Properties

Label 273.2.u
Level $273$
Weight $2$
Character orbit 273.u
Rep. character $\chi_{273}(62,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $68$
Newform subspaces $3$
Sturm bound $74$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.u (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 273 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(74\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(273, [\chi])\).

Total New Old
Modular forms 84 84 0
Cusp forms 68 68 0
Eisenstein series 16 16 0

Trace form

\( 68q - 36q^{4} - 9q^{7} + O(q^{10}) \) \( 68q - 36q^{4} - 9q^{7} + 18q^{15} - 40q^{16} + 24q^{22} - 60q^{25} - 6q^{28} + 20q^{30} + 38q^{36} - 12q^{37} - 36q^{39} + 22q^{43} - 84q^{46} - 3q^{49} + 52q^{51} - 48q^{58} - 63q^{63} + 144q^{64} + 18q^{67} - 66q^{72} + 166q^{78} - 52q^{79} - 48q^{81} + 66q^{84} + 132q^{85} - 15q^{91} - 120q^{93} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(273, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
273.2.u.a \(2\) \(2.180\) \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) \(0\) \(-3\) \(0\) \(-4\) \(q+(-1-\zeta_{6})q^{3}+2\zeta_{6}q^{4}+(-3+2\zeta_{6})q^{7}+\cdots\)
273.2.u.b \(2\) \(2.180\) \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) \(0\) \(3\) \(0\) \(-5\) \(q+(1+\zeta_{6})q^{3}+2\zeta_{6}q^{4}+(-3+\zeta_{6})q^{7}+\cdots\)
273.2.u.c \(64\) \(2.180\) None \(0\) \(0\) \(0\) \(0\)