Defining parameters
Level: | \( N \) | \(=\) | \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 2736.bk (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 76 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(480\) | ||
Trace bound: | \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2736, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 76 | 4 | 72 |
Cusp forms | 28 | 4 | 24 |
Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 4 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2736, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
2736.1.bk.a | $2$ | $1.365$ | \(\Q(\sqrt{-3}) \) | $D_{6}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\zeta_{6}-\zeta_{6}^{2})q^{7}-\zeta_{6}q^{13}-q^{19}+\cdots\) |
2736.1.bk.b | $2$ | $1.365$ | \(\Q(\sqrt{-3}) \) | $D_{6}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\zeta_{6}+\zeta_{6}^{2})q^{7}-\zeta_{6}q^{13}+q^{19}+\zeta_{6}q^{25}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(2736, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(2736, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(684, [\chi])\)\(^{\oplus 3}\)