Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [273,2,Mod(68,273)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(273, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 5, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("273.68");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 273 = 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 273.r (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.17991597518\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
68.1 | − | 2.73146i | −1.52761 | + | 0.816332i | −5.46085 | 0.121221 | − | 0.209960i | 2.22977 | + | 4.17261i | −2.13335 | + | 1.56488i | 9.45317i | 1.66721 | − | 2.49408i | −0.573498 | − | 0.331109i | |||||
68.2 | − | 2.60090i | 0.206727 | − | 1.71967i | −4.76468 | 1.54658 | − | 2.67876i | −4.47269 | − | 0.537676i | 1.09877 | + | 2.40680i | 7.19066i | −2.91453 | − | 0.711004i | −6.96719 | − | 4.02251i | |||||
68.3 | − | 2.39671i | 1.60287 | + | 0.656371i | −3.74420 | 1.10064 | − | 1.90637i | 1.57313 | − | 3.84160i | −1.62460 | − | 2.08822i | 4.18035i | 2.13835 | + | 2.10415i | −4.56901 | − | 2.63792i | |||||
68.4 | − | 2.39579i | 0.452516 | + | 1.67189i | −3.73983 | −1.50632 | + | 2.60901i | 4.00551 | − | 1.08414i | 2.64172 | − | 0.145950i | 4.16828i | −2.59046 | + | 1.51312i | 6.25066 | + | 3.60882i | |||||
68.5 | − | 1.97104i | 1.69142 | − | 0.372976i | −1.88498 | −0.272603 | + | 0.472162i | −0.735148 | − | 3.33384i | 2.35644 | + | 1.20299i | − | 0.226699i | 2.72178 | − | 1.26171i | 0.930648 | + | 0.537310i | ||||
68.6 | − | 1.92371i | −1.08390 | − | 1.35099i | −1.70067 | −1.94643 | + | 3.37132i | −2.59891 | + | 2.08510i | −0.630216 | + | 2.56960i | − | 0.575834i | −0.650341 | + | 2.92866i | 6.48544 | + | 3.74437i | ||||
68.7 | − | 1.85355i | −1.03215 | + | 1.39092i | −1.43566 | −0.852778 | + | 1.47706i | 2.57815 | + | 1.91315i | −1.51863 | − | 2.16651i | − | 1.04604i | −0.869331 | − | 2.87128i | 2.73780 | + | 1.58067i | ||||
68.8 | − | 1.85049i | −1.73048 | + | 0.0736936i | −1.42433 | 1.21731 | − | 2.10844i | 0.136370 | + | 3.20225i | 2.52177 | − | 0.800422i | − | 1.06527i | 2.98914 | − | 0.255051i | −3.90166 | − | 2.25263i | ||||
68.9 | − | 1.53974i | −1.04458 | − | 1.38161i | −0.370785 | 0.956175 | − | 1.65614i | −2.12732 | + | 1.60838i | −2.63109 | − | 0.278191i | − | 2.50856i | −0.817709 | + | 2.88641i | −2.55002 | − | 1.47226i | ||||
68.10 | − | 1.40538i | −0.386542 | + | 1.68837i | 0.0248937 | 1.48377 | − | 2.56997i | 2.37281 | + | 0.543240i | 0.0176221 | + | 2.64569i | − | 2.84575i | −2.70117 | − | 1.30525i | −3.61180 | − | 2.08527i | ||||
68.11 | − | 1.05456i | 1.46610 | − | 0.922247i | 0.887893 | −0.000964697 | 0.00167090i | −0.972570 | − | 1.54610i | −2.64511 | + | 0.0584461i | − | 3.04547i | 1.29892 | − | 2.70422i | 0.00176208 | + | 0.00101734i | |||||
68.12 | − | 0.883413i | 1.41202 | + | 1.00309i | 1.21958 | −1.72131 | + | 2.98140i | 0.886146 | − | 1.24740i | −2.26618 | + | 1.36544i | − | 2.84422i | 0.987606 | + | 2.83278i | 2.63381 | + | 1.52063i | ||||
68.13 | − | 0.843135i | 0.346738 | − | 1.69699i | 1.28912 | −1.06280 | + | 1.84082i | −1.43079 | − | 0.292347i | 2.34470 | − | 1.22572i | − | 2.77318i | −2.75955 | − | 1.17682i | 1.55206 | + | 0.896082i | ||||
68.14 | − | 0.771110i | 0.714765 | + | 1.57769i | 1.40539 | 0.907647 | − | 1.57209i | 1.21657 | − | 0.551162i | 0.574285 | − | 2.58267i | − | 2.62593i | −1.97822 | + | 2.25536i | −1.21225 | − | 0.699896i | ||||
68.15 | − | 0.546208i | −1.72803 | + | 0.117898i | 1.70166 | −1.25657 | + | 2.17644i | 0.0643970 | + | 0.943866i | −0.612705 | − | 2.57383i | − | 2.02188i | 2.97220 | − | 0.407464i | 1.18879 | + | 0.686349i | ||||
68.16 | − | 0.0504397i | −1.05075 | + | 1.37693i | 1.99746 | −1.19579 | + | 2.07117i | 0.0694519 | + | 0.0529993i | 0.00656452 | + | 2.64574i | − | 0.201631i | −0.791866 | − | 2.89360i | 0.104469 | + | 0.0603154i | ||||
68.17 | 0.0504397i | 0.667082 | − | 1.59844i | 1.99746 | 1.19579 | − | 2.07117i | 0.0806247 | + | 0.0336474i | 0.00656452 | + | 2.64574i | 0.201631i | −2.11000 | − | 2.13258i | 0.104469 | + | 0.0603154i | ||||||
68.18 | 0.546208i | −0.761914 | − | 1.55547i | 1.70166 | 1.25657 | − | 2.17644i | 0.849611 | − | 0.416164i | −0.612705 | − | 2.57383i | 2.02188i | −1.83897 | + | 2.37027i | 1.18879 | + | 0.686349i | ||||||
68.19 | 0.771110i | 1.72370 | − | 0.169842i | 1.40539 | −0.907647 | + | 1.57209i | 0.130967 | + | 1.32917i | 0.574285 | − | 2.58267i | 2.62593i | 2.94231 | − | 0.585513i | −1.21225 | − | 0.699896i | ||||||
68.20 | 0.843135i | −1.29627 | + | 1.14878i | 1.28912 | 1.06280 | − | 1.84082i | −0.968576 | − | 1.09293i | 2.34470 | − | 1.22572i | 2.77318i | 0.360617 | − | 2.97825i | 1.55206 | + | 0.896082i | ||||||
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
91.v | odd | 6 | 1 | inner |
273.r | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 273.2.r.b | ✓ | 64 |
3.b | odd | 2 | 1 | inner | 273.2.r.b | ✓ | 64 |
7.d | odd | 6 | 1 | 273.2.bf.b | yes | 64 | |
13.c | even | 3 | 1 | 273.2.bf.b | yes | 64 | |
21.g | even | 6 | 1 | 273.2.bf.b | yes | 64 | |
39.i | odd | 6 | 1 | 273.2.bf.b | yes | 64 | |
91.v | odd | 6 | 1 | inner | 273.2.r.b | ✓ | 64 |
273.r | even | 6 | 1 | inner | 273.2.r.b | ✓ | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
273.2.r.b | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
273.2.r.b | ✓ | 64 | 3.b | odd | 2 | 1 | inner |
273.2.r.b | ✓ | 64 | 91.v | odd | 6 | 1 | inner |
273.2.r.b | ✓ | 64 | 273.r | even | 6 | 1 | inner |
273.2.bf.b | yes | 64 | 7.d | odd | 6 | 1 | |
273.2.bf.b | yes | 64 | 13.c | even | 3 | 1 | |
273.2.bf.b | yes | 64 | 21.g | even | 6 | 1 | |
273.2.bf.b | yes | 64 | 39.i | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{32} + 48 T_{2}^{30} + 1036 T_{2}^{28} + 13303 T_{2}^{26} + 113325 T_{2}^{24} + 676187 T_{2}^{22} + 2908599 T_{2}^{20} + 9145849 T_{2}^{18} + 21096866 T_{2}^{16} + 35519813 T_{2}^{14} + 43068692 T_{2}^{12} + \cdots + 367 \)
acting on \(S_{2}^{\mathrm{new}}(273, [\chi])\).