# Properties

 Label 2736.2.a.k Level $2736$ Weight $2$ Character orbit 2736.a Self dual yes Analytic conductor $21.847$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2736,2,Mod(1,2736)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2736, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2736.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2736 = 2^{4} \cdot 3^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2736.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$21.8470699930$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 152) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - 3 q^{7}+O(q^{10})$$ q - 3 * q^7 $$q - 3 q^{7} + 2 q^{11} + q^{13} + 5 q^{17} - q^{19} - q^{23} - 5 q^{25} + 3 q^{29} - 4 q^{31} + 2 q^{37} + 8 q^{41} + 8 q^{43} - 8 q^{47} + 2 q^{49} - 9 q^{53} + q^{59} + 14 q^{61} - 13 q^{67} + 10 q^{71} + 9 q^{73} - 6 q^{77} + 10 q^{79} + 10 q^{83} + 12 q^{89} - 3 q^{91} + 14 q^{97}+O(q^{100})$$ q - 3 * q^7 + 2 * q^11 + q^13 + 5 * q^17 - q^19 - q^23 - 5 * q^25 + 3 * q^29 - 4 * q^31 + 2 * q^37 + 8 * q^41 + 8 * q^43 - 8 * q^47 + 2 * q^49 - 9 * q^53 + q^59 + 14 * q^61 - 13 * q^67 + 10 * q^71 + 9 * q^73 - 6 * q^77 + 10 * q^79 + 10 * q^83 + 12 * q^89 - 3 * q^91 + 14 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 0 0 −3.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$
$$19$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2736.2.a.k 1
3.b odd 2 1 304.2.a.b 1
4.b odd 2 1 1368.2.a.g 1
12.b even 2 1 152.2.a.b 1
15.d odd 2 1 7600.2.a.o 1
24.f even 2 1 1216.2.a.f 1
24.h odd 2 1 1216.2.a.l 1
57.d even 2 1 5776.2.a.l 1
60.h even 2 1 3800.2.a.d 1
60.l odd 4 2 3800.2.d.f 2
84.h odd 2 1 7448.2.a.g 1
228.b odd 2 1 2888.2.a.b 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.2.a.b 1 12.b even 2 1
304.2.a.b 1 3.b odd 2 1
1216.2.a.f 1 24.f even 2 1
1216.2.a.l 1 24.h odd 2 1
1368.2.a.g 1 4.b odd 2 1
2736.2.a.k 1 1.a even 1 1 trivial
2888.2.a.b 1 228.b odd 2 1
3800.2.a.d 1 60.h even 2 1
3800.2.d.f 2 60.l odd 4 2
5776.2.a.l 1 57.d even 2 1
7448.2.a.g 1 84.h odd 2 1
7600.2.a.o 1 15.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2736))$$:

 $$T_{5}$$ T5 $$T_{7} + 3$$ T7 + 3 $$T_{11} - 2$$ T11 - 2 $$T_{13} - 1$$ T13 - 1

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T$$
$7$ $$T + 3$$
$11$ $$T - 2$$
$13$ $$T - 1$$
$17$ $$T - 5$$
$19$ $$T + 1$$
$23$ $$T + 1$$
$29$ $$T - 3$$
$31$ $$T + 4$$
$37$ $$T - 2$$
$41$ $$T - 8$$
$43$ $$T - 8$$
$47$ $$T + 8$$
$53$ $$T + 9$$
$59$ $$T - 1$$
$61$ $$T - 14$$
$67$ $$T + 13$$
$71$ $$T - 10$$
$73$ $$T - 9$$
$79$ $$T - 10$$
$83$ $$T - 10$$
$89$ $$T - 12$$
$97$ $$T - 14$$