Defining parameters
| Level: | \( N \) | \(=\) | \( 27300 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 27300.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 69 \) | ||
| Sturm bound: | \(13440\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(27300))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 6792 | 228 | 6564 |
| Cusp forms | 6649 | 228 | 6421 |
| Eisenstein series | 143 | 0 | 143 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | \(7\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(210\) | \(0\) | \(210\) | \(205\) | \(0\) | \(205\) | \(5\) | \(0\) | \(5\) | |||
| \(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(213\) | \(0\) | \(213\) | \(207\) | \(0\) | \(207\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(213\) | \(0\) | \(213\) | \(207\) | \(0\) | \(207\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(210\) | \(0\) | \(210\) | \(204\) | \(0\) | \(204\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(216\) | \(0\) | \(216\) | \(210\) | \(0\) | \(210\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(213\) | \(0\) | \(213\) | \(207\) | \(0\) | \(207\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(213\) | \(0\) | \(213\) | \(207\) | \(0\) | \(207\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(216\) | \(0\) | \(216\) | \(210\) | \(0\) | \(210\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(216\) | \(0\) | \(216\) | \(210\) | \(0\) | \(210\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(213\) | \(0\) | \(213\) | \(207\) | \(0\) | \(207\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(213\) | \(0\) | \(213\) | \(207\) | \(0\) | \(207\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(216\) | \(0\) | \(216\) | \(210\) | \(0\) | \(210\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(210\) | \(0\) | \(210\) | \(204\) | \(0\) | \(204\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(213\) | \(0\) | \(213\) | \(207\) | \(0\) | \(207\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(213\) | \(0\) | \(213\) | \(207\) | \(0\) | \(207\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(210\) | \(0\) | \(210\) | \(204\) | \(0\) | \(204\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(213\) | \(14\) | \(199\) | \(210\) | \(14\) | \(196\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(210\) | \(12\) | \(198\) | \(207\) | \(12\) | \(195\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(210\) | \(13\) | \(197\) | \(207\) | \(13\) | \(194\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(213\) | \(15\) | \(198\) | \(210\) | \(15\) | \(195\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(210\) | \(16\) | \(194\) | \(207\) | \(16\) | \(191\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(213\) | \(16\) | \(197\) | \(210\) | \(16\) | \(194\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(213\) | \(14\) | \(199\) | \(210\) | \(14\) | \(196\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(210\) | \(14\) | \(196\) | \(207\) | \(14\) | \(193\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(210\) | \(12\) | \(198\) | \(207\) | \(12\) | \(195\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(213\) | \(16\) | \(197\) | \(210\) | \(16\) | \(194\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(213\) | \(15\) | \(198\) | \(210\) | \(15\) | \(195\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(210\) | \(11\) | \(199\) | \(207\) | \(11\) | \(196\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(213\) | \(16\) | \(197\) | \(210\) | \(16\) | \(194\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(210\) | \(12\) | \(198\) | \(207\) | \(12\) | \(195\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(210\) | \(14\) | \(196\) | \(207\) | \(14\) | \(193\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(213\) | \(18\) | \(195\) | \(210\) | \(18\) | \(192\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(3372\) | \(104\) | \(3268\) | \(3301\) | \(104\) | \(3197\) | \(71\) | \(0\) | \(71\) | |||||||
| Minus space | \(-\) | \(3420\) | \(124\) | \(3296\) | \(3348\) | \(124\) | \(3224\) | \(72\) | \(0\) | \(72\) | |||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(27300))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | 7 | 13 | |||||||
| 27300.2.a.a | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $-$ | $+$ | $+$ | \(q-q^{3}-q^{7}+q^{9}-5q^{11}-q^{13}+4q^{17}+\cdots\) | |
| 27300.2.a.b | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $+$ | \(q-q^{3}-q^{7}+q^{9}-q^{13}-6q^{17}-4q^{19}+\cdots\) | |
| 27300.2.a.c | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $+$ | \(q-q^{3}-q^{7}+q^{9}-q^{13}-4q^{19}+q^{21}+\cdots\) | |
| 27300.2.a.d | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $+$ | \(q-q^{3}-q^{7}+q^{9}-q^{13}+3q^{17}+2q^{19}+\cdots\) | |
| 27300.2.a.e | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{3}-q^{7}+q^{9}+q^{13}-2q^{17}-8q^{19}+\cdots\) | |
| 27300.2.a.f | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | $-$ | $-$ | $+$ | \(q-q^{3}+q^{7}+q^{9}-5q^{11}-q^{13}-4q^{17}+\cdots\) | |
| 27300.2.a.g | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q-q^{3}+q^{7}+q^{9}-5q^{11}+q^{13}+4q^{19}+\cdots\) | |
| 27300.2.a.h | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q-q^{3}+q^{7}+q^{9}-4q^{11}+q^{13}-2q^{17}+\cdots\) | |
| 27300.2.a.i | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $-$ | \(q-q^{3}+q^{7}+q^{9}-4q^{11}+q^{13}+6q^{17}+\cdots\) | |
| 27300.2.a.j | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $-$ | \(q-q^{3}+q^{7}+q^{9}-4q^{11}+q^{13}+7q^{17}+\cdots\) | |
| 27300.2.a.k | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $+$ | $+$ | $-$ | $-$ | \(q-q^{3}+q^{7}+q^{9}+q^{13}+4q^{17}-8q^{19}+\cdots\) | |
| 27300.2.a.l | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{3}-q^{7}+q^{9}-6q^{11}+q^{13}+8q^{17}+\cdots\) | |
| 27300.2.a.m | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $+$ | \(q+q^{3}-q^{7}+q^{9}-5q^{11}-q^{13}+4q^{19}+\cdots\) | |
| 27300.2.a.n | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{3}-q^{7}+q^{9}-5q^{11}+q^{13}+4q^{17}+\cdots\) | |
| 27300.2.a.o | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | $+$ | \(q+q^{3}-q^{7}+q^{9}-4q^{11}-q^{13}-7q^{17}+\cdots\) | |
| 27300.2.a.p | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | $+$ | \(q+q^{3}-q^{7}+q^{9}-4q^{11}-q^{13}+2q^{17}+\cdots\) | |
| 27300.2.a.q | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{3}-q^{7}+q^{9}+q^{13}-4q^{17}-q^{21}+\cdots\) | |
| 27300.2.a.r | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{3}-q^{7}+q^{9}+4q^{11}+q^{13}-2q^{17}+\cdots\) | |
| 27300.2.a.s | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{3}-q^{7}+q^{9}+4q^{11}+q^{13}+4q^{17}+\cdots\) | |
| 27300.2.a.t | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{3}+q^{7}+q^{9}-5q^{11}+q^{13}-4q^{17}+\cdots\) | |
| 27300.2.a.u | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{3}+q^{7}+q^{9}-2q^{11}+q^{13}-4q^{17}+\cdots\) | |
| 27300.2.a.v | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $-$ | $-$ | $-$ | \(q+q^{3}+q^{7}+q^{9}+q^{13}-3q^{17}+2q^{19}+\cdots\) | |
| 27300.2.a.w | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $+$ | $-$ | $+$ | \(q+q^{3}+q^{7}+q^{9}+2q^{11}-q^{13}+4q^{17}+\cdots\) | |
| 27300.2.a.x | $1$ | $217.992$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $-$ | $+$ | $-$ | $+$ | \(q+q^{3}+q^{7}+q^{9}+4q^{11}-q^{13}-8q^{17}+\cdots\) | |
| 27300.2.a.y | $2$ | $217.992$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | $+$ | ||
| 27300.2.a.z | $2$ | $217.992$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | $-$ | ||
| 27300.2.a.ba | $2$ | $217.992$ | \(\Q(\sqrt{21}) \) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | $-$ | ||
| 27300.2.a.bb | $2$ | $217.992$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $-$ | $+$ | $-$ | $+$ | $+$ | ||
| 27300.2.a.bc | $2$ | $217.992$ | \(\Q(\sqrt{33}) \) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | $-$ | ||
| 27300.2.a.bd | $2$ | $217.992$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-2\) | \(0\) | \(2\) | $-$ | $+$ | $+$ | $-$ | $+$ | ||
| 27300.2.a.be | $2$ | $217.992$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(2\) | \(0\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
| 27300.2.a.bf | $2$ | $217.992$ | \(\Q(\sqrt{37}) \) | None | \(0\) | \(2\) | \(0\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | $-$ | ||
| 27300.2.a.bg | $2$ | $217.992$ | \(\Q(\sqrt{21}) \) | None | \(0\) | \(2\) | \(0\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
| 27300.2.a.bh | $2$ | $217.992$ | \(\Q(\sqrt{13}) \) | None | \(0\) | \(2\) | \(0\) | \(2\) | $-$ | $-$ | $+$ | $-$ | $-$ | ||
| 27300.2.a.bi | $2$ | $217.992$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(0\) | \(2\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
| 27300.2.a.bj | $3$ | $217.992$ | 3.3.1229.1 | None | \(0\) | \(-3\) | \(0\) | \(-3\) | $-$ | $+$ | $+$ | $+$ | $+$ | ||
| 27300.2.a.bk | $3$ | $217.992$ | 3.3.1373.1 | None | \(0\) | \(-3\) | \(0\) | \(3\) | $-$ | $+$ | $+$ | $-$ | $+$ | ||
| 27300.2.a.bl | $3$ | $217.992$ | 3.3.229.1 | None | \(0\) | \(-3\) | \(0\) | \(3\) | $-$ | $+$ | $+$ | $-$ | $+$ | ||
| 27300.2.a.bm | $3$ | $217.992$ | 3.3.2429.1 | None | \(0\) | \(-3\) | \(0\) | \(3\) | $-$ | $+$ | $+$ | $-$ | $-$ | ||
| 27300.2.a.bn | $3$ | $217.992$ | 3.3.1101.1 | None | \(0\) | \(-3\) | \(0\) | \(3\) | $-$ | $+$ | $+$ | $-$ | $-$ | ||
| 27300.2.a.bo | $3$ | $217.992$ | 3.3.3957.1 | None | \(0\) | \(3\) | \(0\) | \(-3\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
| 27300.2.a.bp | $3$ | $217.992$ | 3.3.5637.1 | None | \(0\) | \(3\) | \(0\) | \(-3\) | $-$ | $-$ | $+$ | $+$ | $-$ | ||
| 27300.2.a.bq | $3$ | $217.992$ | 3.3.10997.1 | None | \(0\) | \(3\) | \(0\) | \(3\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
| 27300.2.a.br | $3$ | $217.992$ | 3.3.1509.1 | None | \(0\) | \(3\) | \(0\) | \(3\) | $-$ | $-$ | $+$ | $-$ | $-$ | ||
| 27300.2.a.bs | $3$ | $217.992$ | 3.3.837.1 | None | \(0\) | \(3\) | \(0\) | \(3\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
| 27300.2.a.bt | $4$ | $217.992$ | 4.4.26541.1 | None | \(0\) | \(-4\) | \(0\) | \(-4\) | $-$ | $+$ | $-$ | $+$ | $+$ | ||
| 27300.2.a.bu | $4$ | $217.992$ | 4.4.238581.1 | None | \(0\) | \(-4\) | \(0\) | \(4\) | $-$ | $+$ | $-$ | $-$ | $-$ | ||
| 27300.2.a.bv | $4$ | $217.992$ | 4.4.238581.1 | None | \(0\) | \(4\) | \(0\) | \(-4\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
| 27300.2.a.bw | $4$ | $217.992$ | 4.4.26541.1 | None | \(0\) | \(4\) | \(0\) | \(4\) | $-$ | $-$ | $+$ | $-$ | $-$ | ||
| 27300.2.a.bx | $5$ | $217.992$ | 5.5.2027733.1 | None | \(0\) | \(-5\) | \(0\) | \(-5\) | $-$ | $+$ | $+$ | $+$ | $-$ | ||
| 27300.2.a.by | $5$ | $217.992$ | 5.5.4169021.1 | None | \(0\) | \(-5\) | \(0\) | \(5\) | $-$ | $+$ | $+$ | $-$ | $+$ | ||
| 27300.2.a.bz | $5$ | $217.992$ | 5.5.4169021.1 | None | \(0\) | \(5\) | \(0\) | \(-5\) | $-$ | $-$ | $-$ | $+$ | $-$ | ||
| 27300.2.a.ca | $5$ | $217.992$ | 5.5.2027733.1 | None | \(0\) | \(5\) | \(0\) | \(5\) | $-$ | $-$ | $-$ | $-$ | $+$ | ||
| 27300.2.a.cb | $6$ | $217.992$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(-6\) | \(0\) | \(-6\) | $-$ | $+$ | $+$ | $+$ | $+$ | ||
| 27300.2.a.cc | $6$ | $217.992$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(-6\) | \(0\) | \(6\) | $-$ | $+$ | $-$ | $-$ | $+$ | ||
| 27300.2.a.cd | $6$ | $217.992$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(-6\) | \(0\) | \(6\) | $-$ | $+$ | $+$ | $-$ | $-$ | ||
| 27300.2.a.ce | $6$ | $217.992$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(6\) | \(0\) | \(-6\) | $-$ | $-$ | $+$ | $+$ | $-$ | ||
| 27300.2.a.cf | $6$ | $217.992$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(6\) | \(0\) | \(-6\) | $-$ | $-$ | $-$ | $+$ | $+$ | ||
| 27300.2.a.cg | $6$ | $217.992$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(6\) | \(0\) | \(6\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
| 27300.2.a.ch | $7$ | $217.992$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(-7\) | \(0\) | \(-7\) | $-$ | $+$ | $-$ | $+$ | $-$ | ||
| 27300.2.a.ci | $7$ | $217.992$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(-7\) | \(0\) | \(7\) | $-$ | $+$ | $-$ | $-$ | $+$ | ||
| 27300.2.a.cj | $7$ | $217.992$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(7\) | \(0\) | \(-7\) | $-$ | $-$ | $-$ | $+$ | $-$ | ||
| 27300.2.a.ck | $7$ | $217.992$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(7\) | \(0\) | \(7\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
| 27300.2.a.cl | $8$ | $217.992$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-8\) | \(0\) | \(8\) | $-$ | $+$ | $-$ | $-$ | $-$ | ||
| 27300.2.a.cm | $8$ | $217.992$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(8\) | \(0\) | \(-8\) | $-$ | $-$ | $-$ | $+$ | $+$ | ||
| 27300.2.a.cn | $9$ | $217.992$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(-9\) | \(0\) | \(-9\) | $-$ | $+$ | $-$ | $+$ | $-$ | ||
| 27300.2.a.co | $9$ | $217.992$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(-9\) | \(0\) | \(-9\) | $-$ | $+$ | $-$ | $+$ | $+$ | ||
| 27300.2.a.cp | $9$ | $217.992$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(9\) | \(0\) | \(9\) | $-$ | $-$ | $-$ | $-$ | $+$ | ||
| 27300.2.a.cq | $9$ | $217.992$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(9\) | \(0\) | \(9\) | $-$ | $-$ | $-$ | $-$ | $-$ | ||
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(27300))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(27300)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(195))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(260))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(273))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(300))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(325))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(350))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(364))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(390))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(420))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(455))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(525))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(546))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(650))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(700))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(780))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(910))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(975))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1050))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1092))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1300))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1365))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1820))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1950))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2275))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2730))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3900))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4550))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5460))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6825))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(9100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(13650))\)\(^{\oplus 2}\)