# Properties

 Label 2736.2.a.w Level $2736$ Weight $2$ Character orbit 2736.a Self dual yes Analytic conductor $21.847$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2736,2,Mod(1,2736)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2736, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2736.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2736 = 2^{4} \cdot 3^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2736.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$21.8470699930$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 38) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 4 q^{5} - 3 q^{7}+O(q^{10})$$ q + 4 * q^5 - 3 * q^7 $$q + 4 q^{5} - 3 q^{7} + 2 q^{11} - q^{13} - 3 q^{17} + q^{19} - q^{23} + 11 q^{25} + 5 q^{29} + 8 q^{31} - 12 q^{35} - 2 q^{37} + 8 q^{41} - 4 q^{43} + 8 q^{47} + 2 q^{49} + q^{53} + 8 q^{55} + 15 q^{59} + 2 q^{61} - 4 q^{65} - 3 q^{67} + 2 q^{71} + 9 q^{73} - 6 q^{77} + 10 q^{79} - 6 q^{83} - 12 q^{85} + 3 q^{91} + 4 q^{95} - 2 q^{97}+O(q^{100})$$ q + 4 * q^5 - 3 * q^7 + 2 * q^11 - q^13 - 3 * q^17 + q^19 - q^23 + 11 * q^25 + 5 * q^29 + 8 * q^31 - 12 * q^35 - 2 * q^37 + 8 * q^41 - 4 * q^43 + 8 * q^47 + 2 * q^49 + q^53 + 8 * q^55 + 15 * q^59 + 2 * q^61 - 4 * q^65 - 3 * q^67 + 2 * q^71 + 9 * q^73 - 6 * q^77 + 10 * q^79 - 6 * q^83 - 12 * q^85 + 3 * q^91 + 4 * q^95 - 2 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 4.00000 0 −3.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$19$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2736.2.a.w 1
3.b odd 2 1 304.2.a.d 1
4.b odd 2 1 342.2.a.d 1
12.b even 2 1 38.2.a.b 1
15.d odd 2 1 7600.2.a.h 1
20.d odd 2 1 8550.2.a.u 1
24.f even 2 1 1216.2.a.n 1
24.h odd 2 1 1216.2.a.g 1
57.d even 2 1 5776.2.a.d 1
60.h even 2 1 950.2.a.b 1
60.l odd 4 2 950.2.b.c 2
76.d even 2 1 6498.2.a.y 1
84.h odd 2 1 1862.2.a.f 1
132.d odd 2 1 4598.2.a.a 1
156.h even 2 1 6422.2.a.b 1
228.b odd 2 1 722.2.a.b 1
228.m even 6 2 722.2.c.d 2
228.n odd 6 2 722.2.c.f 2
228.u odd 18 6 722.2.e.d 6
228.v even 18 6 722.2.e.c 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.2.a.b 1 12.b even 2 1
304.2.a.d 1 3.b odd 2 1
342.2.a.d 1 4.b odd 2 1
722.2.a.b 1 228.b odd 2 1
722.2.c.d 2 228.m even 6 2
722.2.c.f 2 228.n odd 6 2
722.2.e.c 6 228.v even 18 6
722.2.e.d 6 228.u odd 18 6
950.2.a.b 1 60.h even 2 1
950.2.b.c 2 60.l odd 4 2
1216.2.a.g 1 24.h odd 2 1
1216.2.a.n 1 24.f even 2 1
1862.2.a.f 1 84.h odd 2 1
2736.2.a.w 1 1.a even 1 1 trivial
4598.2.a.a 1 132.d odd 2 1
5776.2.a.d 1 57.d even 2 1
6422.2.a.b 1 156.h even 2 1
6498.2.a.y 1 76.d even 2 1
7600.2.a.h 1 15.d odd 2 1
8550.2.a.u 1 20.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2736))$$:

 $$T_{5} - 4$$ T5 - 4 $$T_{7} + 3$$ T7 + 3 $$T_{11} - 2$$ T11 - 2 $$T_{13} + 1$$ T13 + 1

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T - 4$$
$7$ $$T + 3$$
$11$ $$T - 2$$
$13$ $$T + 1$$
$17$ $$T + 3$$
$19$ $$T - 1$$
$23$ $$T + 1$$
$29$ $$T - 5$$
$31$ $$T - 8$$
$37$ $$T + 2$$
$41$ $$T - 8$$
$43$ $$T + 4$$
$47$ $$T - 8$$
$53$ $$T - 1$$
$59$ $$T - 15$$
$61$ $$T - 2$$
$67$ $$T + 3$$
$71$ $$T - 2$$
$73$ $$T - 9$$
$79$ $$T - 10$$
$83$ $$T + 6$$
$89$ $$T$$
$97$ $$T + 2$$