Properties

Label 27300.2.a
Level $27300$
Weight $2$
Character orbit 27300.a
Rep. character $\chi_{27300}(1,\cdot)$
Character field $\Q$
Dimension $228$
Newform subspaces $69$
Sturm bound $13440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 27300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 27300.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 69 \)
Sturm bound: \(13440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(27300))\).

Total New Old
Modular forms 6792 228 6564
Cusp forms 6649 228 6421
Eisenstein series 143 0 143

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(7\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(+\)\(210\)\(0\)\(210\)\(205\)\(0\)\(205\)\(5\)\(0\)\(5\)
\(+\)\(+\)\(+\)\(+\)\(-\)\(-\)\(213\)\(0\)\(213\)\(207\)\(0\)\(207\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(+\)\(-\)\(+\)\(-\)\(213\)\(0\)\(213\)\(207\)\(0\)\(207\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(+\)\(210\)\(0\)\(210\)\(204\)\(0\)\(204\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(-\)\(+\)\(+\)\(-\)\(216\)\(0\)\(216\)\(210\)\(0\)\(210\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(+\)\(213\)\(0\)\(213\)\(207\)\(0\)\(207\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(+\)\(213\)\(0\)\(213\)\(207\)\(0\)\(207\)\(6\)\(0\)\(6\)
\(+\)\(+\)\(-\)\(-\)\(-\)\(-\)\(216\)\(0\)\(216\)\(210\)\(0\)\(210\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(+\)\(+\)\(-\)\(216\)\(0\)\(216\)\(210\)\(0\)\(210\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(+\)\(213\)\(0\)\(213\)\(207\)\(0\)\(207\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(+\)\(213\)\(0\)\(213\)\(207\)\(0\)\(207\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(-\)\(-\)\(216\)\(0\)\(216\)\(210\)\(0\)\(210\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(+\)\(210\)\(0\)\(210\)\(204\)\(0\)\(204\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(-\)\(-\)\(213\)\(0\)\(213\)\(207\)\(0\)\(207\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(-\)\(+\)\(-\)\(213\)\(0\)\(213\)\(207\)\(0\)\(207\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(+\)\(210\)\(0\)\(210\)\(204\)\(0\)\(204\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(+\)\(+\)\(+\)\(-\)\(213\)\(14\)\(199\)\(210\)\(14\)\(196\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(+\)\(210\)\(12\)\(198\)\(207\)\(12\)\(195\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(+\)\(210\)\(13\)\(197\)\(207\)\(13\)\(194\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(-\)\(-\)\(213\)\(15\)\(198\)\(210\)\(15\)\(195\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(+\)\(210\)\(16\)\(194\)\(207\)\(16\)\(191\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(-\)\(-\)\(213\)\(16\)\(197\)\(210\)\(16\)\(194\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(-\)\(+\)\(-\)\(213\)\(14\)\(199\)\(210\)\(14\)\(196\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(+\)\(210\)\(14\)\(196\)\(207\)\(14\)\(193\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(+\)\(210\)\(12\)\(198\)\(207\)\(12\)\(195\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(-\)\(-\)\(213\)\(16\)\(197\)\(210\)\(16\)\(194\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(-\)\(+\)\(-\)\(213\)\(15\)\(198\)\(210\)\(15\)\(195\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(+\)\(210\)\(11\)\(199\)\(207\)\(11\)\(196\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(+\)\(+\)\(-\)\(213\)\(16\)\(197\)\(210\)\(16\)\(194\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(+\)\(210\)\(12\)\(198\)\(207\)\(12\)\(195\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(+\)\(210\)\(14\)\(196\)\(207\)\(14\)\(193\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(-\)\(-\)\(213\)\(18\)\(195\)\(210\)\(18\)\(192\)\(3\)\(0\)\(3\)
Plus space\(+\)\(3372\)\(104\)\(3268\)\(3301\)\(104\)\(3197\)\(71\)\(0\)\(71\)
Minus space\(-\)\(3420\)\(124\)\(3296\)\(3348\)\(124\)\(3224\)\(72\)\(0\)\(72\)

Trace form

\( 228 q + 228 q^{9} + 8 q^{17} + 8 q^{19} + 4 q^{21} + 4 q^{23} + 4 q^{29} + 8 q^{31} + 8 q^{33} + 16 q^{37} - 8 q^{41} + 12 q^{43} + 48 q^{47} + 228 q^{49} + 8 q^{51} - 12 q^{53} - 16 q^{57} - 8 q^{59} - 16 q^{61}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(27300))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 7 13
27300.2.a.a 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}-5q^{11}-q^{13}+4q^{17}+\cdots\)
27300.2.a.b 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}-q^{13}-6q^{17}-4q^{19}+\cdots\)
27300.2.a.c 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}-q^{13}-4q^{19}+q^{21}+\cdots\)
27300.2.a.d 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}-q^{13}+3q^{17}+2q^{19}+\cdots\)
27300.2.a.e 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}+q^{9}+q^{13}-2q^{17}-8q^{19}+\cdots\)
27300.2.a.f 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}-5q^{11}-q^{13}-4q^{17}+\cdots\)
27300.2.a.g 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}-5q^{11}+q^{13}+4q^{19}+\cdots\)
27300.2.a.h 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}-4q^{11}+q^{13}-2q^{17}+\cdots\)
27300.2.a.i 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}-4q^{11}+q^{13}+6q^{17}+\cdots\)
27300.2.a.j 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}-4q^{11}+q^{13}+7q^{17}+\cdots\)
27300.2.a.k 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}+q^{9}+q^{13}+4q^{17}-8q^{19}+\cdots\)
27300.2.a.l 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}-6q^{11}+q^{13}+8q^{17}+\cdots\)
27300.2.a.m 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}-5q^{11}-q^{13}+4q^{19}+\cdots\)
27300.2.a.n 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}-5q^{11}+q^{13}+4q^{17}+\cdots\)
27300.2.a.o 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}-4q^{11}-q^{13}-7q^{17}+\cdots\)
27300.2.a.p 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}-4q^{11}-q^{13}+2q^{17}+\cdots\)
27300.2.a.q 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}+q^{13}-4q^{17}-q^{21}+\cdots\)
27300.2.a.r 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}+4q^{11}+q^{13}-2q^{17}+\cdots\)
27300.2.a.s 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}+q^{9}+4q^{11}+q^{13}+4q^{17}+\cdots\)
27300.2.a.t 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}-5q^{11}+q^{13}-4q^{17}+\cdots\)
27300.2.a.u 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}-2q^{11}+q^{13}-4q^{17}+\cdots\)
27300.2.a.v 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}+q^{13}-3q^{17}+2q^{19}+\cdots\)
27300.2.a.w 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}+2q^{11}-q^{13}+4q^{17}+\cdots\)
27300.2.a.x 27300.a 1.a $1$ $217.992$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $-$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}+q^{9}+4q^{11}-q^{13}-8q^{17}+\cdots\)
27300.2.a.y 27300.a 1.a $2$ $217.992$ \(\Q(\sqrt{13}) \) None \(0\) \(-2\) \(0\) \(-2\) $-$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
27300.2.a.z 27300.a 1.a $2$ $217.992$ \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(0\) \(-2\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
27300.2.a.ba 27300.a 1.a $2$ $217.992$ \(\Q(\sqrt{21}) \) None \(0\) \(-2\) \(0\) \(-2\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
27300.2.a.bb 27300.a 1.a $2$ $217.992$ \(\Q(\sqrt{2}) \) None \(0\) \(-2\) \(0\) \(-2\) $-$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
27300.2.a.bc 27300.a 1.a $2$ $217.992$ \(\Q(\sqrt{33}) \) None \(0\) \(-2\) \(0\) \(-2\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
27300.2.a.bd 27300.a 1.a $2$ $217.992$ \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(0\) \(2\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
27300.2.a.be 27300.a 1.a $2$ $217.992$ \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(0\) \(-2\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
27300.2.a.bf 27300.a 1.a $2$ $217.992$ \(\Q(\sqrt{37}) \) None \(0\) \(2\) \(0\) \(-2\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
27300.2.a.bg 27300.a 1.a $2$ $217.992$ \(\Q(\sqrt{21}) \) None \(0\) \(2\) \(0\) \(-2\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
27300.2.a.bh 27300.a 1.a $2$ $217.992$ \(\Q(\sqrt{13}) \) None \(0\) \(2\) \(0\) \(2\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
27300.2.a.bi 27300.a 1.a $2$ $217.992$ \(\Q(\sqrt{2}) \) None \(0\) \(2\) \(0\) \(2\) $-$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
27300.2.a.bj 27300.a 1.a $3$ $217.992$ 3.3.1229.1 None \(0\) \(-3\) \(0\) \(-3\) $-$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
27300.2.a.bk 27300.a 1.a $3$ $217.992$ 3.3.1373.1 None \(0\) \(-3\) \(0\) \(3\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
27300.2.a.bl 27300.a 1.a $3$ $217.992$ 3.3.229.1 None \(0\) \(-3\) \(0\) \(3\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
27300.2.a.bm 27300.a 1.a $3$ $217.992$ 3.3.2429.1 None \(0\) \(-3\) \(0\) \(3\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
27300.2.a.bn 27300.a 1.a $3$ $217.992$ 3.3.1101.1 None \(0\) \(-3\) \(0\) \(3\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
27300.2.a.bo 27300.a 1.a $3$ $217.992$ 3.3.3957.1 None \(0\) \(3\) \(0\) \(-3\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
27300.2.a.bp 27300.a 1.a $3$ $217.992$ 3.3.5637.1 None \(0\) \(3\) \(0\) \(-3\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
27300.2.a.bq 27300.a 1.a $3$ $217.992$ 3.3.10997.1 None \(0\) \(3\) \(0\) \(3\) $-$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
27300.2.a.br 27300.a 1.a $3$ $217.992$ 3.3.1509.1 None \(0\) \(3\) \(0\) \(3\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
27300.2.a.bs 27300.a 1.a $3$ $217.992$ 3.3.837.1 None \(0\) \(3\) \(0\) \(3\) $-$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
27300.2.a.bt 27300.a 1.a $4$ $217.992$ 4.4.26541.1 None \(0\) \(-4\) \(0\) \(-4\) $-$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
27300.2.a.bu 27300.a 1.a $4$ $217.992$ 4.4.238581.1 None \(0\) \(-4\) \(0\) \(4\) $-$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
27300.2.a.bv 27300.a 1.a $4$ $217.992$ 4.4.238581.1 None \(0\) \(4\) \(0\) \(-4\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
27300.2.a.bw 27300.a 1.a $4$ $217.992$ 4.4.26541.1 None \(0\) \(4\) \(0\) \(4\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
27300.2.a.bx 27300.a 1.a $5$ $217.992$ 5.5.2027733.1 None \(0\) \(-5\) \(0\) \(-5\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
27300.2.a.by 27300.a 1.a $5$ $217.992$ 5.5.4169021.1 None \(0\) \(-5\) \(0\) \(5\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
27300.2.a.bz 27300.a 1.a $5$ $217.992$ 5.5.4169021.1 None \(0\) \(5\) \(0\) \(-5\) $-$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
27300.2.a.ca 27300.a 1.a $5$ $217.992$ 5.5.2027733.1 None \(0\) \(5\) \(0\) \(5\) $-$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
27300.2.a.cb 27300.a 1.a $6$ $217.992$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(-6\) \(0\) \(-6\) $-$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
27300.2.a.cc 27300.a 1.a $6$ $217.992$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(-6\) \(0\) \(6\) $-$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
27300.2.a.cd 27300.a 1.a $6$ $217.992$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(-6\) \(0\) \(6\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
27300.2.a.ce 27300.a 1.a $6$ $217.992$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(6\) \(0\) \(-6\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
27300.2.a.cf 27300.a 1.a $6$ $217.992$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(6\) \(0\) \(-6\) $-$ $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
27300.2.a.cg 27300.a 1.a $6$ $217.992$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None \(0\) \(6\) \(0\) \(6\) $-$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
27300.2.a.ch 27300.a 1.a $7$ $217.992$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(0\) \(-7\) \(0\) \(-7\) $-$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
27300.2.a.ci 27300.a 1.a $7$ $217.992$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(0\) \(-7\) \(0\) \(7\) $-$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
27300.2.a.cj 27300.a 1.a $7$ $217.992$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(0\) \(7\) \(0\) \(-7\) $-$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
27300.2.a.ck 27300.a 1.a $7$ $217.992$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None \(0\) \(7\) \(0\) \(7\) $-$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
27300.2.a.cl 27300.a 1.a $8$ $217.992$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-8\) \(0\) \(8\) $-$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
27300.2.a.cm 27300.a 1.a $8$ $217.992$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(8\) \(0\) \(-8\) $-$ $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
27300.2.a.cn 27300.a 1.a $9$ $217.992$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(-9\) \(0\) \(-9\) $-$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
27300.2.a.co 27300.a 1.a $9$ $217.992$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(-9\) \(0\) \(-9\) $-$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
27300.2.a.cp 27300.a 1.a $9$ $217.992$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(9\) \(0\) \(9\) $-$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
27300.2.a.cq 27300.a 1.a $9$ $217.992$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(0\) \(9\) \(0\) \(9\) $-$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(27300))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(27300)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(195))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(260))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(273))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(300))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(325))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(350))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(364))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(390))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(420))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(455))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(525))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(546))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(650))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(700))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(780))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(910))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(975))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1050))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1092))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1300))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1365))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1820))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1950))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2275))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2730))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3900))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4550))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5460))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6825))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(9100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(13650))\)\(^{\oplus 2}\)