Properties

Label 2736.1.b.a
Level $2736$
Weight $1$
Character orbit 2736.b
Analytic conductor $1.365$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
CM discriminant -19
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2736.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.36544187456\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.155952.2

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( \zeta_{8} + \zeta_{8}^{3} ) q^{5} + 2 \zeta_{8}^{2} q^{7} +O(q^{10})\) \( q + ( \zeta_{8} + \zeta_{8}^{3} ) q^{5} + 2 \zeta_{8}^{2} q^{7} + ( -\zeta_{8} + \zeta_{8}^{3} ) q^{11} + ( -\zeta_{8} - \zeta_{8}^{3} ) q^{17} + \zeta_{8}^{2} q^{19} + ( \zeta_{8} - \zeta_{8}^{3} ) q^{23} - q^{25} + ( -2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{35} + ( -\zeta_{8} + \zeta_{8}^{3} ) q^{47} -3 q^{49} -2 \zeta_{8}^{2} q^{55} + 2 q^{73} + ( -2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{77} + ( -\zeta_{8} + \zeta_{8}^{3} ) q^{83} + 2 q^{85} + ( -\zeta_{8} + \zeta_{8}^{3} ) q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + O(q^{10}) \) \( 4q - 4q^{25} - 12q^{49} + 8q^{73} + 8q^{85} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2735.1
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
0 0 0 1.41421i 0 2.00000i 0 0 0
2735.2 0 0 0 1.41421i 0 2.00000i 0 0 0
2735.3 0 0 0 1.41421i 0 2.00000i 0 0 0
2735.4 0 0 0 1.41421i 0 2.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner
57.d even 2 1 inner
76.d even 2 1 inner
228.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2736.1.b.a 4
3.b odd 2 1 inner 2736.1.b.a 4
4.b odd 2 1 inner 2736.1.b.a 4
12.b even 2 1 inner 2736.1.b.a 4
19.b odd 2 1 CM 2736.1.b.a 4
57.d even 2 1 inner 2736.1.b.a 4
76.d even 2 1 inner 2736.1.b.a 4
228.b odd 2 1 inner 2736.1.b.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2736.1.b.a 4 1.a even 1 1 trivial
2736.1.b.a 4 3.b odd 2 1 inner
2736.1.b.a 4 4.b odd 2 1 inner
2736.1.b.a 4 12.b even 2 1 inner
2736.1.b.a 4 19.b odd 2 1 CM
2736.1.b.a 4 57.d even 2 1 inner
2736.1.b.a 4 76.d even 2 1 inner
2736.1.b.a 4 228.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 2 \) acting on \(S_{1}^{\mathrm{new}}(2736, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( T^{4} \)
$5$ \( ( 2 + T^{2} )^{2} \)
$7$ \( ( 4 + T^{2} )^{2} \)
$11$ \( ( -2 + T^{2} )^{2} \)
$13$ \( T^{4} \)
$17$ \( ( 2 + T^{2} )^{2} \)
$19$ \( ( 1 + T^{2} )^{2} \)
$23$ \( ( -2 + T^{2} )^{2} \)
$29$ \( T^{4} \)
$31$ \( T^{4} \)
$37$ \( T^{4} \)
$41$ \( T^{4} \)
$43$ \( T^{4} \)
$47$ \( ( -2 + T^{2} )^{2} \)
$53$ \( T^{4} \)
$59$ \( T^{4} \)
$61$ \( T^{4} \)
$67$ \( T^{4} \)
$71$ \( T^{4} \)
$73$ \( ( -2 + T )^{4} \)
$79$ \( T^{4} \)
$83$ \( ( -2 + T^{2} )^{2} \)
$89$ \( T^{4} \)
$97$ \( T^{4} \)
show more
show less