# Properties

 Label 2736.2.a.i.1.1 Level $2736$ Weight $2$ Character 2736.1 Self dual yes Analytic conductor $21.847$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2736,2,Mod(1,2736)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2736, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2736.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2736 = 2^{4} \cdot 3^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2736.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$21.8470699930$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 456) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 2736.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-1.00000 q^{5} +3.00000 q^{7} +O(q^{10})$$ $$q-1.00000 q^{5} +3.00000 q^{7} -5.00000 q^{11} -2.00000 q^{13} +1.00000 q^{17} -1.00000 q^{19} +4.00000 q^{23} -4.00000 q^{25} +6.00000 q^{29} +10.0000 q^{31} -3.00000 q^{35} +11.0000 q^{43} +9.00000 q^{47} +2.00000 q^{49} -10.0000 q^{53} +5.00000 q^{55} +4.00000 q^{59} -5.00000 q^{61} +2.00000 q^{65} +4.00000 q^{67} +8.00000 q^{71} +13.0000 q^{73} -15.0000 q^{77} -4.00000 q^{79} -4.00000 q^{83} -1.00000 q^{85} +6.00000 q^{89} -6.00000 q^{91} +1.00000 q^{95} +2.00000 q^{97} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ −1.00000 −0.447214 −0.223607 0.974679i $$-0.571783\pi$$
−0.223607 + 0.974679i $$0.571783\pi$$
$$6$$ 0 0
$$7$$ 3.00000 1.13389 0.566947 0.823754i $$-0.308125\pi$$
0.566947 + 0.823754i $$0.308125\pi$$
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ −5.00000 −1.50756 −0.753778 0.657129i $$-0.771771\pi$$
−0.753778 + 0.657129i $$0.771771\pi$$
$$12$$ 0 0
$$13$$ −2.00000 −0.554700 −0.277350 0.960769i $$-0.589456\pi$$
−0.277350 + 0.960769i $$0.589456\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 1.00000 0.242536 0.121268 0.992620i $$-0.461304\pi$$
0.121268 + 0.992620i $$0.461304\pi$$
$$18$$ 0 0
$$19$$ −1.00000 −0.229416
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 4.00000 0.834058 0.417029 0.908893i $$-0.363071\pi$$
0.417029 + 0.908893i $$0.363071\pi$$
$$24$$ 0 0
$$25$$ −4.00000 −0.800000
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 6.00000 1.11417 0.557086 0.830455i $$-0.311919\pi$$
0.557086 + 0.830455i $$0.311919\pi$$
$$30$$ 0 0
$$31$$ 10.0000 1.79605 0.898027 0.439941i $$-0.145001\pi$$
0.898027 + 0.439941i $$0.145001\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ −3.00000 −0.507093
$$36$$ 0 0
$$37$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$42$$ 0 0
$$43$$ 11.0000 1.67748 0.838742 0.544529i $$-0.183292\pi$$
0.838742 + 0.544529i $$0.183292\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 9.00000 1.31278 0.656392 0.754420i $$-0.272082\pi$$
0.656392 + 0.754420i $$0.272082\pi$$
$$48$$ 0 0
$$49$$ 2.00000 0.285714
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ −10.0000 −1.37361 −0.686803 0.726844i $$-0.740986\pi$$
−0.686803 + 0.726844i $$0.740986\pi$$
$$54$$ 0 0
$$55$$ 5.00000 0.674200
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 4.00000 0.520756 0.260378 0.965507i $$-0.416153\pi$$
0.260378 + 0.965507i $$0.416153\pi$$
$$60$$ 0 0
$$61$$ −5.00000 −0.640184 −0.320092 0.947386i $$-0.603714\pi$$
−0.320092 + 0.947386i $$0.603714\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 2.00000 0.248069
$$66$$ 0 0
$$67$$ 4.00000 0.488678 0.244339 0.969690i $$-0.421429\pi$$
0.244339 + 0.969690i $$0.421429\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 8.00000 0.949425 0.474713 0.880141i $$-0.342552\pi$$
0.474713 + 0.880141i $$0.342552\pi$$
$$72$$ 0 0
$$73$$ 13.0000 1.52153 0.760767 0.649025i $$-0.224823\pi$$
0.760767 + 0.649025i $$0.224823\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ −15.0000 −1.70941
$$78$$ 0 0
$$79$$ −4.00000 −0.450035 −0.225018 0.974355i $$-0.572244\pi$$
−0.225018 + 0.974355i $$0.572244\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ −4.00000 −0.439057 −0.219529 0.975606i $$-0.570452\pi$$
−0.219529 + 0.975606i $$0.570452\pi$$
$$84$$ 0 0
$$85$$ −1.00000 −0.108465
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 6.00000 0.635999 0.317999 0.948091i $$-0.396989\pi$$
0.317999 + 0.948091i $$0.396989\pi$$
$$90$$ 0 0
$$91$$ −6.00000 −0.628971
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 1.00000 0.102598
$$96$$ 0 0
$$97$$ 2.00000 0.203069 0.101535 0.994832i $$-0.467625\pi$$
0.101535 + 0.994832i $$0.467625\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ 6.00000 0.597022 0.298511 0.954406i $$-0.403510\pi$$
0.298511 + 0.954406i $$0.403510\pi$$
$$102$$ 0 0
$$103$$ −10.0000 −0.985329 −0.492665 0.870219i $$-0.663977\pi$$
−0.492665 + 0.870219i $$0.663977\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 18.0000 1.74013 0.870063 0.492941i $$-0.164078\pi$$
0.870063 + 0.492941i $$0.164078\pi$$
$$108$$ 0 0
$$109$$ −8.00000 −0.766261 −0.383131 0.923694i $$-0.625154\pi$$
−0.383131 + 0.923694i $$0.625154\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −6.00000 −0.564433 −0.282216 0.959351i $$-0.591070\pi$$
−0.282216 + 0.959351i $$0.591070\pi$$
$$114$$ 0 0
$$115$$ −4.00000 −0.373002
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 3.00000 0.275010
$$120$$ 0 0
$$121$$ 14.0000 1.27273
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 9.00000 0.804984
$$126$$ 0 0
$$127$$ 2.00000 0.177471 0.0887357 0.996055i $$-0.471717\pi$$
0.0887357 + 0.996055i $$0.471717\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −19.0000 −1.66004 −0.830019 0.557735i $$-0.811670\pi$$
−0.830019 + 0.557735i $$0.811670\pi$$
$$132$$ 0 0
$$133$$ −3.00000 −0.260133
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 9.00000 0.768922 0.384461 0.923141i $$-0.374387\pi$$
0.384461 + 0.923141i $$0.374387\pi$$
$$138$$ 0 0
$$139$$ 15.0000 1.27228 0.636142 0.771572i $$-0.280529\pi$$
0.636142 + 0.771572i $$0.280529\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 10.0000 0.836242
$$144$$ 0 0
$$145$$ −6.00000 −0.498273
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 1.00000 0.0819232 0.0409616 0.999161i $$-0.486958\pi$$
0.0409616 + 0.999161i $$0.486958\pi$$
$$150$$ 0 0
$$151$$ −20.0000 −1.62758 −0.813788 0.581161i $$-0.802599\pi$$
−0.813788 + 0.581161i $$0.802599\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ −10.0000 −0.803219
$$156$$ 0 0
$$157$$ −2.00000 −0.159617 −0.0798087 0.996810i $$-0.525431\pi$$
−0.0798087 + 0.996810i $$0.525431\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 12.0000 0.945732
$$162$$ 0 0
$$163$$ 24.0000 1.87983 0.939913 0.341415i $$-0.110906\pi$$
0.939913 + 0.341415i $$0.110906\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 18.0000 1.39288 0.696441 0.717614i $$-0.254766\pi$$
0.696441 + 0.717614i $$0.254766\pi$$
$$168$$ 0 0
$$169$$ −9.00000 −0.692308
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 18.0000 1.36851 0.684257 0.729241i $$-0.260127\pi$$
0.684257 + 0.729241i $$0.260127\pi$$
$$174$$ 0 0
$$175$$ −12.0000 −0.907115
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 6.00000 0.448461 0.224231 0.974536i $$-0.428013\pi$$
0.224231 + 0.974536i $$0.428013\pi$$
$$180$$ 0 0
$$181$$ 18.0000 1.33793 0.668965 0.743294i $$-0.266738\pi$$
0.668965 + 0.743294i $$0.266738\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ −5.00000 −0.365636
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 15.0000 1.08536 0.542681 0.839939i $$-0.317409\pi$$
0.542681 + 0.839939i $$0.317409\pi$$
$$192$$ 0 0
$$193$$ −16.0000 −1.15171 −0.575853 0.817554i $$-0.695330\pi$$
−0.575853 + 0.817554i $$0.695330\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ −6.00000 −0.427482 −0.213741 0.976890i $$-0.568565\pi$$
−0.213741 + 0.976890i $$0.568565\pi$$
$$198$$ 0 0
$$199$$ 11.0000 0.779769 0.389885 0.920864i $$-0.372515\pi$$
0.389885 + 0.920864i $$0.372515\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 18.0000 1.26335
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 5.00000 0.345857
$$210$$ 0 0
$$211$$ 8.00000 0.550743 0.275371 0.961338i $$-0.411199\pi$$
0.275371 + 0.961338i $$0.411199\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ −11.0000 −0.750194
$$216$$ 0 0
$$217$$ 30.0000 2.03653
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ −2.00000 −0.134535
$$222$$ 0 0
$$223$$ −4.00000 −0.267860 −0.133930 0.990991i $$-0.542760\pi$$
−0.133930 + 0.990991i $$0.542760\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ −6.00000 −0.398234 −0.199117 0.979976i $$-0.563807\pi$$
−0.199117 + 0.979976i $$0.563807\pi$$
$$228$$ 0 0
$$229$$ −11.0000 −0.726900 −0.363450 0.931614i $$-0.618401\pi$$
−0.363450 + 0.931614i $$0.618401\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 23.0000 1.50678 0.753390 0.657574i $$-0.228417\pi$$
0.753390 + 0.657574i $$0.228417\pi$$
$$234$$ 0 0
$$235$$ −9.00000 −0.587095
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 11.0000 0.711531 0.355765 0.934575i $$-0.384220\pi$$
0.355765 + 0.934575i $$0.384220\pi$$
$$240$$ 0 0
$$241$$ −12.0000 −0.772988 −0.386494 0.922292i $$-0.626314\pi$$
−0.386494 + 0.922292i $$0.626314\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ −2.00000 −0.127775
$$246$$ 0 0
$$247$$ 2.00000 0.127257
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −19.0000 −1.19927 −0.599635 0.800274i $$-0.704687\pi$$
−0.599635 + 0.800274i $$0.704687\pi$$
$$252$$ 0 0
$$253$$ −20.0000 −1.25739
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 16.0000 0.998053 0.499026 0.866587i $$-0.333691\pi$$
0.499026 + 0.866587i $$0.333691\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ −23.0000 −1.41824 −0.709120 0.705087i $$-0.750908\pi$$
−0.709120 + 0.705087i $$0.750908\pi$$
$$264$$ 0 0
$$265$$ 10.0000 0.614295
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ 22.0000 1.34136 0.670682 0.741745i $$-0.266002\pi$$
0.670682 + 0.741745i $$0.266002\pi$$
$$270$$ 0 0
$$271$$ −20.0000 −1.21491 −0.607457 0.794353i $$-0.707810\pi$$
−0.607457 + 0.794353i $$0.707810\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 20.0000 1.20605
$$276$$ 0 0
$$277$$ 25.0000 1.50210 0.751052 0.660243i $$-0.229547\pi$$
0.751052 + 0.660243i $$0.229547\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 22.0000 1.31241 0.656205 0.754583i $$-0.272161\pi$$
0.656205 + 0.754583i $$0.272161\pi$$
$$282$$ 0 0
$$283$$ 7.00000 0.416107 0.208053 0.978117i $$-0.433287\pi$$
0.208053 + 0.978117i $$0.433287\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ −16.0000 −0.941176
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ −12.0000 −0.701047 −0.350524 0.936554i $$-0.613996\pi$$
−0.350524 + 0.936554i $$0.613996\pi$$
$$294$$ 0 0
$$295$$ −4.00000 −0.232889
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ −8.00000 −0.462652
$$300$$ 0 0
$$301$$ 33.0000 1.90209
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 5.00000 0.286299
$$306$$ 0 0
$$307$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −27.0000 −1.53103 −0.765515 0.643418i $$-0.777516\pi$$
−0.765515 + 0.643418i $$0.777516\pi$$
$$312$$ 0 0
$$313$$ 6.00000 0.339140 0.169570 0.985518i $$-0.445762\pi$$
0.169570 + 0.985518i $$0.445762\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −24.0000 −1.34797 −0.673987 0.738743i $$-0.735420\pi$$
−0.673987 + 0.738743i $$0.735420\pi$$
$$318$$ 0 0
$$319$$ −30.0000 −1.67968
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ −1.00000 −0.0556415
$$324$$ 0 0
$$325$$ 8.00000 0.443760
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 27.0000 1.48856
$$330$$ 0 0
$$331$$ −32.0000 −1.75888 −0.879440 0.476011i $$-0.842082\pi$$
−0.879440 + 0.476011i $$0.842082\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ −4.00000 −0.218543
$$336$$ 0 0
$$337$$ −18.0000 −0.980522 −0.490261 0.871576i $$-0.663099\pi$$
−0.490261 + 0.871576i $$0.663099\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ −50.0000 −2.70765
$$342$$ 0 0
$$343$$ −15.0000 −0.809924
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 21.0000 1.12734 0.563670 0.826000i $$-0.309389\pi$$
0.563670 + 0.826000i $$0.309389\pi$$
$$348$$ 0 0
$$349$$ −27.0000 −1.44528 −0.722638 0.691226i $$-0.757071\pi$$
−0.722638 + 0.691226i $$0.757071\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ −14.0000 −0.745145 −0.372572 0.928003i $$-0.621524\pi$$
−0.372572 + 0.928003i $$0.621524\pi$$
$$354$$ 0 0
$$355$$ −8.00000 −0.424596
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −21.0000 −1.10834 −0.554169 0.832404i $$-0.686964\pi$$
−0.554169 + 0.832404i $$0.686964\pi$$
$$360$$ 0 0
$$361$$ 1.00000 0.0526316
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ −13.0000 −0.680451
$$366$$ 0 0
$$367$$ 8.00000 0.417597 0.208798 0.977959i $$-0.433045\pi$$
0.208798 + 0.977959i $$0.433045\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ −30.0000 −1.55752
$$372$$ 0 0
$$373$$ −16.0000 −0.828449 −0.414224 0.910175i $$-0.635947\pi$$
−0.414224 + 0.910175i $$0.635947\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ −12.0000 −0.618031
$$378$$ 0 0
$$379$$ 34.0000 1.74646 0.873231 0.487306i $$-0.162020\pi$$
0.873231 + 0.487306i $$0.162020\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ −6.00000 −0.306586 −0.153293 0.988181i $$-0.548988\pi$$
−0.153293 + 0.988181i $$0.548988\pi$$
$$384$$ 0 0
$$385$$ 15.0000 0.764471
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ −25.0000 −1.26755 −0.633775 0.773517i $$-0.718496\pi$$
−0.633775 + 0.773517i $$0.718496\pi$$
$$390$$ 0 0
$$391$$ 4.00000 0.202289
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 4.00000 0.201262
$$396$$ 0 0
$$397$$ −19.0000 −0.953583 −0.476791 0.879017i $$-0.658200\pi$$
−0.476791 + 0.879017i $$0.658200\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −24.0000 −1.19850 −0.599251 0.800561i $$-0.704535\pi$$
−0.599251 + 0.800561i $$0.704535\pi$$
$$402$$ 0 0
$$403$$ −20.0000 −0.996271
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ 18.0000 0.890043 0.445021 0.895520i $$-0.353196\pi$$
0.445021 + 0.895520i $$0.353196\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 12.0000 0.590481
$$414$$ 0 0
$$415$$ 4.00000 0.196352
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 12.0000 0.586238 0.293119 0.956076i $$-0.405307\pi$$
0.293119 + 0.956076i $$0.405307\pi$$
$$420$$ 0 0
$$421$$ 26.0000 1.26716 0.633581 0.773676i $$-0.281584\pi$$
0.633581 + 0.773676i $$0.281584\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ −4.00000 −0.194029
$$426$$ 0 0
$$427$$ −15.0000 −0.725901
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −10.0000 −0.481683 −0.240842 0.970564i $$-0.577423\pi$$
−0.240842 + 0.970564i $$0.577423\pi$$
$$432$$ 0 0
$$433$$ 34.0000 1.63394 0.816968 0.576683i $$-0.195653\pi$$
0.816968 + 0.576683i $$0.195653\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ −4.00000 −0.191346
$$438$$ 0 0
$$439$$ 30.0000 1.43182 0.715911 0.698192i $$-0.246012\pi$$
0.715911 + 0.698192i $$0.246012\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ −7.00000 −0.332580 −0.166290 0.986077i $$-0.553179\pi$$
−0.166290 + 0.986077i $$0.553179\pi$$
$$444$$ 0 0
$$445$$ −6.00000 −0.284427
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 20.0000 0.943858 0.471929 0.881636i $$-0.343558\pi$$
0.471929 + 0.881636i $$0.343558\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 6.00000 0.281284
$$456$$ 0 0
$$457$$ 35.0000 1.63723 0.818615 0.574342i $$-0.194742\pi$$
0.818615 + 0.574342i $$0.194742\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ −7.00000 −0.326023 −0.163011 0.986624i $$-0.552121\pi$$
−0.163011 + 0.986624i $$0.552121\pi$$
$$462$$ 0 0
$$463$$ 1.00000 0.0464739 0.0232370 0.999730i $$-0.492603\pi$$
0.0232370 + 0.999730i $$0.492603\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −15.0000 −0.694117 −0.347059 0.937843i $$-0.612820\pi$$
−0.347059 + 0.937843i $$0.612820\pi$$
$$468$$ 0 0
$$469$$ 12.0000 0.554109
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ −55.0000 −2.52890
$$474$$ 0 0
$$475$$ 4.00000 0.183533
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ −16.0000 −0.731059 −0.365529 0.930800i $$-0.619112\pi$$
−0.365529 + 0.930800i $$0.619112\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ −2.00000 −0.0908153
$$486$$ 0 0
$$487$$ −4.00000 −0.181257 −0.0906287 0.995885i $$-0.528888\pi$$
−0.0906287 + 0.995885i $$0.528888\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 24.0000 1.08310 0.541552 0.840667i $$-0.317837\pi$$
0.541552 + 0.840667i $$0.317837\pi$$
$$492$$ 0 0
$$493$$ 6.00000 0.270226
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 24.0000 1.07655
$$498$$ 0 0
$$499$$ −39.0000 −1.74588 −0.872940 0.487828i $$-0.837789\pi$$
−0.872940 + 0.487828i $$0.837789\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$504$$ 0 0
$$505$$ −6.00000 −0.266996
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ 6.00000 0.265945 0.132973 0.991120i $$-0.457548\pi$$
0.132973 + 0.991120i $$0.457548\pi$$
$$510$$ 0 0
$$511$$ 39.0000 1.72526
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 10.0000 0.440653
$$516$$ 0 0
$$517$$ −45.0000 −1.97910
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −8.00000 −0.350486 −0.175243 0.984525i $$-0.556071\pi$$
−0.175243 + 0.984525i $$0.556071\pi$$
$$522$$ 0 0
$$523$$ 38.0000 1.66162 0.830812 0.556553i $$-0.187876\pi$$
0.830812 + 0.556553i $$0.187876\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 10.0000 0.435607
$$528$$ 0 0
$$529$$ −7.00000 −0.304348
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ −18.0000 −0.778208
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ −10.0000 −0.430730
$$540$$ 0 0
$$541$$ 15.0000 0.644900 0.322450 0.946586i $$-0.395494\pi$$
0.322450 + 0.946586i $$0.395494\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 8.00000 0.342682
$$546$$ 0 0
$$547$$ 10.0000 0.427569 0.213785 0.976881i $$-0.431421\pi$$
0.213785 + 0.976881i $$0.431421\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ −6.00000 −0.255609
$$552$$ 0 0
$$553$$ −12.0000 −0.510292
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 5.00000 0.211857 0.105928 0.994374i $$-0.466219\pi$$
0.105928 + 0.994374i $$0.466219\pi$$
$$558$$ 0 0
$$559$$ −22.0000 −0.930501
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ −20.0000 −0.842900 −0.421450 0.906852i $$-0.638479\pi$$
−0.421450 + 0.906852i $$0.638479\pi$$
$$564$$ 0 0
$$565$$ 6.00000 0.252422
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −34.0000 −1.42535 −0.712677 0.701492i $$-0.752517\pi$$
−0.712677 + 0.701492i $$0.752517\pi$$
$$570$$ 0 0
$$571$$ −24.0000 −1.00437 −0.502184 0.864761i $$-0.667470\pi$$
−0.502184 + 0.864761i $$0.667470\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ −16.0000 −0.667246
$$576$$ 0 0
$$577$$ 35.0000 1.45707 0.728535 0.685009i $$-0.240202\pi$$
0.728535 + 0.685009i $$0.240202\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ −12.0000 −0.497844
$$582$$ 0 0
$$583$$ 50.0000 2.07079
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ −35.0000 −1.44460 −0.722302 0.691577i $$-0.756916\pi$$
−0.722302 + 0.691577i $$0.756916\pi$$
$$588$$ 0 0
$$589$$ −10.0000 −0.412043
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 14.0000 0.574911 0.287456 0.957794i $$-0.407191\pi$$
0.287456 + 0.957794i $$0.407191\pi$$
$$594$$ 0 0
$$595$$ −3.00000 −0.122988
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 36.0000 1.47092 0.735460 0.677568i $$-0.236966\pi$$
0.735460 + 0.677568i $$0.236966\pi$$
$$600$$ 0 0
$$601$$ −44.0000 −1.79480 −0.897399 0.441221i $$-0.854546\pi$$
−0.897399 + 0.441221i $$0.854546\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ −14.0000 −0.569181
$$606$$ 0 0
$$607$$ 22.0000 0.892952 0.446476 0.894795i $$-0.352679\pi$$
0.446476 + 0.894795i $$0.352679\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −18.0000 −0.728202
$$612$$ 0 0
$$613$$ 5.00000 0.201948 0.100974 0.994889i $$-0.467804\pi$$
0.100974 + 0.994889i $$0.467804\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −27.0000 −1.08698 −0.543490 0.839416i $$-0.682897\pi$$
−0.543490 + 0.839416i $$0.682897\pi$$
$$618$$ 0 0
$$619$$ 20.0000 0.803868 0.401934 0.915669i $$-0.368338\pi$$
0.401934 + 0.915669i $$0.368338\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 18.0000 0.721155
$$624$$ 0 0
$$625$$ 11.0000 0.440000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 0 0
$$630$$ 0 0
$$631$$ 47.0000 1.87104 0.935520 0.353273i $$-0.114931\pi$$
0.935520 + 0.353273i $$0.114931\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ −2.00000 −0.0793676
$$636$$ 0 0
$$637$$ −4.00000 −0.158486
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 26.0000 1.02694 0.513469 0.858108i $$-0.328360\pi$$
0.513469 + 0.858108i $$0.328360\pi$$
$$642$$ 0 0
$$643$$ −21.0000 −0.828159 −0.414080 0.910241i $$-0.635896\pi$$
−0.414080 + 0.910241i $$0.635896\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ −25.0000 −0.982851 −0.491426 0.870919i $$-0.663524\pi$$
−0.491426 + 0.870919i $$0.663524\pi$$
$$648$$ 0 0
$$649$$ −20.0000 −0.785069
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 9.00000 0.352197 0.176099 0.984373i $$-0.443652\pi$$
0.176099 + 0.984373i $$0.443652\pi$$
$$654$$ 0 0
$$655$$ 19.0000 0.742391
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 6.00000 0.233727 0.116863 0.993148i $$-0.462716\pi$$
0.116863 + 0.993148i $$0.462716\pi$$
$$660$$ 0 0
$$661$$ −28.0000 −1.08907 −0.544537 0.838737i $$-0.683295\pi$$
−0.544537 + 0.838737i $$0.683295\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 3.00000 0.116335
$$666$$ 0 0
$$667$$ 24.0000 0.929284
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 25.0000 0.965114
$$672$$ 0 0
$$673$$ −44.0000 −1.69608 −0.848038 0.529936i $$-0.822216\pi$$
−0.848038 + 0.529936i $$0.822216\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 2.00000 0.0768662 0.0384331 0.999261i $$-0.487763\pi$$
0.0384331 + 0.999261i $$0.487763\pi$$
$$678$$ 0 0
$$679$$ 6.00000 0.230259
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 34.0000 1.30097 0.650487 0.759517i $$-0.274565\pi$$
0.650487 + 0.759517i $$0.274565\pi$$
$$684$$ 0 0
$$685$$ −9.00000 −0.343872
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 20.0000 0.761939
$$690$$ 0 0
$$691$$ −35.0000 −1.33146 −0.665731 0.746191i $$-0.731880\pi$$
−0.665731 + 0.746191i $$0.731880\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ −15.0000 −0.568982
$$696$$ 0 0
$$697$$ 0 0
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ −42.0000 −1.58632 −0.793159 0.609015i $$-0.791565\pi$$
−0.793159 + 0.609015i $$0.791565\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 18.0000 0.676960
$$708$$ 0 0
$$709$$ −34.0000 −1.27690 −0.638448 0.769665i $$-0.720423\pi$$
−0.638448 + 0.769665i $$0.720423\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 40.0000 1.49801
$$714$$ 0 0
$$715$$ −10.0000 −0.373979
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ −17.0000 −0.633993 −0.316997 0.948427i $$-0.602674\pi$$
−0.316997 + 0.948427i $$0.602674\pi$$
$$720$$ 0 0
$$721$$ −30.0000 −1.11726
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ −24.0000 −0.891338
$$726$$ 0 0
$$727$$ −39.0000 −1.44643 −0.723215 0.690623i $$-0.757336\pi$$
−0.723215 + 0.690623i $$0.757336\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ 11.0000 0.406850
$$732$$ 0 0
$$733$$ −46.0000 −1.69905 −0.849524 0.527549i $$-0.823111\pi$$
−0.849524 + 0.527549i $$0.823111\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −20.0000 −0.736709
$$738$$ 0 0
$$739$$ 7.00000 0.257499 0.128750 0.991677i $$-0.458904\pi$$
0.128750 + 0.991677i $$0.458904\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ −44.0000 −1.61420 −0.807102 0.590412i $$-0.798965\pi$$
−0.807102 + 0.590412i $$0.798965\pi$$
$$744$$ 0 0
$$745$$ −1.00000 −0.0366372
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 54.0000 1.97312
$$750$$ 0 0
$$751$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 20.0000 0.727875
$$756$$ 0 0
$$757$$ 35.0000 1.27210 0.636048 0.771649i $$-0.280568\pi$$
0.636048 + 0.771649i $$0.280568\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 1.00000 0.0362500 0.0181250 0.999836i $$-0.494230\pi$$
0.0181250 + 0.999836i $$0.494230\pi$$
$$762$$ 0 0
$$763$$ −24.0000 −0.868858
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −8.00000 −0.288863
$$768$$ 0 0
$$769$$ −37.0000 −1.33425 −0.667127 0.744944i $$-0.732476\pi$$
−0.667127 + 0.744944i $$0.732476\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ −24.0000 −0.863220 −0.431610 0.902060i $$-0.642054\pi$$
−0.431610 + 0.902060i $$0.642054\pi$$
$$774$$ 0 0
$$775$$ −40.0000 −1.43684
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ −40.0000 −1.43131
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 2.00000 0.0713831
$$786$$ 0 0
$$787$$ −16.0000 −0.570338 −0.285169 0.958477i $$-0.592050\pi$$
−0.285169 + 0.958477i $$0.592050\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ −18.0000 −0.640006
$$792$$ 0 0
$$793$$ 10.0000 0.355110
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ −40.0000 −1.41687 −0.708436 0.705775i $$-0.750599\pi$$
−0.708436 + 0.705775i $$0.750599\pi$$
$$798$$ 0 0
$$799$$ 9.00000 0.318397
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ −65.0000 −2.29380
$$804$$ 0 0
$$805$$ −12.0000 −0.422944
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ −17.0000 −0.597688 −0.298844 0.954302i $$-0.596601\pi$$
−0.298844 + 0.954302i $$0.596601\pi$$
$$810$$ 0 0
$$811$$ 14.0000 0.491606 0.245803 0.969320i $$-0.420948\pi$$
0.245803 + 0.969320i $$0.420948\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ −24.0000 −0.840683
$$816$$ 0 0
$$817$$ −11.0000 −0.384841
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 9.00000 0.314102 0.157051 0.987590i $$-0.449801\pi$$
0.157051 + 0.987590i $$0.449801\pi$$
$$822$$ 0 0
$$823$$ −5.00000 −0.174289 −0.0871445 0.996196i $$-0.527774\pi$$
−0.0871445 + 0.996196i $$0.527774\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 32.0000 1.11275 0.556375 0.830932i $$-0.312192\pi$$
0.556375 + 0.830932i $$0.312192\pi$$
$$828$$ 0 0
$$829$$ 4.00000 0.138926 0.0694629 0.997585i $$-0.477871\pi$$
0.0694629 + 0.997585i $$0.477871\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 2.00000 0.0692959
$$834$$ 0 0
$$835$$ −18.0000 −0.622916
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 18.0000 0.621429 0.310715 0.950503i $$-0.399432\pi$$
0.310715 + 0.950503i $$0.399432\pi$$
$$840$$ 0 0
$$841$$ 7.00000 0.241379
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 9.00000 0.309609
$$846$$ 0 0
$$847$$ 42.0000 1.44314
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 0 0
$$853$$ 26.0000 0.890223 0.445112 0.895475i $$-0.353164\pi$$
0.445112 + 0.895475i $$0.353164\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ −12.0000 −0.409912 −0.204956 0.978771i $$-0.565705\pi$$
−0.204956 + 0.978771i $$0.565705\pi$$
$$858$$ 0 0
$$859$$ 15.0000 0.511793 0.255897 0.966704i $$-0.417629\pi$$
0.255897 + 0.966704i $$0.417629\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 28.0000 0.953131 0.476566 0.879139i $$-0.341881\pi$$
0.476566 + 0.879139i $$0.341881\pi$$
$$864$$ 0 0
$$865$$ −18.0000 −0.612018
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 20.0000 0.678454
$$870$$ 0 0
$$871$$ −8.00000 −0.271070
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 27.0000 0.912767
$$876$$ 0 0
$$877$$ 18.0000 0.607817 0.303908 0.952701i $$-0.401708\pi$$
0.303908 + 0.952701i $$0.401708\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ 37.0000 1.24656 0.623281 0.781998i $$-0.285799\pi$$
0.623281 + 0.781998i $$0.285799\pi$$
$$882$$ 0 0
$$883$$ 31.0000 1.04323 0.521617 0.853180i $$-0.325329\pi$$
0.521617 + 0.853180i $$0.325329\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 56.0000 1.88030 0.940148 0.340766i $$-0.110687\pi$$
0.940148 + 0.340766i $$0.110687\pi$$
$$888$$ 0 0
$$889$$ 6.00000 0.201234
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ −9.00000 −0.301174
$$894$$ 0 0
$$895$$ −6.00000 −0.200558
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 60.0000 2.00111
$$900$$ 0 0
$$901$$ −10.0000 −0.333148
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ −18.0000 −0.598340
$$906$$ 0 0
$$907$$ −10.0000 −0.332045 −0.166022 0.986122i $$-0.553092\pi$$
−0.166022 + 0.986122i $$0.553092\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ −50.0000 −1.65657 −0.828287 0.560304i $$-0.810684\pi$$
−0.828287 + 0.560304i $$0.810684\pi$$
$$912$$ 0 0
$$913$$ 20.0000 0.661903
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ −57.0000 −1.88231
$$918$$ 0 0
$$919$$ −16.0000 −0.527791 −0.263896 0.964551i $$-0.585007\pi$$
−0.263896 + 0.964551i $$0.585007\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ −16.0000 −0.526646
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ 34.0000 1.11550 0.557752 0.830008i $$-0.311664\pi$$
0.557752 + 0.830008i $$0.311664\pi$$
$$930$$ 0 0
$$931$$ −2.00000 −0.0655474
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 5.00000 0.163517
$$936$$ 0 0
$$937$$ −3.00000 −0.0980057 −0.0490029 0.998799i $$-0.515604\pi$$
−0.0490029 + 0.998799i $$0.515604\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ −42.0000 −1.36916 −0.684580 0.728937i $$-0.740015\pi$$
−0.684580 + 0.728937i $$0.740015\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −36.0000 −1.16984 −0.584921 0.811090i $$-0.698875\pi$$
−0.584921 + 0.811090i $$0.698875\pi$$
$$948$$ 0 0
$$949$$ −26.0000 −0.843996
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ −12.0000 −0.388718 −0.194359 0.980930i $$-0.562263\pi$$
−0.194359 + 0.980930i $$0.562263\pi$$
$$954$$ 0 0
$$955$$ −15.0000 −0.485389
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 27.0000 0.871875
$$960$$ 0 0
$$961$$ 69.0000 2.22581
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 16.0000 0.515058
$$966$$ 0 0
$$967$$ −8.00000 −0.257263 −0.128631 0.991692i $$-0.541058\pi$$
−0.128631 + 0.991692i $$0.541058\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ −12.0000 −0.385098 −0.192549 0.981287i $$-0.561675\pi$$
−0.192549 + 0.981287i $$0.561675\pi$$
$$972$$ 0 0
$$973$$ 45.0000 1.44263
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ −30.0000 −0.959785 −0.479893 0.877327i $$-0.659324\pi$$
−0.479893 + 0.877327i $$0.659324\pi$$
$$978$$ 0 0
$$979$$ −30.0000 −0.958804
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 12.0000 0.382741 0.191370 0.981518i $$-0.438707\pi$$
0.191370 + 0.981518i $$0.438707\pi$$
$$984$$ 0 0
$$985$$ 6.00000 0.191176
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 44.0000 1.39912
$$990$$ 0 0
$$991$$ 32.0000 1.01651 0.508257 0.861206i $$-0.330290\pi$$
0.508257 + 0.861206i $$0.330290\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ −11.0000 −0.348723
$$996$$ 0 0
$$997$$ −35.0000 −1.10846 −0.554231 0.832363i $$-0.686987\pi$$
−0.554231 + 0.832363i $$0.686987\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2736.2.a.i.1.1 1
3.2 odd 2 912.2.a.i.1.1 1
4.3 odd 2 1368.2.a.d.1.1 1
12.11 even 2 456.2.a.a.1.1 1
24.5 odd 2 3648.2.a.g.1.1 1
24.11 even 2 3648.2.a.z.1.1 1
228.227 odd 2 8664.2.a.l.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
456.2.a.a.1.1 1 12.11 even 2
912.2.a.i.1.1 1 3.2 odd 2
1368.2.a.d.1.1 1 4.3 odd 2
2736.2.a.i.1.1 1 1.1 even 1 trivial
3648.2.a.g.1.1 1 24.5 odd 2
3648.2.a.z.1.1 1 24.11 even 2
8664.2.a.l.1.1 1 228.227 odd 2