - 7.46334i) q^{89} +(8.18206 - 14.1717i) q^{91} +(-3.37957 - 11.1496i) q^{95} +(2.91764 - 1.68450i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q + 2q^{5} + O(q^{10}) \) \( 6q + 2q^{5} - 3q^{13} + 2q^{17} + 4q^{19} + 12q^{23} - 5q^{25} - 6q^{29} - 2q^{31} + 6q^{35} + 12q^{41} + 33q^{43} - 18q^{47} - 8q^{49} - 36q^{53} - 12q^{55} + 2q^{59} + 3q^{61} - 19q^{67} - 16q^{71} + 11q^{73} + 32q^{77} - 9q^{79} - 8q^{85} - 6q^{89} - q^{91} - 26q^{95} - 24q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.33641 2.31473i −0.597662 1.03518i −0.993165 0.116716i \(-0.962763\pi\)
0.395504 0.918464i \(-0.370570\pi\)
\(6\) 0 0
\(7\) 3.93569i 1.48755i 0.668430 + 0.743775i \(0.266967\pi\)
−0.668430 + 0.743775i \(0.733033\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.20364i 0.664421i −0.943205 0.332211i \(-0.892205\pi\)
0.943205 0.332211i \(-0.107795\pi\)
\(12\) 0 0
\(13\) −3.60083 2.07894i −0.998691 0.576594i −0.0908300 0.995866i \(-0.528952\pi\)
−0.907861 + 0.419272i \(0.862285\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.571993 + 0.990721i 0.138729 + 0.240285i 0.927016 0.375023i \(-0.122365\pi\)
−0.788287 + 0.615308i \(0.789032\pi\)
\(18\) 0 0
\(19\) 4.24482 + 0.990721i 0.973828 + 0.227287i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.19243 + 1.84315i 0.665667 + 0.384323i 0.794433 0.607352i \(-0.207768\pi\)
−0.128766 + 0.991675i \(0.541102\pi\)
\(24\) 0 0
\(25\) −1.07199 + 1.85675i −0.214399 + 0.371349i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.10083 + 1.21292i 0.390114 + 0.225233i 0.682210 0.731157i \(-0.261019\pi\)
−0.292095 + 0.956389i \(0.594352\pi\)
\(30\) 0 0
\(31\) −3.67282 −0.659659 −0.329829 0.944041i \(-0.606991\pi\)
−0.329829 + 0.944041i \(0.606991\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 9.11007 5.25970i 1.53988 0.889051i
\(36\) 0 0
\(37\) 10.0478i 1.65185i −0.563780 0.825925i \(-0.690653\pi\)
0.563780 0.825925i \(-0.309347\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.01847 + 4.62947i −1.25227 + 0.723001i −0.971561 0.236790i \(-0.923905\pi\)
−0.280714 + 0.959791i \(0.590571\pi\)
\(42\) 0 0
\(43\) 0.490764 0.283343i 0.0748409 0.0432094i −0.462113 0.886821i \(-0.652908\pi\)
0.536953 + 0.843612i \(0.319575\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.6336 6.13932i −1.55107 0.895512i −0.998055 0.0623432i \(-0.980143\pi\)
−0.553018 0.833169i \(-0.686524\pi\)
\(48\) 0 0
\(49\) −8.48963 −1.21280
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.09159 2.36228i −0.562024 0.324485i 0.191934 0.981408i \(-0.438524\pi\)
−0.753957 + 0.656923i \(0.771858\pi\)
\(54\) 0 0
\(55\) −5.10083 + 2.94497i −0.687796 + 0.397099i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.33641 2.31473i −0.173986 0.301353i 0.765824 0.643050i \(-0.222331\pi\)
−0.939810 + 0.341698i \(0.888998\pi\)
\(60\) 0 0
\(61\) −6.41764 + 11.1157i −0.821695 + 1.42322i 0.0827247 + 0.996572i \(0.473638\pi\)
−0.904419 + 0.426645i \(0.859696\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 11.1133i 1.37843i
\(66\) 0 0
\(67\) −1.73558 + 3.00612i −0.212035 + 0.367255i −0.952351 0.305003i \(-0.901342\pi\)
0.740316 + 0.672259i \(0.234676\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.24482 10.8163i −0.741123 1.28366i −0.951984 0.306147i \(-0.900960\pi\)
0.210861 0.977516i \(-0.432373\pi\)
\(72\) 0 0
\(73\) 1.35601 + 2.34868i 0.158709 + 0.274893i 0.934404 0.356216i \(-0.115933\pi\)
−0.775694 + 0.631109i \(0.782600\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.67282 0.988360
\(78\) 0 0
\(79\) 3.50924 + 6.07817i 0.394820 + 0.683848i 0.993078 0.117455i \(-0.0374737\pi\)
−0.598258 + 0.801303i \(0.704140\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.98144i 0.217492i −0.994070 0.108746i \(-0.965317\pi\)
0.994070 0.108746i \(-0.0346835\pi\)
\(84\) 0 0
\(85\) 1.52884 2.64802i 0.165826 0.287218i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −12.9269 7.46334i −1.37025 0.791112i −0.379287 0.925279i \(-0.623831\pi\)
−0.990959 + 0.134167i \(0.957164\pi\)
\(90\) 0 0
\(91\) 8.18206 14.1717i 0.857713 1.48560i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.37957 11.1496i −0.346736 1.14393i
\(96\) 0 0
\(97\) 2.91764 1.68450i 0.296242 0.171035i −0.344512 0.938782i \(-0.611956\pi\)
0.640753 + 0.767747i \(0.278622\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.10083 8.83490i 0.507552 0.879105i −0.492410 0.870363i \(-0.663884\pi\)
0.999962 0.00874190i \(-0.00278267\pi\)
\(102\) 0 0
\(103\) −16.4504 −1.62091 −0.810455 0.585802i \(-0.800780\pi\)
−0.810455 + 0.585802i \(0.800780\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.85601 −0.469449 −0.234724 0.972062i \(-0.575419\pi\)
−0.234724 + 0.972062i \(0.575419\pi\)
\(108\) 0 0
\(109\) −12.7345 + 7.35224i −1.21974 + 0.704217i −0.964862 0.262757i \(-0.915368\pi\)
−0.254877 + 0.966973i \(0.582035\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.4823i 1.36238i 0.732107 + 0.681189i \(0.238537\pi\)
−0.732107 + 0.681189i \(0.761463\pi\)
\(114\) 0 0
\(115\) 9.85282i 0.918780i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.89917 + 2.25119i −0.357436 + 0.206366i
\(120\) 0 0
\(121\) 6.14399 0.558544
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.63362 −0.682772
\(126\) 0 0
\(127\) 5.81681 10.0750i 0.516158 0.894013i −0.483666 0.875253i \(-0.660695\pi\)
0.999824 0.0187598i \(-0.00597177\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.7160 6.18687i 0.936260 0.540550i 0.0474737 0.998872i \(-0.484883\pi\)
0.888786 + 0.458323i \(0.151550\pi\)
\(132\) 0 0
\(133\) −3.89917 + 16.7063i −0.338101 + 1.44862i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.71598 + 8.16832i −0.402913 + 0.697866i −0.994076 0.108686i \(-0.965336\pi\)
0.591163 + 0.806552i \(0.298669\pi\)
\(138\) 0 0
\(139\) −11.8941 6.86705i −1.00884 0.582456i −0.0979905 0.995187i \(-0.531241\pi\)
−0.910853 + 0.412731i \(0.864575\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.58123 + 7.93492i −0.383102 + 0.663551i
\(144\) 0 0
\(145\) 6.48382i 0.538452i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.15322 14.1218i −0.667938 1.15690i −0.978480 0.206343i \(-0.933844\pi\)
0.310542 0.950560i \(-0.399490\pi\)
\(150\) 0 0
\(151\) 7.05767 0.574345 0.287173 0.957879i \(-0.407285\pi\)
0.287173 + 0.957879i \(0.407285\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.90841 + 8.50161i 0.394253 + 0.682866i
\(156\) 0 0
\(157\) 5.66246 + 9.80766i 0.451913 + 0.782737i 0.998505 0.0546625i \(-0.0174083\pi\)
−0.546592 + 0.837399i \(0.684075\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −7.25405 + 12.5644i −0.571699 + 0.990212i
\(162\) 0 0
\(163\) 0.915973i 0.0717445i 0.999356 + 0.0358723i \(0.0114209\pi\)
−0.999356 + 0.0358723i \(0.988579\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.192425 0.333290i 0.0148903 0.0257908i −0.858484 0.512840i \(-0.828593\pi\)
0.873375 + 0.487049i \(0.161927\pi\)
\(168\) 0 0
\(169\) 2.14399 + 3.71349i 0.164922 + 0.285653i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.34960 + 5.39799i −0.710837 + 0.410402i −0.811371 0.584532i \(-0.801278\pi\)
0.100534 + 0.994934i \(0.467945\pi\)
\(174\) 0 0
\(175\) −7.30757 4.21903i −0.552401 0.318929i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.03920 0.0776737 0.0388368 0.999246i \(-0.487635\pi\)
0.0388368 + 0.999246i \(0.487635\pi\)
\(180\) 0 0
\(181\) −6.73445 3.88814i −0.500568 0.289003i 0.228380 0.973572i \(-0.426657\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −23.2580 + 13.4280i −1.70996 + 0.987247i
\(186\) 0 0
\(187\) 2.18319 1.26047i 0.159651 0.0921743i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 26.2621i 1.90026i 0.311851 + 0.950131i \(0.399051\pi\)
−0.311851 + 0.950131i \(0.600949\pi\)
\(192\) 0 0
\(193\) 8.23445 4.75416i 0.592729 0.342212i −0.173447 0.984843i \(-0.555491\pi\)
0.766176 + 0.642631i \(0.222157\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −27.9322 −1.99008 −0.995042 0.0994560i \(-0.968290\pi\)
−0.995042 + 0.0994560i \(0.968290\pi\)
\(198\) 0 0
\(199\) 6.87562 + 3.96964i 0.487399 + 0.281400i 0.723495 0.690330i \(-0.242534\pi\)
−0.236096 + 0.971730i \(0.575868\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.77365 + 8.26821i −0.335045 + 0.580315i
\(204\) 0 0
\(205\) 21.4320 + 12.3737i 1.49687 + 0.864220i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.18319 9.35403i 0.151014 0.647032i
\(210\) 0 0
\(211\) −4.32605 7.49293i −0.297817 0.515835i 0.677819 0.735229i \(-0.262925\pi\)
−0.975636 + 0.219394i \(0.929592\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.31173 0.757326i −0.0894590 0.0516492i
\(216\) 0 0
\(217\) 14.4551i 0.981275i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.75656i 0.319961i
\(222\) 0 0
\(223\) −7.18206 12.4397i −0.480946 0.833023i 0.518815 0.854887i \(-0.326373\pi\)
−0.999761 + 0.0218634i \(0.993040\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −14.1832 −0.941371 −0.470686 0.882301i \(-0.655993\pi\)
−0.470686 + 0.882301i \(0.655993\pi\)
\(228\) 0 0
\(229\) −16.5473 −1.09348 −0.546738 0.837303i \(-0.684131\pi\)
−0.546738 + 0.837303i \(0.684131\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −13.1193 22.7233i −0.859474 1.48865i −0.872431 0.488737i \(-0.837458\pi\)
0.0129574 0.999916i \(-0.495875\pi\)
\(234\) 0 0
\(235\) 32.8187i 2.14085i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.26047i 0.0815327i 0.999169 + 0.0407664i \(0.0129799\pi\)
−0.999169 + 0.0407664i \(0.987020\pi\)
\(240\) 0 0
\(241\) −18.1336 10.4695i −1.16809 0.674397i −0.214860 0.976645i \(-0.568930\pi\)
−0.953229 + 0.302248i \(0.902263\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 11.3456 + 19.6512i 0.724847 + 1.25547i
\(246\) 0 0
\(247\) −13.2252 12.3921i −0.841500 0.788493i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.6521 + 14.2329i 1.55603 + 0.898372i 0.997631 + 0.0687973i \(0.0219162\pi\)
0.558396 + 0.829575i \(0.311417\pi\)
\(252\) 0 0
\(253\) 4.06163 7.03494i 0.255352 0.442283i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.4764 6.04858i −0.653503 0.377300i 0.136294 0.990668i \(-0.456481\pi\)
−0.789797 + 0.613368i \(0.789814\pi\)
\(258\) 0 0
\(259\) 39.5450 2.45721
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.11930 + 0.646229i −0.0690191 + 0.0398482i −0.534112 0.845413i \(-0.679354\pi\)
0.465093 + 0.885262i \(0.346021\pi\)
\(264\) 0 0
\(265\) 12.6279i 0.775728i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.5420 14.1693i 1.49635 0.863920i 0.496363 0.868115i \(-0.334669\pi\)
0.999991 + 0.00419513i \(0.00133536\pi\)
\(270\) 0 0
\(271\) 13.2017 7.62198i 0.801944 0.463002i −0.0422066 0.999109i \(-0.513439\pi\)
0.844150 + 0.536106i \(0.180105\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.09159 + 2.36228i 0.246732 + 0.142451i
\(276\) 0 0
\(277\) −15.8353 −0.951450 −0.475725 0.879594i \(-0.657814\pi\)
−0.475725 + 0.879594i \(0.657814\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 15.8445 + 9.14784i 0.945205 + 0.545714i 0.891588 0.452847i \(-0.149592\pi\)
0.0536166 + 0.998562i \(0.482925\pi\)
\(282\) 0 0
\(283\) 25.4218 14.6773i 1.51117 0.872474i 0.511254 0.859430i \(-0.329181\pi\)
0.999915 0.0130439i \(-0.00415212\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −18.2201 31.5582i −1.07550 1.86282i
\(288\) 0 0
\(289\) 7.84565 13.5891i 0.461509 0.799356i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 19.6512i 1.14804i 0.818842 + 0.574019i \(0.194616\pi\)
−0.818842 + 0.574019i \(0.805384\pi\)
\(294\) 0 0
\(295\) −3.57199 + 6.18687i −0.207969 + 0.360214i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −7.66359 13.2737i −0.443197 0.767639i
\(300\) 0 0
\(301\) 1.11515 + 1.93150i 0.0642761 + 0.111330i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 34.3064 1.96438
\(306\) 0 0
\(307\) 3.59046 + 6.21887i 0.204919 + 0.354929i 0.950107 0.311925i \(-0.100974\pi\)
−0.745188 + 0.666854i \(0.767640\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 29.1868i 1.65503i 0.561444 + 0.827515i \(0.310246\pi\)
−0.561444 + 0.827515i \(0.689754\pi\)
\(312\) 0 0
\(313\) 7.24482 12.5484i 0.409501 0.709277i −0.585333 0.810793i \(-0.699036\pi\)
0.994834 + 0.101516i \(0.0323694\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.37562 + 1.37156i 0.133428 + 0.0770346i 0.565228 0.824935i \(-0.308788\pi\)
−0.431800 + 0.901969i \(0.642121\pi\)
\(318\) 0 0
\(319\) 2.67282 4.62947i 0.149649 0.259200i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.44648 + 4.77212i 0.0804842 + 0.265528i
\(324\) 0 0
\(325\) 7.72013 4.45722i 0.428236 0.247242i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 24.1625 41.8506i 1.33212 2.30730i
\(330\) 0 0
\(331\) −10.0761 −0.553835 −0.276918 0.960894i \(-0.589313\pi\)
−0.276918 + 0.960894i \(0.589313\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 9.27781 0.506901
\(336\) 0 0
\(337\) 3.76555 2.17404i 0.205123 0.118428i −0.393920 0.919145i \(-0.628881\pi\)
0.599043 + 0.800717i \(0.295548\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.09357i 0.438291i
\(342\) 0 0
\(343\) 5.86273i 0.316558i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.542026 0.312939i 0.0290975 0.0167994i −0.485381 0.874303i \(-0.661319\pi\)
0.514478 + 0.857503i \(0.327986\pi\)
\(348\) 0 0
\(349\) 6.79834 0.363907 0.181953 0.983307i \(-0.441758\pi\)
0.181953 + 0.983307i \(0.441758\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −20.0185 −1.06548 −0.532738 0.846280i \(-0.678837\pi\)
−0.532738 + 0.846280i \(0.678837\pi\)
\(354\) 0 0
\(355\) −16.6913 + 28.9102i −0.885882 + 1.53439i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 14.7882 8.53796i 0.780490 0.450616i −0.0561140 0.998424i \(-0.517871\pi\)
0.836604 + 0.547808i \(0.184538\pi\)
\(360\) 0 0
\(361\) 17.0369 + 8.41086i 0.896681 + 0.442677i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.62438 6.27762i 0.189709 0.328586i
\(366\) 0 0
\(367\) −25.5277 14.7384i −1.33254 0.769340i −0.346848 0.937921i \(-0.612748\pi\)
−0.985688 + 0.168582i \(0.946081\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9.29721 16.1032i 0.482687 0.836038i
\(372\) 0 0
\(373\) 26.6745i 1.38116i −0.723258 0.690578i \(-0.757356\pi\)
0.723258 0.690578i \(-0.242644\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.04316 8.73500i −0.259736 0.449876i
\(378\) 0 0
\(379\) −6.80890 −0.349750 −0.174875 0.984591i \(-0.555952\pi\)
−0.174875 + 0.984591i \(0.555952\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5.23558 9.06829i −0.267526 0.463368i 0.700697 0.713459i \(-0.252873\pi\)
−0.968222 + 0.250091i \(0.919539\pi\)
\(384\) 0 0
\(385\) −11.5905 20.0753i −0.590705 1.02313i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.25405 2.17208i 0.0635830 0.110129i −0.832482 0.554053i \(-0.813081\pi\)
0.896065 + 0.443924i \(0.146414\pi\)
\(390\) 0 0
\(391\) 4.21707i 0.213267i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 9.37957 16.2459i 0.471937 0.817419i
\(396\) 0 0
\(397\) −4.54316 7.86898i −0.228014 0.394933i 0.729205 0.684295i \(-0.239890\pi\)
−0.957220 + 0.289363i \(0.906557\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.97399 5.75848i 0.498077 0.287565i −0.229842 0.973228i \(-0.573821\pi\)
0.727919 + 0.685663i \(0.240488\pi\)
\(402\) 0 0
\(403\) 13.2252 + 7.63558i 0.658795 + 0.380355i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −22.1417 −1.09752
\(408\) 0 0
\(409\) 16.1664 + 9.33368i 0.799378 + 0.461521i 0.843253 0.537516i \(-0.180637\pi\)
−0.0438759 + 0.999037i \(0.513971\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9.11007 5.25970i 0.448277 0.258813i
\(414\) 0 0
\(415\) −4.58651 + 2.64802i −0.225143 + 0.129986i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 27.2053i 1.32907i −0.747259 0.664533i \(-0.768630\pi\)
0.747259 0.664533i \(-0.231370\pi\)
\(420\) 0 0
\(421\) −1.11930 + 0.646229i −0.0545514 + 0.0314953i −0.527028 0.849848i \(-0.676694\pi\)
0.472476 + 0.881343i \(0.343360\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.45269 −0.118973
\(426\) 0 0
\(427\) −43.7478 25.2578i −2.11711 1.22231i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.6336 18.4180i 0.512203 0.887162i −0.487696 0.873013i \(-0.662163\pi\)
0.999900 0.0141492i \(-0.00450397\pi\)
\(432\) 0 0
\(433\) 33.3890 + 19.2771i 1.60457 + 0.926401i 0.990556 + 0.137108i \(0.0437807\pi\)
0.614017 + 0.789293i \(0.289553\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 11.7252 + 10.9866i 0.560893 + 0.525562i
\(438\) 0 0
\(439\) 12.3692 + 21.4241i 0.590350 + 1.02252i 0.994185 + 0.107684i \(0.0343435\pi\)
−0.403835 + 0.914832i \(0.632323\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 31.5513 + 18.2161i 1.49905 + 0.865474i 0.999999 0.00110093i \(-0.000350438\pi\)
0.499046 + 0.866575i \(0.333684\pi\)
\(444\) 0 0
\(445\) 39.8964i 1.89127i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 28.9509i 1.36628i 0.730289 + 0.683138i \(0.239385\pi\)
−0.730289 + 0.683138i \(0.760615\pi\)
\(450\) 0 0
\(451\) 10.2017 + 17.6698i 0.480377 + 0.832038i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −43.7384 −2.05049
\(456\) 0 0
\(457\) −14.2224 −0.665295 −0.332648 0.943051i \(-0.607942\pi\)
−0.332648 + 0.943051i \(0.607942\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 18.1677 + 31.4674i 0.846156 + 1.46559i 0.884613 + 0.466325i \(0.154422\pi\)
−0.0384575 + 0.999260i \(0.512244\pi\)
\(462\) 0 0
\(463\) 29.6264i 1.37685i 0.725306 + 0.688427i \(0.241698\pi\)
−0.725306 + 0.688427i \(0.758302\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 30.4879i 1.41081i 0.708803 + 0.705407i \(0.249236\pi\)
−0.708803 + 0.705407i \(0.750764\pi\)
\(468\) 0 0
\(469\) −11.8311 6.83071i −0.546311 0.315413i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.624385 1.08147i −0.0287092 0.0497259i
\(474\) 0 0
\(475\) −6.38993 + 6.81950i −0.293190 + 0.312900i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −20.5882 11.8866i −0.940699 0.543113i −0.0505196 0.998723i \(-0.516088\pi\)
−0.890179 + 0.455610i \(0.849421\pi\)
\(480\) 0 0
\(481\) −20.8888 + 36.1805i −0.952447 + 1.64969i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.79834 4.50237i −0.354104 0.204442i
\(486\) 0 0
\(487\) 10.2880 0.466193 0.233096 0.972454i \(-0.425114\pi\)
0.233096 + 0.972454i \(0.425114\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 28.5513 16.4841i 1.28850 0.743916i 0.310114 0.950699i \(-0.399633\pi\)
0.978387 + 0.206783i \(0.0662996\pi\)
\(492\) 0 0
\(493\) 2.77512i 0.124985i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 42.5697 24.5776i 1.90951 1.10246i
\(498\) 0 0
\(499\) 14.2067 8.20227i 0.635981 0.367184i −0.147084 0.989124i \(-0.546989\pi\)
0.783065 + 0.621940i \(0.213655\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −12.8521 7.42014i −0.573045 0.330848i 0.185320 0.982678i \(-0.440668\pi\)
−0.758365 + 0.651831i \(0.774001\pi\)
\(504\) 0 0
\(505\) −27.2672 −1.21338
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −24.8168 14.3280i −1.09999 0.635077i −0.163769 0.986499i \(-0.552365\pi\)
−0.936217 + 0.351422i \(0.885698\pi\)
\(510\) 0 0
\(511\) −9.24369 + 5.33684i −0.408917 + 0.236088i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 21.9846 + 38.0784i 0.968755 + 1.67793i
\(516\) 0 0
\(517\) −13.5288 + 23.4326i −0.594998 + 1.03057i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.911178i 0.0399194i 0.999801 + 0.0199597i \(0.00635380\pi\)
−0.999801 + 0.0199597i \(0.993646\pi\)
\(522\) 0 0
\(523\) −5.12043 + 8.86885i −0.223901 + 0.387808i −0.955989 0.293402i \(-0.905213\pi\)
0.732088 + 0.681210i \(0.238546\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.10083 3.63875i −0.0915136 0.158506i
\(528\) 0 0
\(529\) −4.70561 8.15036i −0.204592 0.354364i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 38.4975 1.66751
\(534\) 0 0
\(535\) 6.48963 + 11.2404i 0.280571 + 0.485964i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 18.7081i 0.805813i
\(540\) 0 0
\(541\) 19.6233 33.9885i 0.843670 1.46128i −0.0431020 0.999071i \(-0.513724\pi\)
0.886772 0.462208i \(-0.152943\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 34.0369 + 19.6512i 1.45798 + 0.841767i
\(546\) 0 0
\(547\) −5.81794 + 10.0770i −0.248757 + 0.430860i −0.963181 0.268853i \(-0.913355\pi\)
0.714424 + 0.699713i \(0.246689\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.71598 + 7.22994i 0.328712 + 0.308006i
\(552\) 0 0
\(553\) −23.9218 + 13.8113i −1.01726 + 0.587314i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.514319 0.890827i 0.0217924 0.0377455i −0.854924 0.518754i \(-0.826396\pi\)
0.876716 + 0.481008i \(0.159729\pi\)
\(558\) 0 0
\(559\) −2.35621 −0.0996572
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.29588 0.181050 0.0905249 0.995894i \(-0.471146\pi\)
0.0905249 + 0.995894i \(0.471146\pi\)
\(564\) 0 0
\(565\) 33.5226 19.3543i 1.41031 0.814241i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 25.9992i 1.08995i −0.838454 0.544973i \(-0.816540\pi\)
0.838454 0.544973i \(-0.183460\pi\)
\(570\) 0 0
\(571\) 35.2310i 1.47437i 0.675691 + 0.737185i \(0.263846\pi\)
−0.675691 + 0.737185i \(0.736154\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6.84452 + 3.95168i −0.285436 + 0.164797i
\(576\) 0 0
\(577\) 9.51037 0.395922 0.197961 0.980210i \(-0.436568\pi\)
0.197961 + 0.980210i \(0.436568\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7.79834 0.323530
\(582\) 0 0
\(583\) −5.20561 + 9.01639i −0.215594 + 0.373421i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.84452 + 5.68373i −0.406327 + 0.234593i −0.689210 0.724561i \(-0.742042\pi\)
0.282884 + 0.959154i \(0.408709\pi\)
\(588\) 0 0
\(589\) −15.5905 3.63875i −0.642394 0.149932i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −12.9269 + 22.3900i −0.530843 + 0.919447i 0.468509 + 0.883459i \(0.344791\pi\)
−0.999352 + 0.0359886i \(0.988542\pi\)
\(594\) 0 0
\(595\) 10.4218 + 6.01702i 0.427252 + 0.246674i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.56276 + 4.43883i −0.104711 + 0.181366i −0.913620 0.406569i \(-0.866725\pi\)
0.808909 + 0.587934i \(0.200059\pi\)
\(600\) 0 0
\(601\) 12.7822i 0.521398i 0.965420 + 0.260699i \(0.0839530\pi\)
−0.965420 + 0.260699i \(0.916047\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −8.21090 14.2217i −0.333820 0.578194i
\(606\) 0 0
\(607\) 31.7882 1.29024 0.645121 0.764080i \(-0.276807\pi\)
0.645121 + 0.764080i \(0.276807\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 25.5266 + 44.2133i 1.03269 + 1.78868i
\(612\) 0 0
\(613\) −21.1664 36.6613i −0.854903 1.48074i −0.876735 0.480974i \(-0.840283\pi\)
0.0218315 0.999762i \(-0.493050\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.1717 17.6179i 0.409497 0.709270i −0.585336 0.810791i \(-0.699038\pi\)
0.994833 + 0.101521i \(0.0323709\pi\)
\(618\) 0 0
\(619\) 13.1402i 0.528150i 0.964502 + 0.264075i \(0.0850667\pi\)
−0.964502 + 0.264075i \(0.914933\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 29.3734 50.8761i 1.17682 2.03831i
\(624\) 0 0
\(625\) 15.5616 + 26.9535i 0.622465 + 1.07814i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9.95458 5.74728i 0.396915 0.229159i
\(630\) 0 0
\(631\) −3.57312 2.06294i −0.142244 0.0821245i 0.427189 0.904162i \(-0.359504\pi\)
−0.569433 + 0.822038i \(0.692837\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −31.0946 −1.23395
\(636\) 0 0
\(637\) 30.5697 + 17.6494i 1.21122 + 0.699296i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −31.9714 + 18.4587i −1.26279 + 0.729074i −0.973614 0.228201i \(-0.926716\pi\)
−0.289179 + 0.957275i \(0.593382\pi\)
\(642\) 0 0
\(643\) −6.62854 + 3.82699i −0.261404 + 0.150922i −0.624975 0.780645i \(-0.714891\pi\)
0.363571 + 0.931567i \(0.381557\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26.5387i 1.04335i 0.853146 + 0.521673i \(0.174692\pi\)
−0.853146 + 0.521673i \(0.825308\pi\)
\(648\) 0 0
\(649\) −5.10083 + 2.94497i −0.200225 + 0.115600i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.23860 0.0876033 0.0438017 0.999040i \(-0.486053\pi\)
0.0438017 + 0.999040i \(0.486053\pi\)
\(654\) 0 0
\(655\) −28.6419 16.5364i −1.11913 0.646132i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.43724 5.95348i 0.133896 0.231915i −0.791279 0.611455i \(-0.790585\pi\)
0.925175 + 0.379540i \(0.123918\pi\)
\(660\) 0 0
\(661\) 32.2386 + 18.6130i 1.25394 + 0.723960i 0.971889 0.235440i \(-0.0756531\pi\)
0.282047 + 0.959400i \(0.408986\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 43.8815 13.3009i 1.70165 0.515788i
\(666\) 0 0
\(667\) 4.47116 + 7.74428i 0.173124 + 0.299860i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 24.4949 + 14.1421i 0.945616 + 0.545952i
\(672\) 0 0
\(673\) 40.4406i 1.55887i −0.626482 0.779436i \(-0.715506\pi\)
0.626482 0.779436i \(-0.284494\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.1650i 0.544405i 0.962240 + 0.272202i \(0.0877520\pi\)
−0.962240 + 0.272202i \(0.912248\pi\)
\(678\) 0 0
\(679\) 6.62967 + 11.4829i 0.254423 + 0.440674i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −23.8952 −0.914325 −0.457163 0.889383i \(-0.651134\pi\)
−0.457163 + 0.889383i \(0.651134\pi\)
\(684\) 0 0
\(685\) 25.2100 0.963223
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 9.82209 + 17.0124i 0.374192 + 0.648119i
\(690\) 0 0
\(691\) 19.0166i 0.723427i −0.932289 0.361714i \(-0.882192\pi\)
0.932289 0.361714i \(-0.117808\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 36.7088i 1.39245i
\(696\) 0 0
\(697\) −9.17302 5.29605i −0.347453 0.200602i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −14.2109 24.6140i −0.536738 0.929658i −0.999077 0.0429544i \(-0.986323\pi\)
0.462339 0.886703i \(-0.347010\pi\)
\(702\) 0 0
\(703\) 9.95458 42.6511i 0.375444 1.60862i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 34.7714 + 20.0753i 1.30771 + 0.755008i
\(708\) 0 0
\(709\) 13.8681 24.0202i 0.520826 0.902098i −0.478880 0.877880i \(-0.658957\pi\)
0.999707 0.0242175i \(-0.00770943\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −11.7252 6.76956i −0.439113 0.253522i
\(714\) 0 0
\(715\) 24.4896 0.915860
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −0.844517 + 0.487582i −0.0314952 + 0.0181837i −0.515665 0.856790i \(-0.672455\pi\)
0.484170 + 0.874974i \(0.339122\pi\)
\(720\) 0 0
\(721\) 64.7438i 2.41118i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.50415 + 2.60047i −0.167280 + 0.0965792i
\(726\) 0 0
\(727\) −22.6924 + 13.1015i −0.841615 + 0.485907i −0.857813 0.513962i \(-0.828177\pi\)
0.0161975 + 0.999869i \(0.494844\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.561428 + 0.324141i 0.0207652 + 0.0119888i
\(732\) 0 0
\(733\) 27.2751 1.00743 0.503715 0.863870i \(-0.331966\pi\)
0.503715 + 0.863870i \(0.331966\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.62438 + 3.82459i 0.244012 + 0.140881i
\(738\) 0 0
\(739\) 21.2908 12.2922i 0.783195 0.452178i −0.0543667 0.998521i \(-0.517314\pi\)
0.837561 + 0.546343i \(0.183981\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.1101 + 41.7599i 0.884513 + 1.53202i 0.846271 + 0.532752i \(0.178842\pi\)
0.0382412 + 0.999269i \(0.487824\pi\)
\(744\) 0 0
\(745\) −21.7921 + 37.7451i −0.798402 + 1.38287i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 19.1118i 0.698328i
\(750\) 0 0
\(751\) 16.2437 28.1349i 0.592741 1.02666i −0.401121 0.916025i \(-0.631379\pi\)
0.993861 0.110632i \(-0.0352874\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −9.43196 16.3366i −0.343264 0.594551i
\(756\) 0 0
\(757\) −11.5801 20.0573i −0.420886 0.728996i 0.575141 0.818055i \(-0.304947\pi\)
−0.996026 + 0.0890590i \(0.971614\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 18.5496 0.672421 0.336211 0.941787i \(-0.390855\pi\)
0.336211 + 0.941787i \(0.390855\pi\)
\(762\) 0 0
\(763\) −28.9361 50.1188i −1.04756 1.81442i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 11.1133i 0.401277i
\(768\) 0 0
\(769\) −18.8249 + 32.6057i −0.678844 + 1.17579i 0.296486 + 0.955037i \(0.404185\pi\)
−0.975329 + 0.220755i \(0.929148\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.981529 + 0.566686i 0.0353031 + 0.0203823i 0.517548 0.855654i \(-0.326845\pi\)
−0.482245 + 0.876037i \(0.660178\pi\)
\(774\) 0 0
\(775\) 3.93724 6.81950i 0.141430 0.244964i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −38.6235 + 11.7072i −1.38383 + 0.419453i
\(780\) 0 0
\(781\) −23.8353 + 13.7613i −0.852893 + 0.492418i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 15.1348 26.2142i 0.540182 0.935623i
\(786\) 0 0
\(787\) −13.9687 −0.497930 −0.248965 0.968512i \(-0.580090\pi\)
−0.248965 + 0.968512i \(0.580090\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −56.9977 −2.02661
\(792\) 0 0
\(793\) 46.2177 26.6838i 1.64124 0.947569i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10.2972i 0.364746i 0.983229 + 0.182373i \(0.0583778\pi\)
−0.983229 + 0.182373i \(0.941622\pi\)
\(798\) 0 0
\(799\) 14.0466i 0.496933i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5.17565 2.98816i 0.182645 0.105450i
\(804\) 0