# Properties

 Label 2736.2.a.g Level $2736$ Weight $2$ Character orbit 2736.a Self dual yes Analytic conductor $21.847$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2736 = 2^{4} \cdot 3^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2736.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$21.8470699930$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 228) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q - 2q^{5} + O(q^{10})$$ $$q - 2q^{5} + 2q^{11} + 2q^{13} - 6q^{17} + q^{19} + 2q^{23} - q^{25} - 4q^{29} + 8q^{31} - 2q^{37} + 8q^{41} + 8q^{43} + 2q^{47} - 7q^{49} + 4q^{53} - 4q^{55} + 2q^{61} - 4q^{65} - 12q^{67} - 4q^{71} + 6q^{73} + 16q^{79} + 6q^{83} + 12q^{85} - 2q^{95} - 2q^{97} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 −2.00000 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$19$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2736.2.a.g 1
3.b odd 2 1 912.2.a.j 1
4.b odd 2 1 684.2.a.a 1
12.b even 2 1 228.2.a.b 1
24.f even 2 1 3648.2.a.v 1
24.h odd 2 1 3648.2.a.e 1
60.h even 2 1 5700.2.a.p 1
60.l odd 4 2 5700.2.f.k 2
228.b odd 2 1 4332.2.a.d 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
228.2.a.b 1 12.b even 2 1
684.2.a.a 1 4.b odd 2 1
912.2.a.j 1 3.b odd 2 1
2736.2.a.g 1 1.a even 1 1 trivial
3648.2.a.e 1 24.h odd 2 1
3648.2.a.v 1 24.f even 2 1
4332.2.a.d 1 228.b odd 2 1
5700.2.a.p 1 60.h even 2 1
5700.2.f.k 2 60.l odd 4 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2736))$$:

 $$T_{5} + 2$$ $$T_{7}$$ $$T_{11} - 2$$ $$T_{13} - 2$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$2 + T$$
$7$ $$T$$
$11$ $$-2 + T$$
$13$ $$-2 + T$$
$17$ $$6 + T$$
$19$ $$-1 + T$$
$23$ $$-2 + T$$
$29$ $$4 + T$$
$31$ $$-8 + T$$
$37$ $$2 + T$$
$41$ $$-8 + T$$
$43$ $$-8 + T$$
$47$ $$-2 + T$$
$53$ $$-4 + T$$
$59$ $$T$$
$61$ $$-2 + T$$
$67$ $$12 + T$$
$71$ $$4 + T$$
$73$ $$-6 + T$$
$79$ $$-16 + T$$
$83$ $$-6 + T$$
$89$ $$T$$
$97$ $$2 + T$$