Newspace parameters
Level: | \( N \) | \(=\) | \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 2736.bk (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.36544187456\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\zeta_{6})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Projective image: | \(D_{6}\) |
Projective field: | Galois closure of 6.2.225194688.1 |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).
\(n\) | \(1009\) | \(1217\) | \(1711\) | \(2053\) |
\(\chi(n)\) | \(-\zeta_{6}\) | \(1\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
847.1 |
|
0 | 0 | 0 | 0 | 0 | 1.73205i | 0 | 0 | 0 | ||||||||||||||||||||||||
2287.1 | 0 | 0 | 0 | 0 | 0 | − | 1.73205i | 0 | 0 | 0 | ||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-3}) \) |
76.g | odd | 6 | 1 | inner |
228.m | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2736.1.bk.b | yes | 2 |
3.b | odd | 2 | 1 | CM | 2736.1.bk.b | yes | 2 |
4.b | odd | 2 | 1 | 2736.1.bk.a | ✓ | 2 | |
12.b | even | 2 | 1 | 2736.1.bk.a | ✓ | 2 | |
19.c | even | 3 | 1 | 2736.1.bk.a | ✓ | 2 | |
57.h | odd | 6 | 1 | 2736.1.bk.a | ✓ | 2 | |
76.g | odd | 6 | 1 | inner | 2736.1.bk.b | yes | 2 |
228.m | even | 6 | 1 | inner | 2736.1.bk.b | yes | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
2736.1.bk.a | ✓ | 2 | 4.b | odd | 2 | 1 | |
2736.1.bk.a | ✓ | 2 | 12.b | even | 2 | 1 | |
2736.1.bk.a | ✓ | 2 | 19.c | even | 3 | 1 | |
2736.1.bk.a | ✓ | 2 | 57.h | odd | 6 | 1 | |
2736.1.bk.b | yes | 2 | 1.a | even | 1 | 1 | trivial |
2736.1.bk.b | yes | 2 | 3.b | odd | 2 | 1 | CM |
2736.1.bk.b | yes | 2 | 76.g | odd | 6 | 1 | inner |
2736.1.bk.b | yes | 2 | 228.m | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{43}^{2} - 3T_{43} + 3 \)
acting on \(S_{1}^{\mathrm{new}}(2736, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} \)
$5$
\( T^{2} \)
$7$
\( T^{2} + 3 \)
$11$
\( T^{2} \)
$13$
\( T^{2} + T + 1 \)
$17$
\( T^{2} \)
$19$
\( (T - 1)^{2} \)
$23$
\( T^{2} \)
$29$
\( T^{2} \)
$31$
\( T^{2} + 3 \)
$37$
\( (T + 1)^{2} \)
$41$
\( T^{2} \)
$43$
\( T^{2} - 3T + 3 \)
$47$
\( T^{2} \)
$53$
\( T^{2} \)
$59$
\( T^{2} \)
$61$
\( T^{2} - T + 1 \)
$67$
\( T^{2} + 3T + 3 \)
$71$
\( T^{2} \)
$73$
\( T^{2} + T + 1 \)
$79$
\( T^{2} + 3T + 3 \)
$83$
\( T^{2} \)
$89$
\( T^{2} \)
$97$
\( T^{2} - 2T + 4 \)
show more
show less