Properties

Label 2736.1.fg
Level $2736$
Weight $1$
Character orbit 2736.fg
Rep. character $\chi_{2736}(433,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $6$
Newform subspaces $1$
Sturm bound $480$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2736.fg (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(480\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2736, [\chi])\).

Total New Old
Modular forms 168 12 156
Cusp forms 24 6 18
Eisenstein series 144 6 138

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 6 0 0 0

Trace form

\( 6q + O(q^{10}) \) \( 6q + 3q^{13} - 3q^{19} + 3q^{43} - 3q^{49} - 6q^{61} + 3q^{67} - 3q^{73} + 6q^{79} + 6q^{91} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(2736, [\chi])\) into newform subspaces

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
2736.1.fg.a \(6\) \(1.365\) \(\Q(\zeta_{18})\) \(D_{18}\) \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(0\) \(0\) \(q+(-\zeta_{18}^{7}+\zeta_{18}^{8})q^{7}+(\zeta_{18}^{2}-\zeta_{18}^{6}+\cdots)q^{13}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2736, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2736, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(684, [\chi])\)\(^{\oplus 3}\)