Defining parameters
Level: | \( N \) | \(=\) | \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2736.bm (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 76 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 20 \) | ||
Sturm bound: | \(960\) | ||
Trace bound: | \(31\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(11\), \(23\), \(31\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2736, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1008 | 100 | 908 |
Cusp forms | 912 | 100 | 812 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2736, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(2736, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2736, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(228, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(304, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(684, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(912, [\chi])\)\(^{\oplus 2}\)