Properties

Label 273.2.l.c.256.8
Level $273$
Weight $2$
Character 273.256
Analytic conductor $2.180$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [273,2,Mod(16,273)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("273.16"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(273, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.l (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 18 x^{18} - 4 x^{17} + 211 x^{16} - 59 x^{15} + 1458 x^{14} - 526 x^{13} + 7324 x^{12} + \cdots + 1369 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 256.8
Root \(0.904928 - 1.56738i\) of defining polynomial
Character \(\chi\) \(=\) 273.256
Dual form 273.2.l.c.16.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.80986 q^{2} +(-0.500000 - 0.866025i) q^{3} +1.27558 q^{4} +(1.98776 + 3.44291i) q^{5} +(-0.904928 - 1.56738i) q^{6} +(1.70815 - 2.02045i) q^{7} -1.31110 q^{8} +(-0.500000 + 0.866025i) q^{9} +(3.59756 + 6.23116i) q^{10} +(0.143327 + 0.248250i) q^{11} +(-0.637789 - 1.10468i) q^{12} +(3.60075 - 0.185985i) q^{13} +(3.09151 - 3.65672i) q^{14} +(1.98776 - 3.44291i) q^{15} -4.92406 q^{16} -4.60182 q^{17} +(-0.904928 + 1.56738i) q^{18} +(3.48374 - 6.03402i) q^{19} +(2.53555 + 4.39170i) q^{20} +(-2.60384 - 0.469078i) q^{21} +(0.259402 + 0.449297i) q^{22} -7.23857 q^{23} +(0.655549 + 1.13544i) q^{24} +(-5.40240 + 9.35723i) q^{25} +(6.51684 - 0.336606i) q^{26} +1.00000 q^{27} +(2.17888 - 2.57724i) q^{28} +(0.421754 - 0.730500i) q^{29} +(3.59756 - 6.23116i) q^{30} +(-0.212854 + 0.368675i) q^{31} -6.28963 q^{32} +(0.143327 - 0.248250i) q^{33} -8.32864 q^{34} +(10.3516 + 1.86483i) q^{35} +(-0.637789 + 1.10468i) q^{36} -4.36416 q^{37} +(6.30507 - 10.9207i) q^{38} +(-1.96144 - 3.02535i) q^{39} +(-2.60615 - 4.51399i) q^{40} +(-0.509885 + 0.883147i) q^{41} +(-4.71257 - 0.848963i) q^{42} +(0.585291 + 1.01375i) q^{43} +(0.182825 + 0.316662i) q^{44} -3.97552 q^{45} -13.1008 q^{46} +(2.71264 + 4.69843i) q^{47} +(2.46203 + 4.26436i) q^{48} +(-1.16444 - 6.90247i) q^{49} +(-9.77756 + 16.9352i) q^{50} +(2.30091 + 3.98530i) q^{51} +(4.59304 - 0.237238i) q^{52} +(-0.574226 + 0.994589i) q^{53} +1.80986 q^{54} +(-0.569801 + 0.986924i) q^{55} +(-2.23956 + 2.64901i) q^{56} -6.96749 q^{57} +(0.763315 - 1.32210i) q^{58} -4.85854 q^{59} +(2.53555 - 4.39170i) q^{60} +(-4.08424 + 7.07411i) q^{61} +(-0.385236 + 0.667248i) q^{62} +(0.895685 + 2.48953i) q^{63} -1.53522 q^{64} +(7.79777 + 12.0274i) q^{65} +(0.259402 - 0.449297i) q^{66} +(-0.786937 - 1.36302i) q^{67} -5.86999 q^{68} +(3.61929 + 6.26879i) q^{69} +(18.7349 + 3.37507i) q^{70} +(-3.22369 - 5.58359i) q^{71} +(0.655549 - 1.13544i) q^{72} +(8.24845 - 14.2867i) q^{73} -7.89851 q^{74} +10.8048 q^{75} +(4.44379 - 7.69686i) q^{76} +(0.746401 + 0.134463i) q^{77} +(-3.54993 - 5.47545i) q^{78} +(-3.84412 - 6.65821i) q^{79} +(-9.78785 - 16.9531i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-0.922819 + 1.59837i) q^{82} +13.3888 q^{83} +(-3.32140 - 0.598345i) q^{84} +(-9.14733 - 15.8436i) q^{85} +(1.05929 + 1.83475i) q^{86} -0.843509 q^{87} +(-0.187916 - 0.325480i) q^{88} -2.21571 q^{89} -7.19513 q^{90} +(5.77486 - 7.59283i) q^{91} -9.23336 q^{92} +0.425709 q^{93} +(4.90949 + 8.50349i) q^{94} +27.6994 q^{95} +(3.14482 + 5.44698i) q^{96} +(9.52241 + 16.4933i) q^{97} +(-2.10746 - 12.4925i) q^{98} -0.286654 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 10 q^{3} + 32 q^{4} + 3 q^{7} - 12 q^{8} - 10 q^{9} - 4 q^{10} - 8 q^{11} - 16 q^{12} - 5 q^{13} - 9 q^{14} + 40 q^{16} + 7 q^{19} + 12 q^{20} - 9 q^{21} - 9 q^{22} + 28 q^{23} + 6 q^{24} - 32 q^{25}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.80986 1.27976 0.639881 0.768474i \(-0.278984\pi\)
0.639881 + 0.768474i \(0.278984\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 1.27558 0.637789
\(5\) 1.98776 + 3.44291i 0.888954 + 1.53971i 0.841113 + 0.540859i \(0.181901\pi\)
0.0478412 + 0.998855i \(0.484766\pi\)
\(6\) −0.904928 1.56738i −0.369435 0.639881i
\(7\) 1.70815 2.02045i 0.645621 0.763658i
\(8\) −1.31110 −0.463543
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 3.59756 + 6.23116i 1.13765 + 1.97047i
\(11\) 0.143327 + 0.248250i 0.0432148 + 0.0748502i 0.886824 0.462108i \(-0.152907\pi\)
−0.843609 + 0.536958i \(0.819573\pi\)
\(12\) −0.637789 1.10468i −0.184114 0.318895i
\(13\) 3.60075 0.185985i 0.998669 0.0515830i
\(14\) 3.09151 3.65672i 0.826240 0.977300i
\(15\) 1.98776 3.44291i 0.513238 0.888954i
\(16\) −4.92406 −1.23101
\(17\) −4.60182 −1.11611 −0.558053 0.829805i \(-0.688452\pi\)
−0.558053 + 0.829805i \(0.688452\pi\)
\(18\) −0.904928 + 1.56738i −0.213294 + 0.369435i
\(19\) 3.48374 6.03402i 0.799225 1.38430i −0.120896 0.992665i \(-0.538577\pi\)
0.920121 0.391634i \(-0.128090\pi\)
\(20\) 2.53555 + 4.39170i 0.566965 + 0.982013i
\(21\) −2.60384 0.469078i −0.568204 0.102361i
\(22\) 0.259402 + 0.449297i 0.0553046 + 0.0957904i
\(23\) −7.23857 −1.50935 −0.754673 0.656101i \(-0.772205\pi\)
−0.754673 + 0.656101i \(0.772205\pi\)
\(24\) 0.655549 + 1.13544i 0.133813 + 0.231772i
\(25\) −5.40240 + 9.35723i −1.08048 + 1.87145i
\(26\) 6.51684 0.336606i 1.27806 0.0660139i
\(27\) 1.00000 0.192450
\(28\) 2.17888 2.57724i 0.411770 0.487053i
\(29\) 0.421754 0.730500i 0.0783178 0.135650i −0.824206 0.566289i \(-0.808378\pi\)
0.902524 + 0.430639i \(0.141712\pi\)
\(30\) 3.59756 6.23116i 0.656822 1.13765i
\(31\) −0.212854 + 0.368675i −0.0382298 + 0.0662159i −0.884507 0.466527i \(-0.845505\pi\)
0.846277 + 0.532742i \(0.178839\pi\)
\(32\) −6.28963 −1.11186
\(33\) 0.143327 0.248250i 0.0249501 0.0432148i
\(34\) −8.32864 −1.42835
\(35\) 10.3516 + 1.86483i 1.74974 + 0.315214i
\(36\) −0.637789 + 1.10468i −0.106298 + 0.184114i
\(37\) −4.36416 −0.717464 −0.358732 0.933441i \(-0.616791\pi\)
−0.358732 + 0.933441i \(0.616791\pi\)
\(38\) 6.30507 10.9207i 1.02282 1.77157i
\(39\) −1.96144 3.02535i −0.314082 0.484444i
\(40\) −2.60615 4.51399i −0.412069 0.713724i
\(41\) −0.509885 + 0.883147i −0.0796307 + 0.137924i −0.903091 0.429450i \(-0.858707\pi\)
0.823460 + 0.567374i \(0.192041\pi\)
\(42\) −4.71257 0.848963i −0.727165 0.130998i
\(43\) 0.585291 + 1.01375i 0.0892560 + 0.154596i 0.907197 0.420706i \(-0.138218\pi\)
−0.817941 + 0.575302i \(0.804884\pi\)
\(44\) 0.182825 + 0.316662i 0.0275619 + 0.0477386i
\(45\) −3.97552 −0.592636
\(46\) −13.1008 −1.93160
\(47\) 2.71264 + 4.69843i 0.395680 + 0.685337i 0.993188 0.116526i \(-0.0371758\pi\)
−0.597508 + 0.801863i \(0.703842\pi\)
\(48\) 2.46203 + 4.26436i 0.355363 + 0.615507i
\(49\) −1.16444 6.90247i −0.166348 0.986067i
\(50\) −9.77756 + 16.9352i −1.38276 + 2.39500i
\(51\) 2.30091 + 3.98530i 0.322192 + 0.558053i
\(52\) 4.59304 0.237238i 0.636940 0.0328991i
\(53\) −0.574226 + 0.994589i −0.0788760 + 0.136617i −0.902765 0.430134i \(-0.858466\pi\)
0.823889 + 0.566751i \(0.191800\pi\)
\(54\) 1.80986 0.246290
\(55\) −0.569801 + 0.986924i −0.0768319 + 0.133077i
\(56\) −2.23956 + 2.64901i −0.299273 + 0.353989i
\(57\) −6.96749 −0.922866
\(58\) 0.763315 1.32210i 0.100228 0.173600i
\(59\) −4.85854 −0.632528 −0.316264 0.948671i \(-0.602429\pi\)
−0.316264 + 0.948671i \(0.602429\pi\)
\(60\) 2.53555 4.39170i 0.327338 0.566965i
\(61\) −4.08424 + 7.07411i −0.522933 + 0.905747i 0.476710 + 0.879060i \(0.341829\pi\)
−0.999644 + 0.0266869i \(0.991504\pi\)
\(62\) −0.385236 + 0.667248i −0.0489250 + 0.0847406i
\(63\) 0.895685 + 2.48953i 0.112846 + 0.313651i
\(64\) −1.53522 −0.191902
\(65\) 7.79777 + 12.0274i 0.967194 + 1.49181i
\(66\) 0.259402 0.449297i 0.0319301 0.0553046i
\(67\) −0.786937 1.36302i −0.0961397 0.166519i 0.813944 0.580943i \(-0.197316\pi\)
−0.910084 + 0.414425i \(0.863983\pi\)
\(68\) −5.86999 −0.711841
\(69\) 3.61929 + 6.26879i 0.435711 + 0.754673i
\(70\) 18.7349 + 3.37507i 2.23925 + 0.403399i
\(71\) −3.22369 5.58359i −0.382581 0.662650i 0.608849 0.793286i \(-0.291631\pi\)
−0.991430 + 0.130636i \(0.958298\pi\)
\(72\) 0.655549 1.13544i 0.0772572 0.133813i
\(73\) 8.24845 14.2867i 0.965408 1.67214i 0.256893 0.966440i \(-0.417301\pi\)
0.708515 0.705696i \(-0.249365\pi\)
\(74\) −7.89851 −0.918183
\(75\) 10.8048 1.24763
\(76\) 4.44379 7.69686i 0.509737 0.882891i
\(77\) 0.746401 + 0.134463i 0.0850603 + 0.0153235i
\(78\) −3.54993 5.47545i −0.401950 0.619972i
\(79\) −3.84412 6.65821i −0.432497 0.749107i 0.564590 0.825371i \(-0.309034\pi\)
−0.997088 + 0.0762639i \(0.975701\pi\)
\(80\) −9.78785 16.9531i −1.09432 1.89541i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −0.922819 + 1.59837i −0.101908 + 0.176510i
\(83\) 13.3888 1.46961 0.734805 0.678279i \(-0.237274\pi\)
0.734805 + 0.678279i \(0.237274\pi\)
\(84\) −3.32140 0.598345i −0.362394 0.0652848i
\(85\) −9.14733 15.8436i −0.992168 1.71848i
\(86\) 1.05929 + 1.83475i 0.114226 + 0.197846i
\(87\) −0.843509 −0.0904336
\(88\) −0.187916 0.325480i −0.0200319 0.0346963i
\(89\) −2.21571 −0.234865 −0.117433 0.993081i \(-0.537466\pi\)
−0.117433 + 0.993081i \(0.537466\pi\)
\(90\) −7.19513 −0.758433
\(91\) 5.77486 7.59283i 0.605369 0.795945i
\(92\) −9.23336 −0.962645
\(93\) 0.425709 0.0441439
\(94\) 4.90949 + 8.50349i 0.506375 + 0.877068i
\(95\) 27.6994 2.84190
\(96\) 3.14482 + 5.44698i 0.320967 + 0.555930i
\(97\) 9.52241 + 16.4933i 0.966854 + 1.67464i 0.704549 + 0.709656i \(0.251150\pi\)
0.262306 + 0.964985i \(0.415517\pi\)
\(98\) −2.10746 12.4925i −0.212886 1.26193i
\(99\) −0.286654 −0.0288098
\(100\) −6.89118 + 11.9359i −0.689118 + 1.19359i
\(101\) 4.54427 + 7.87091i 0.452172 + 0.783185i 0.998521 0.0543727i \(-0.0173159\pi\)
−0.546348 + 0.837558i \(0.683983\pi\)
\(102\) 4.16432 + 7.21281i 0.412329 + 0.714175i
\(103\) 2.34421 + 4.06029i 0.230982 + 0.400072i 0.958097 0.286443i \(-0.0924729\pi\)
−0.727116 + 0.686515i \(0.759140\pi\)
\(104\) −4.72094 + 0.243845i −0.462926 + 0.0239109i
\(105\) −3.56082 9.89718i −0.347500 0.965866i
\(106\) −1.03927 + 1.80006i −0.100943 + 0.174838i
\(107\) 14.5056 1.40231 0.701154 0.713010i \(-0.252669\pi\)
0.701154 + 0.713010i \(0.252669\pi\)
\(108\) 1.27558 0.122743
\(109\) 2.09694 3.63200i 0.200850 0.347883i −0.747952 0.663752i \(-0.768963\pi\)
0.948803 + 0.315870i \(0.102296\pi\)
\(110\) −1.03126 + 1.78619i −0.0983265 + 0.170307i
\(111\) 2.18208 + 3.77948i 0.207114 + 0.358732i
\(112\) −8.41104 + 9.94881i −0.794768 + 0.940074i
\(113\) 4.12305 + 7.14133i 0.387864 + 0.671800i 0.992162 0.124958i \(-0.0398797\pi\)
−0.604298 + 0.796758i \(0.706546\pi\)
\(114\) −12.6101 −1.18105
\(115\) −14.3886 24.9217i −1.34174 2.32396i
\(116\) 0.537981 0.931810i 0.0499503 0.0865164i
\(117\) −1.63931 + 3.21133i −0.151554 + 0.296888i
\(118\) −8.79326 −0.809485
\(119\) −7.86061 + 9.29776i −0.720581 + 0.852324i
\(120\) −2.60615 + 4.51399i −0.237908 + 0.412069i
\(121\) 5.45891 9.45512i 0.496265 0.859556i
\(122\) −7.39189 + 12.8031i −0.669230 + 1.15914i
\(123\) 1.01977 0.0919496
\(124\) −0.271512 + 0.470273i −0.0243825 + 0.0422318i
\(125\) −23.0771 −2.06408
\(126\) 1.62106 + 4.50569i 0.144416 + 0.401398i
\(127\) −3.92173 + 6.79263i −0.347997 + 0.602748i −0.985894 0.167374i \(-0.946471\pi\)
0.637897 + 0.770122i \(0.279805\pi\)
\(128\) 9.80074 0.866272
\(129\) 0.585291 1.01375i 0.0515320 0.0892560i
\(130\) 14.1128 + 21.7678i 1.23778 + 1.90916i
\(131\) −4.04277 7.00228i −0.353218 0.611792i 0.633593 0.773666i \(-0.281579\pi\)
−0.986811 + 0.161874i \(0.948246\pi\)
\(132\) 0.182825 0.316662i 0.0159129 0.0275619i
\(133\) −6.24067 17.3457i −0.541135 1.50407i
\(134\) −1.42424 2.46686i −0.123036 0.213104i
\(135\) 1.98776 + 3.44291i 0.171079 + 0.296318i
\(136\) 6.03345 0.517364
\(137\) 1.50968 0.128981 0.0644904 0.997918i \(-0.479458\pi\)
0.0644904 + 0.997918i \(0.479458\pi\)
\(138\) 6.55039 + 11.3456i 0.557606 + 0.965802i
\(139\) 2.02132 + 3.50104i 0.171446 + 0.296954i 0.938926 0.344120i \(-0.111823\pi\)
−0.767479 + 0.641074i \(0.778489\pi\)
\(140\) 13.2043 + 2.37874i 1.11597 + 0.201040i
\(141\) 2.71264 4.69843i 0.228446 0.395680i
\(142\) −5.83441 10.1055i −0.489613 0.848034i
\(143\) 0.562256 + 0.867230i 0.0470182 + 0.0725214i
\(144\) 2.46203 4.26436i 0.205169 0.355363i
\(145\) 3.35339 0.278484
\(146\) 14.9285 25.8569i 1.23549 2.13993i
\(147\) −5.39550 + 4.45967i −0.445013 + 0.367827i
\(148\) −5.56683 −0.457591
\(149\) 9.59737 16.6231i 0.786247 1.36182i −0.142004 0.989866i \(-0.545355\pi\)
0.928251 0.371954i \(-0.121312\pi\)
\(150\) 19.5551 1.59667
\(151\) −9.47334 + 16.4083i −0.770929 + 1.33529i 0.166125 + 0.986105i \(0.446874\pi\)
−0.937054 + 0.349184i \(0.886459\pi\)
\(152\) −4.56753 + 7.91120i −0.370476 + 0.641683i
\(153\) 2.30091 3.98530i 0.186018 0.322192i
\(154\) 1.35088 + 0.243359i 0.108857 + 0.0196104i
\(155\) −1.69242 −0.135938
\(156\) −2.50197 3.85907i −0.200318 0.308973i
\(157\) −9.31770 + 16.1387i −0.743633 + 1.28801i 0.207197 + 0.978299i \(0.433566\pi\)
−0.950831 + 0.309711i \(0.899768\pi\)
\(158\) −6.95730 12.0504i −0.553493 0.958679i
\(159\) 1.14845 0.0910782
\(160\) −12.5023 21.6546i −0.988394 1.71195i
\(161\) −12.3646 + 14.6252i −0.974465 + 1.15262i
\(162\) −0.904928 1.56738i −0.0710979 0.123145i
\(163\) −5.35262 + 9.27102i −0.419250 + 0.726162i −0.995864 0.0908544i \(-0.971040\pi\)
0.576614 + 0.817016i \(0.304374\pi\)
\(164\) −0.650398 + 1.12652i −0.0507876 + 0.0879667i
\(165\) 1.13960 0.0887179
\(166\) 24.2318 1.88075
\(167\) 0.0240620 0.0416766i 0.00186197 0.00322503i −0.865093 0.501612i \(-0.832741\pi\)
0.866955 + 0.498387i \(0.166074\pi\)
\(168\) 3.41389 + 0.615007i 0.263387 + 0.0474489i
\(169\) 12.9308 1.33937i 0.994678 0.103029i
\(170\) −16.5554 28.6747i −1.26974 2.19925i
\(171\) 3.48374 + 6.03402i 0.266408 + 0.461433i
\(172\) 0.746584 + 1.29312i 0.0569265 + 0.0985996i
\(173\) 7.01486 12.1501i 0.533330 0.923755i −0.465912 0.884831i \(-0.654274\pi\)
0.999242 0.0389240i \(-0.0123930\pi\)
\(174\) −1.52663 −0.115733
\(175\) 9.67770 + 26.8988i 0.731565 + 2.03336i
\(176\) −0.705751 1.22240i −0.0531980 0.0921416i
\(177\) 2.42927 + 4.20762i 0.182595 + 0.316264i
\(178\) −4.01012 −0.300571
\(179\) −2.34931 4.06913i −0.175596 0.304141i 0.764771 0.644302i \(-0.222852\pi\)
−0.940367 + 0.340161i \(0.889519\pi\)
\(180\) −5.07109 −0.377977
\(181\) −22.0382 −1.63809 −0.819044 0.573730i \(-0.805496\pi\)
−0.819044 + 0.573730i \(0.805496\pi\)
\(182\) 10.4517 13.7419i 0.774728 1.01862i
\(183\) 8.16848 0.603832
\(184\) 9.49048 0.699648
\(185\) −8.67492 15.0254i −0.637793 1.10469i
\(186\) 0.770472 0.0564937
\(187\) −0.659567 1.14240i −0.0482323 0.0835408i
\(188\) 3.46019 + 5.99322i 0.252360 + 0.437101i
\(189\) 1.70815 2.02045i 0.124250 0.146966i
\(190\) 50.1319 3.63695
\(191\) −5.54871 + 9.61065i −0.401491 + 0.695402i −0.993906 0.110230i \(-0.964841\pi\)
0.592415 + 0.805633i \(0.298174\pi\)
\(192\) 0.767610 + 1.32954i 0.0553975 + 0.0959512i
\(193\) 0.243115 + 0.421088i 0.0174998 + 0.0303106i 0.874643 0.484768i \(-0.161096\pi\)
−0.857143 + 0.515079i \(0.827763\pi\)
\(194\) 17.2342 + 29.8505i 1.23734 + 2.14314i
\(195\) 6.51711 12.7667i 0.466700 0.914245i
\(196\) −1.48533 8.80464i −0.106095 0.628903i
\(197\) −8.53814 + 14.7885i −0.608317 + 1.05364i 0.383200 + 0.923665i \(0.374822\pi\)
−0.991518 + 0.129971i \(0.958511\pi\)
\(198\) −0.518803 −0.0368697
\(199\) 23.1698 1.64246 0.821230 0.570597i \(-0.193288\pi\)
0.821230 + 0.570597i \(0.193288\pi\)
\(200\) 7.08308 12.2683i 0.500849 0.867497i
\(201\) −0.786937 + 1.36302i −0.0555063 + 0.0961397i
\(202\) 8.22448 + 14.2452i 0.578673 + 1.00229i
\(203\) −0.755518 2.09994i −0.0530270 0.147387i
\(204\) 2.93499 + 5.08356i 0.205491 + 0.355920i
\(205\) −4.05412 −0.283152
\(206\) 4.24268 + 7.34853i 0.295601 + 0.511997i
\(207\) 3.61929 6.26879i 0.251558 0.435711i
\(208\) −17.7303 + 0.915801i −1.22938 + 0.0634994i
\(209\) 1.99726 0.138153
\(210\) −6.44457 17.9125i −0.444717 1.23608i
\(211\) 1.40788 2.43852i 0.0969224 0.167874i −0.813487 0.581583i \(-0.802433\pi\)
0.910409 + 0.413709i \(0.135767\pi\)
\(212\) −0.732470 + 1.26868i −0.0503063 + 0.0871330i
\(213\) −3.22369 + 5.58359i −0.220883 + 0.382581i
\(214\) 26.2530 1.79462
\(215\) −2.32684 + 4.03020i −0.158689 + 0.274857i
\(216\) −1.31110 −0.0892090
\(217\) 0.381301 + 1.05981i 0.0258844 + 0.0719449i
\(218\) 3.79515 6.57340i 0.257040 0.445207i
\(219\) −16.4969 −1.11476
\(220\) −0.726825 + 1.25890i −0.0490026 + 0.0848749i
\(221\) −16.5700 + 0.855871i −1.11462 + 0.0575721i
\(222\) 3.94925 + 6.84031i 0.265057 + 0.459092i
\(223\) −8.16232 + 14.1375i −0.546589 + 0.946720i 0.451916 + 0.892061i \(0.350741\pi\)
−0.998505 + 0.0546597i \(0.982593\pi\)
\(224\) −10.7437 + 12.7079i −0.717840 + 0.849082i
\(225\) −5.40240 9.35723i −0.360160 0.623815i
\(226\) 7.46213 + 12.9248i 0.496373 + 0.859744i
\(227\) −6.20577 −0.411892 −0.205946 0.978563i \(-0.566027\pi\)
−0.205946 + 0.978563i \(0.566027\pi\)
\(228\) −8.88757 −0.588594
\(229\) 0.261463 + 0.452867i 0.0172779 + 0.0299263i 0.874535 0.484962i \(-0.161167\pi\)
−0.857257 + 0.514889i \(0.827833\pi\)
\(230\) −26.0412 45.1047i −1.71711 2.97412i
\(231\) −0.256752 0.713634i −0.0168930 0.0469537i
\(232\) −0.552962 + 0.957758i −0.0363037 + 0.0628799i
\(233\) −6.48273 11.2284i −0.424697 0.735598i 0.571695 0.820466i \(-0.306286\pi\)
−0.996392 + 0.0848689i \(0.972953\pi\)
\(234\) −2.96691 + 5.81205i −0.193953 + 0.379946i
\(235\) −10.7842 + 18.6787i −0.703482 + 1.21847i
\(236\) −6.19745 −0.403419
\(237\) −3.84412 + 6.65821i −0.249702 + 0.432497i
\(238\) −14.2266 + 16.8276i −0.922172 + 1.09077i
\(239\) −4.79605 −0.310231 −0.155116 0.987896i \(-0.549575\pi\)
−0.155116 + 0.987896i \(0.549575\pi\)
\(240\) −9.78785 + 16.9531i −0.631803 + 1.09432i
\(241\) 10.4195 0.671179 0.335589 0.942008i \(-0.391065\pi\)
0.335589 + 0.942008i \(0.391065\pi\)
\(242\) 9.87985 17.1124i 0.635101 1.10003i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) −5.20977 + 9.02358i −0.333521 + 0.577676i
\(245\) 21.4499 17.7295i 1.37039 1.13270i
\(246\) 1.84564 0.117674
\(247\) 11.4219 22.3749i 0.726755 1.42368i
\(248\) 0.279073 0.483369i 0.0177212 0.0306940i
\(249\) −6.69439 11.5950i −0.424240 0.734805i
\(250\) −41.7663 −2.64153
\(251\) −5.10645 8.84463i −0.322316 0.558268i 0.658649 0.752450i \(-0.271128\pi\)
−0.980966 + 0.194182i \(0.937795\pi\)
\(252\) 1.14252 + 3.17559i 0.0719718 + 0.200043i
\(253\) −1.03748 1.79698i −0.0652261 0.112975i
\(254\) −7.09776 + 12.2937i −0.445353 + 0.771374i
\(255\) −9.14733 + 15.8436i −0.572828 + 0.992168i
\(256\) 20.8084 1.30052
\(257\) −6.36280 −0.396901 −0.198450 0.980111i \(-0.563591\pi\)
−0.198450 + 0.980111i \(0.563591\pi\)
\(258\) 1.05929 1.83475i 0.0659486 0.114226i
\(259\) −7.45466 + 8.81758i −0.463210 + 0.547898i
\(260\) 9.94666 + 15.3418i 0.616866 + 0.951460i
\(261\) 0.421754 + 0.730500i 0.0261059 + 0.0452168i
\(262\) −7.31683 12.6731i −0.452035 0.782948i
\(263\) 8.50677 + 14.7342i 0.524550 + 0.908547i 0.999591 + 0.0285838i \(0.00909974\pi\)
−0.475041 + 0.879963i \(0.657567\pi\)
\(264\) −0.187916 + 0.325480i −0.0115654 + 0.0200319i
\(265\) −4.56570 −0.280469
\(266\) −11.2947 31.3933i −0.692524 1.92485i
\(267\) 1.10786 + 1.91886i 0.0677997 + 0.117433i
\(268\) −1.00380 1.73863i −0.0613168 0.106204i
\(269\) −9.06039 −0.552422 −0.276211 0.961097i \(-0.589079\pi\)
−0.276211 + 0.961097i \(0.589079\pi\)
\(270\) 3.59756 + 6.23116i 0.218941 + 0.379216i
\(271\) 2.22796 0.135339 0.0676696 0.997708i \(-0.478444\pi\)
0.0676696 + 0.997708i \(0.478444\pi\)
\(272\) 22.6596 1.37394
\(273\) −9.46301 1.20476i −0.572727 0.0729153i
\(274\) 2.73231 0.165065
\(275\) −3.09724 −0.186771
\(276\) 4.61668 + 7.99633i 0.277892 + 0.481322i
\(277\) −7.80754 −0.469110 −0.234555 0.972103i \(-0.575363\pi\)
−0.234555 + 0.972103i \(0.575363\pi\)
\(278\) 3.65830 + 6.33637i 0.219411 + 0.380030i
\(279\) −0.212854 0.368675i −0.0127433 0.0220720i
\(280\) −13.5720 2.44498i −0.811082 0.146115i
\(281\) −12.7531 −0.760789 −0.380394 0.924824i \(-0.624212\pi\)
−0.380394 + 0.924824i \(0.624212\pi\)
\(282\) 4.90949 8.50349i 0.292356 0.506375i
\(283\) −8.17193 14.1542i −0.485771 0.841380i 0.514095 0.857733i \(-0.328128\pi\)
−0.999866 + 0.0163530i \(0.994794\pi\)
\(284\) −4.11206 7.12230i −0.244006 0.422631i
\(285\) −13.8497 23.9884i −0.820386 1.42095i
\(286\) 1.01760 + 1.56956i 0.0601721 + 0.0928101i
\(287\) 0.913393 + 2.53875i 0.0539159 + 0.149857i
\(288\) 3.14482 5.44698i 0.185310 0.320967i
\(289\) 4.17679 0.245694
\(290\) 6.06915 0.356393
\(291\) 9.52241 16.4933i 0.558214 0.966854i
\(292\) 10.5215 18.2238i 0.615727 1.06647i
\(293\) 11.8319 + 20.4935i 0.691227 + 1.19724i 0.971436 + 0.237302i \(0.0762630\pi\)
−0.280209 + 0.959939i \(0.590404\pi\)
\(294\) −9.76507 + 8.07135i −0.569511 + 0.470731i
\(295\) −9.65762 16.7275i −0.562288 0.973912i
\(296\) 5.72185 0.332576
\(297\) 0.143327 + 0.248250i 0.00831669 + 0.0144049i
\(298\) 17.3699 30.0855i 1.00621 1.74280i
\(299\) −26.0643 + 1.34627i −1.50734 + 0.0778566i
\(300\) 13.7824 0.795725
\(301\) 3.04800 + 0.549094i 0.175684 + 0.0316492i
\(302\) −17.1454 + 29.6967i −0.986605 + 1.70885i
\(303\) 4.54427 7.87091i 0.261062 0.452172i
\(304\) −17.1541 + 29.7119i −0.983858 + 1.70409i
\(305\) −32.4740 −1.85946
\(306\) 4.16432 7.21281i 0.238058 0.412329i
\(307\) 8.99691 0.513481 0.256740 0.966480i \(-0.417351\pi\)
0.256740 + 0.966480i \(0.417351\pi\)
\(308\) 0.952093 + 0.171518i 0.0542505 + 0.00977316i
\(309\) 2.34421 4.06029i 0.133357 0.230982i
\(310\) −3.06303 −0.173968
\(311\) 15.4498 26.7598i 0.876077 1.51741i 0.0204655 0.999791i \(-0.493485\pi\)
0.855611 0.517619i \(-0.173181\pi\)
\(312\) 2.57165 + 3.96653i 0.145591 + 0.224561i
\(313\) 3.74574 + 6.48782i 0.211722 + 0.366713i 0.952254 0.305308i \(-0.0987595\pi\)
−0.740532 + 0.672022i \(0.765426\pi\)
\(314\) −16.8637 + 29.2088i −0.951673 + 1.64835i
\(315\) −6.79080 + 8.03235i −0.382618 + 0.452572i
\(316\) −4.90348 8.49307i −0.275842 0.477773i
\(317\) 8.11402 + 14.0539i 0.455729 + 0.789346i 0.998730 0.0503864i \(-0.0160453\pi\)
−0.543001 + 0.839732i \(0.682712\pi\)
\(318\) 2.07853 0.116558
\(319\) 0.241796 0.0135379
\(320\) −3.05165 5.28562i −0.170593 0.295475i
\(321\) −7.25279 12.5622i −0.404811 0.701154i
\(322\) −22.3781 + 26.4695i −1.24708 + 1.47508i
\(323\) −16.0316 + 27.7675i −0.892021 + 1.54503i
\(324\) −0.637789 1.10468i −0.0354327 0.0613713i
\(325\) −17.7124 + 34.6978i −0.982507 + 1.92469i
\(326\) −9.68748 + 16.7792i −0.536540 + 0.929314i
\(327\) −4.19387 −0.231922
\(328\) 0.668510 1.15789i 0.0369123 0.0639340i
\(329\) 14.1266 + 2.54488i 0.778822 + 0.140304i
\(330\) 2.06251 0.113538
\(331\) −2.79217 + 4.83618i −0.153472 + 0.265821i −0.932501 0.361166i \(-0.882379\pi\)
0.779030 + 0.626987i \(0.215712\pi\)
\(332\) 17.0784 0.937301
\(333\) 2.18208 3.77948i 0.119577 0.207114i
\(334\) 0.0435488 0.0754287i 0.00238288 0.00412727i
\(335\) 3.12849 5.41870i 0.170928 0.296055i
\(336\) 12.8214 + 2.30977i 0.699467 + 0.126008i
\(337\) −0.504097 −0.0274599 −0.0137299 0.999906i \(-0.504371\pi\)
−0.0137299 + 0.999906i \(0.504371\pi\)
\(338\) 23.4029 2.42407i 1.27295 0.131852i
\(339\) 4.12305 7.14133i 0.223933 0.387864i
\(340\) −11.6681 20.2098i −0.632794 1.09603i
\(341\) −0.122031 −0.00660836
\(342\) 6.30507 + 10.9207i 0.340939 + 0.590524i
\(343\) −15.9351 9.43778i −0.860416 0.509592i
\(344\) −0.767374 1.32913i −0.0413740 0.0716619i
\(345\) −14.3886 + 24.9217i −0.774654 + 1.34174i
\(346\) 12.6959 21.9899i 0.682535 1.18219i
\(347\) −12.1334 −0.651357 −0.325678 0.945481i \(-0.605593\pi\)
−0.325678 + 0.945481i \(0.605593\pi\)
\(348\) −1.07596 −0.0576776
\(349\) 10.9086 18.8943i 0.583924 1.01139i −0.411084 0.911597i \(-0.634850\pi\)
0.995009 0.0997893i \(-0.0318169\pi\)
\(350\) 17.5152 + 48.6830i 0.936229 + 2.60222i
\(351\) 3.60075 0.185985i 0.192194 0.00992715i
\(352\) −0.901476 1.56140i −0.0480488 0.0832230i
\(353\) 6.04396 + 10.4684i 0.321688 + 0.557179i 0.980836 0.194833i \(-0.0624166\pi\)
−0.659149 + 0.752013i \(0.729083\pi\)
\(354\) 4.39663 + 7.61518i 0.233678 + 0.404742i
\(355\) 12.8158 22.1977i 0.680194 1.17813i
\(356\) −2.82631 −0.149794
\(357\) 11.9824 + 2.15861i 0.634176 + 0.114246i
\(358\) −4.25192 7.36454i −0.224721 0.389228i
\(359\) −7.22027 12.5059i −0.381071 0.660035i 0.610144 0.792290i \(-0.291111\pi\)
−0.991216 + 0.132255i \(0.957778\pi\)
\(360\) 5.21231 0.274713
\(361\) −14.7729 25.5875i −0.777523 1.34671i
\(362\) −39.8860 −2.09636
\(363\) −10.9178 −0.573037
\(364\) 7.36628 9.68525i 0.386098 0.507645i
\(365\) 65.5838 3.43281
\(366\) 14.7838 0.772760
\(367\) −12.1894 21.1126i −0.636280 1.10207i −0.986242 0.165305i \(-0.947139\pi\)
0.349963 0.936764i \(-0.386194\pi\)
\(368\) 35.6431 1.85803
\(369\) −0.509885 0.883147i −0.0265436 0.0459748i
\(370\) −15.7004 27.1938i −0.816223 1.41374i
\(371\) 1.02865 + 2.85910i 0.0534049 + 0.148437i
\(372\) 0.543025 0.0281545
\(373\) 4.20017 7.27490i 0.217476 0.376680i −0.736559 0.676373i \(-0.763551\pi\)
0.954036 + 0.299693i \(0.0968842\pi\)
\(374\) −1.19372 2.06758i −0.0617258 0.106912i
\(375\) 11.5386 + 19.9854i 0.595849 + 1.03204i
\(376\) −3.55654 6.16011i −0.183415 0.317684i
\(377\) 1.38277 2.70879i 0.0712163 0.139510i
\(378\) 3.09151 3.65672i 0.159010 0.188082i
\(379\) −1.82895 + 3.16783i −0.0939467 + 0.162720i −0.909169 0.416428i \(-0.863282\pi\)
0.815222 + 0.579149i \(0.196615\pi\)
\(380\) 35.3328 1.81253
\(381\) 7.84345 0.401832
\(382\) −10.0424 + 17.3939i −0.513812 + 0.889949i
\(383\) 15.3526 26.5915i 0.784481 1.35876i −0.144827 0.989457i \(-0.546263\pi\)
0.929308 0.369305i \(-0.120404\pi\)
\(384\) −4.90037 8.48769i −0.250071 0.433136i
\(385\) 1.02072 + 2.83707i 0.0520209 + 0.144590i
\(386\) 0.440003 + 0.762108i 0.0223956 + 0.0387903i
\(387\) −1.17058 −0.0595040
\(388\) 12.1466 + 21.0385i 0.616649 + 1.06807i
\(389\) −9.21889 + 15.9676i −0.467416 + 0.809589i −0.999307 0.0372241i \(-0.988148\pi\)
0.531890 + 0.846813i \(0.321482\pi\)
\(390\) 11.7950 23.1060i 0.597264 1.17002i
\(391\) 33.3106 1.68459
\(392\) 1.52669 + 9.04982i 0.0771095 + 0.457085i
\(393\) −4.04277 + 7.00228i −0.203931 + 0.353218i
\(394\) −15.4528 + 26.7650i −0.778501 + 1.34840i
\(395\) 15.2824 26.4699i 0.768941 1.33184i
\(396\) −0.365650 −0.0183746
\(397\) 1.13032 1.95777i 0.0567290 0.0982576i −0.836266 0.548324i \(-0.815266\pi\)
0.892995 + 0.450066i \(0.148600\pi\)
\(398\) 41.9339 2.10196
\(399\) −11.9015 + 14.0775i −0.595821 + 0.704754i
\(400\) 26.6017 46.0755i 1.33009 2.30378i
\(401\) 28.5217 1.42431 0.712153 0.702024i \(-0.247720\pi\)
0.712153 + 0.702024i \(0.247720\pi\)
\(402\) −1.42424 + 2.46686i −0.0710348 + 0.123036i
\(403\) −0.697868 + 1.36709i −0.0347633 + 0.0680998i
\(404\) 5.79658 + 10.0400i 0.288391 + 0.499507i
\(405\) 1.98776 3.44291i 0.0987727 0.171079i
\(406\) −1.36738 3.80059i −0.0678619 0.188620i
\(407\) −0.625503 1.08340i −0.0310051 0.0537023i
\(408\) −3.01672 5.22512i −0.149350 0.258682i
\(409\) 10.8540 0.536695 0.268348 0.963322i \(-0.413522\pi\)
0.268348 + 0.963322i \(0.413522\pi\)
\(410\) −7.33738 −0.362367
\(411\) −0.754841 1.30742i −0.0372335 0.0644904i
\(412\) 2.99022 + 5.17921i 0.147318 + 0.255162i
\(413\) −8.29912 + 9.81643i −0.408373 + 0.483035i
\(414\) 6.55039 11.3456i 0.321934 0.557606i
\(415\) 26.6137 + 46.0963i 1.30642 + 2.26278i
\(416\) −22.6474 + 1.16978i −1.11038 + 0.0573531i
\(417\) 2.02132 3.50104i 0.0989846 0.171446i
\(418\) 3.61475 0.176803
\(419\) −7.68279 + 13.3070i −0.375329 + 0.650089i −0.990376 0.138401i \(-0.955804\pi\)
0.615047 + 0.788490i \(0.289137\pi\)
\(420\) −4.54210 12.6246i −0.221632 0.616019i
\(421\) −3.33695 −0.162633 −0.0813166 0.996688i \(-0.525912\pi\)
−0.0813166 + 0.996688i \(0.525912\pi\)
\(422\) 2.54806 4.41337i 0.124038 0.214839i
\(423\) −5.42528 −0.263786
\(424\) 0.752867 1.30400i 0.0365625 0.0633281i
\(425\) 24.8609 43.0603i 1.20593 2.08873i
\(426\) −5.83441 + 10.1055i −0.282678 + 0.489613i
\(427\) 7.31639 + 20.3357i 0.354065 + 0.984112i
\(428\) 18.5030 0.894377
\(429\) 0.469915 0.920543i 0.0226877 0.0444442i
\(430\) −4.21124 + 7.29408i −0.203084 + 0.351752i
\(431\) 2.13047 + 3.69008i 0.102621 + 0.177745i 0.912764 0.408488i \(-0.133944\pi\)
−0.810143 + 0.586233i \(0.800610\pi\)
\(432\) −4.92406 −0.236909
\(433\) −5.56416 9.63741i −0.267396 0.463144i 0.700792 0.713365i \(-0.252830\pi\)
−0.968189 + 0.250221i \(0.919497\pi\)
\(434\) 0.690100 + 1.91811i 0.0331259 + 0.0920722i
\(435\) −1.67670 2.90412i −0.0803914 0.139242i
\(436\) 2.67481 4.63290i 0.128100 0.221876i
\(437\) −25.2173 + 43.6777i −1.20631 + 2.08939i
\(438\) −29.8570 −1.42662
\(439\) 41.0024 1.95694 0.978470 0.206389i \(-0.0661712\pi\)
0.978470 + 0.206389i \(0.0661712\pi\)
\(440\) 0.747065 1.29395i 0.0356149 0.0616869i
\(441\) 6.55993 + 2.44280i 0.312378 + 0.116324i
\(442\) −29.9894 + 1.54900i −1.42645 + 0.0736785i
\(443\) −7.92693 13.7298i −0.376620 0.652325i 0.613948 0.789346i \(-0.289580\pi\)
−0.990568 + 0.137022i \(0.956247\pi\)
\(444\) 2.78342 + 4.82102i 0.132095 + 0.228795i
\(445\) −4.40431 7.62849i −0.208784 0.361625i
\(446\) −14.7726 + 25.5869i −0.699504 + 1.21158i
\(447\) −19.1947 −0.907880
\(448\) −2.62239 + 3.10183i −0.123896 + 0.146548i
\(449\) −7.54997 13.0769i −0.356305 0.617139i 0.631035 0.775754i \(-0.282630\pi\)
−0.987340 + 0.158616i \(0.949297\pi\)
\(450\) −9.77756 16.9352i −0.460919 0.798335i
\(451\) −0.292322 −0.0137649
\(452\) 5.25927 + 9.10933i 0.247375 + 0.428467i
\(453\) 18.9467 0.890192
\(454\) −11.2316 −0.527123
\(455\) 37.6204 + 4.78954i 1.76367 + 0.224537i
\(456\) 9.13506 0.427789
\(457\) −0.0278479 −0.00130267 −0.000651335 1.00000i \(-0.500207\pi\)
−0.000651335 1.00000i \(0.500207\pi\)
\(458\) 0.473210 + 0.819624i 0.0221116 + 0.0382985i
\(459\) −4.60182 −0.214795
\(460\) −18.3537 31.7896i −0.855747 1.48220i
\(461\) 14.0543 + 24.3428i 0.654575 + 1.13376i 0.982000 + 0.188880i \(0.0604859\pi\)
−0.327425 + 0.944877i \(0.606181\pi\)
\(462\) −0.464684 1.29157i −0.0216191 0.0600895i
\(463\) −0.266538 −0.0123871 −0.00619354 0.999981i \(-0.501971\pi\)
−0.00619354 + 0.999981i \(0.501971\pi\)
\(464\) −2.07674 + 3.59702i −0.0964104 + 0.166988i
\(465\) 0.846208 + 1.46568i 0.0392420 + 0.0679691i
\(466\) −11.7328 20.3218i −0.543511 0.941389i
\(467\) −18.5400 32.1123i −0.857931 1.48598i −0.873899 0.486107i \(-0.838417\pi\)
0.0159687 0.999872i \(-0.494917\pi\)
\(468\) −2.09107 + 4.09631i −0.0966595 + 0.189352i
\(469\) −4.09811 0.738270i −0.189233 0.0340901i
\(470\) −19.5178 + 33.8058i −0.900289 + 1.55935i
\(471\) 18.6354 0.858674
\(472\) 6.37002 0.293204
\(473\) −0.167776 + 0.290597i −0.00771436 + 0.0133617i
\(474\) −6.95730 + 12.0504i −0.319560 + 0.553493i
\(475\) 37.6411 + 65.1964i 1.72709 + 2.99141i
\(476\) −10.0268 + 11.8600i −0.459579 + 0.543603i
\(477\) −0.574226 0.994589i −0.0262920 0.0455391i
\(478\) −8.68017 −0.397022
\(479\) −14.3993 24.9404i −0.657922 1.13955i −0.981153 0.193234i \(-0.938102\pi\)
0.323231 0.946320i \(-0.395231\pi\)
\(480\) −12.5023 + 21.6546i −0.570649 + 0.988394i
\(481\) −15.7143 + 0.811669i −0.716509 + 0.0370089i
\(482\) 18.8578 0.858949
\(483\) 18.8481 + 3.39545i 0.857616 + 0.154498i
\(484\) 6.96327 12.0607i 0.316512 0.548216i
\(485\) −37.8566 + 65.5695i −1.71898 + 2.97736i
\(486\) −0.904928 + 1.56738i −0.0410484 + 0.0710979i
\(487\) −13.7303 −0.622181 −0.311090 0.950380i \(-0.600694\pi\)
−0.311090 + 0.950380i \(0.600694\pi\)
\(488\) 5.35484 9.27486i 0.242402 0.419853i
\(489\) 10.7052 0.484108
\(490\) 38.8213 32.0879i 1.75377 1.44958i
\(491\) 13.7632 23.8386i 0.621126 1.07582i −0.368150 0.929766i \(-0.620009\pi\)
0.989276 0.146056i \(-0.0466579\pi\)
\(492\) 1.30080 0.0586445
\(493\) −1.94084 + 3.36163i −0.0874110 + 0.151400i
\(494\) 20.6719 40.4954i 0.930073 1.82197i
\(495\) −0.569801 0.986924i −0.0256106 0.0443589i
\(496\) 1.04811 1.81537i 0.0470614 0.0815127i
\(497\) −16.7879 3.02432i −0.753041 0.135659i
\(498\) −12.1159 20.9853i −0.542925 0.940375i
\(499\) 1.94567 + 3.37000i 0.0871001 + 0.150862i 0.906284 0.422669i \(-0.138907\pi\)
−0.819184 + 0.573531i \(0.805573\pi\)
\(500\) −29.4367 −1.31645
\(501\) −0.0481240 −0.00215002
\(502\) −9.24194 16.0075i −0.412488 0.714450i
\(503\) −1.87991 3.25610i −0.0838212 0.145183i 0.821067 0.570832i \(-0.193379\pi\)
−0.904888 + 0.425649i \(0.860046\pi\)
\(504\) −1.17433 3.26402i −0.0523089 0.145391i
\(505\) −18.0659 + 31.2910i −0.803921 + 1.39243i
\(506\) −1.87770 3.25227i −0.0834738 0.144581i
\(507\) −7.62534 10.5287i −0.338653 0.467597i
\(508\) −5.00247 + 8.66453i −0.221949 + 0.384426i
\(509\) −38.5481 −1.70861 −0.854307 0.519769i \(-0.826018\pi\)
−0.854307 + 0.519769i \(0.826018\pi\)
\(510\) −16.5554 + 28.6747i −0.733084 + 1.26974i
\(511\) −14.7760 41.0695i −0.653653 1.81681i
\(512\) 18.0587 0.798088
\(513\) 3.48374 6.03402i 0.153811 0.266408i
\(514\) −11.5158 −0.507938
\(515\) −9.31946 + 16.1418i −0.410664 + 0.711291i
\(516\) 0.746584 1.29312i 0.0328665 0.0569265i
\(517\) −0.777591 + 1.34683i −0.0341984 + 0.0592334i
\(518\) −13.4919 + 15.9585i −0.592798 + 0.701178i
\(519\) −14.0297 −0.615837
\(520\) −10.2236 15.7690i −0.448336 0.691519i
\(521\) −6.92277 + 11.9906i −0.303292 + 0.525318i −0.976880 0.213790i \(-0.931419\pi\)
0.673587 + 0.739108i \(0.264753\pi\)
\(522\) 0.763315 + 1.32210i 0.0334094 + 0.0578667i
\(523\) 20.0671 0.877472 0.438736 0.898616i \(-0.355426\pi\)
0.438736 + 0.898616i \(0.355426\pi\)
\(524\) −5.15687 8.93196i −0.225279 0.390194i
\(525\) 18.4562 21.8306i 0.805496 0.952763i
\(526\) 15.3960 + 26.6667i 0.671299 + 1.16272i
\(527\) 0.979519 1.69658i 0.0426685 0.0739040i
\(528\) −0.705751 + 1.22240i −0.0307139 + 0.0531980i
\(529\) 29.3969 1.27813
\(530\) −8.26326 −0.358933
\(531\) 2.42927 4.20762i 0.105421 0.182595i
\(532\) −7.96047 22.1259i −0.345130 0.959278i
\(533\) −1.67172 + 3.27482i −0.0724101 + 0.141848i
\(534\) 2.00506 + 3.47287i 0.0867674 + 0.150286i
\(535\) 28.8337 + 49.9414i 1.24659 + 2.15915i
\(536\) 1.03175 + 1.78705i 0.0445649 + 0.0771887i
\(537\) −2.34931 + 4.06913i −0.101380 + 0.175596i
\(538\) −16.3980 −0.706968
\(539\) 1.54664 1.27838i 0.0666186 0.0550638i
\(540\) 2.53555 + 4.39170i 0.109113 + 0.188988i
\(541\) −18.9415 32.8076i −0.814357 1.41051i −0.909788 0.415072i \(-0.863756\pi\)
0.0954310 0.995436i \(-0.469577\pi\)
\(542\) 4.03229 0.173202
\(543\) 11.0191 + 19.0857i 0.472876 + 0.819044i
\(544\) 28.9438 1.24096
\(545\) 16.6728 0.714186
\(546\) −17.1267 2.18044i −0.732954 0.0933141i
\(547\) 29.3783 1.25613 0.628063 0.778162i \(-0.283848\pi\)
0.628063 + 0.778162i \(0.283848\pi\)
\(548\) 1.92572 0.0822625
\(549\) −4.08424 7.07411i −0.174311 0.301916i
\(550\) −5.60556 −0.239022
\(551\) −2.93857 5.08975i −0.125187 0.216831i
\(552\) −4.74524 8.21900i −0.201971 0.349824i
\(553\) −20.0189 3.60638i −0.851291 0.153359i
\(554\) −14.1305 −0.600349
\(555\) −8.67492 + 15.0254i −0.368230 + 0.637793i
\(556\) 2.57836 + 4.46584i 0.109347 + 0.189394i
\(557\) −0.513038 0.888609i −0.0217381 0.0376516i 0.854952 0.518708i \(-0.173587\pi\)
−0.876690 + 0.481056i \(0.840253\pi\)
\(558\) −0.385236 0.667248i −0.0163083 0.0282469i
\(559\) 2.29603 + 3.54142i 0.0971117 + 0.149786i
\(560\) −50.9720 9.18253i −2.15396 0.388033i
\(561\) −0.659567 + 1.14240i −0.0278469 + 0.0482323i
\(562\) −23.0814 −0.973628
\(563\) −36.2249 −1.52670 −0.763348 0.645988i \(-0.776446\pi\)
−0.763348 + 0.645988i \(0.776446\pi\)
\(564\) 3.46019 5.99322i 0.145700 0.252360i
\(565\) −16.3913 + 28.3905i −0.689587 + 1.19440i
\(566\) −14.7900 25.6171i −0.621671 1.07677i
\(567\) −2.60384 0.469078i −0.109351 0.0196994i
\(568\) 4.22657 + 7.32064i 0.177343 + 0.307167i
\(569\) 2.83671 0.118921 0.0594605 0.998231i \(-0.481062\pi\)
0.0594605 + 0.998231i \(0.481062\pi\)
\(570\) −25.0660 43.4155i −1.04990 1.81848i
\(571\) 2.29825 3.98069i 0.0961789 0.166587i −0.813921 0.580975i \(-0.802671\pi\)
0.910100 + 0.414389i \(0.136005\pi\)
\(572\) 0.717202 + 1.10622i 0.0299877 + 0.0462534i
\(573\) 11.0974 0.463602
\(574\) 1.65311 + 4.59477i 0.0689995 + 0.191782i
\(575\) 39.1057 67.7330i 1.63082 2.82466i
\(576\) 0.767610 1.32954i 0.0319837 0.0553975i
\(577\) 8.75176 15.1585i 0.364341 0.631056i −0.624329 0.781161i \(-0.714628\pi\)
0.988670 + 0.150105i \(0.0479611\pi\)
\(578\) 7.55939 0.314429
\(579\) 0.243115 0.421088i 0.0101035 0.0174998i
\(580\) 4.27751 0.177614
\(581\) 22.8701 27.0514i 0.948810 1.12228i
\(582\) 17.2342 29.8505i 0.714380 1.23734i
\(583\) −0.329209 −0.0136344
\(584\) −10.8145 + 18.7313i −0.447509 + 0.775108i
\(585\) −14.3149 + 0.739388i −0.591847 + 0.0305699i
\(586\) 21.4140 + 37.0902i 0.884606 + 1.53218i
\(587\) −0.671155 + 1.16247i −0.0277015 + 0.0479805i −0.879544 0.475818i \(-0.842152\pi\)
0.851842 + 0.523798i \(0.175485\pi\)
\(588\) −6.88238 + 5.68865i −0.283824 + 0.234596i
\(589\) 1.48306 + 2.56874i 0.0611084 + 0.105843i
\(590\) −17.4789 30.2743i −0.719595 1.24638i
\(591\) 17.0763 0.702424
\(592\) 21.4894 0.883209
\(593\) 22.0843 + 38.2512i 0.906895 + 1.57079i 0.818353 + 0.574716i \(0.194888\pi\)
0.0885427 + 0.996072i \(0.471779\pi\)
\(594\) 0.259402 + 0.449297i 0.0106434 + 0.0184349i
\(595\) −47.6363 8.58162i −1.95290 0.351812i
\(596\) 12.2422 21.2041i 0.501460 0.868554i
\(597\) −11.5849 20.0656i −0.474138 0.821230i
\(598\) −47.1726 + 2.43655i −1.92903 + 0.0996378i
\(599\) 8.46583 14.6632i 0.345904 0.599124i −0.639613 0.768697i \(-0.720905\pi\)
0.985518 + 0.169573i \(0.0542388\pi\)
\(600\) −14.1662 −0.578331
\(601\) 7.56311 13.0997i 0.308506 0.534348i −0.669530 0.742785i \(-0.733504\pi\)
0.978036 + 0.208437i \(0.0668378\pi\)
\(602\) 5.51645 + 0.993781i 0.224834 + 0.0405035i
\(603\) 1.57387 0.0640931
\(604\) −12.0840 + 20.9301i −0.491690 + 0.851633i
\(605\) 43.4041 1.76463
\(606\) 8.22448 14.2452i 0.334097 0.578673i
\(607\) −23.8620 + 41.3301i −0.968527 + 1.67754i −0.268701 + 0.963224i \(0.586594\pi\)
−0.699825 + 0.714314i \(0.746739\pi\)
\(608\) −21.9115 + 37.9518i −0.888628 + 1.53915i
\(609\) −1.44084 + 1.70427i −0.0583858 + 0.0690604i
\(610\) −58.7733 −2.37966
\(611\) 10.6414 + 16.4134i 0.430505 + 0.664014i
\(612\) 2.93499 5.08356i 0.118640 0.205491i
\(613\) −11.9854 20.7593i −0.484086 0.838462i 0.515747 0.856741i \(-0.327515\pi\)
−0.999833 + 0.0182791i \(0.994181\pi\)
\(614\) 16.2831 0.657133
\(615\) 2.02706 + 3.51097i 0.0817390 + 0.141576i
\(616\) −0.978606 0.176295i −0.0394292 0.00710311i
\(617\) −1.41810 2.45623i −0.0570907 0.0988839i 0.836068 0.548626i \(-0.184849\pi\)
−0.893158 + 0.449743i \(0.851516\pi\)
\(618\) 4.24268 7.34853i 0.170666 0.295601i
\(619\) 0.658494 1.14055i 0.0264671 0.0458424i −0.852488 0.522746i \(-0.824908\pi\)
0.878956 + 0.476904i \(0.158241\pi\)
\(620\) −2.15881 −0.0866999
\(621\) −7.23857 −0.290474
\(622\) 27.9619 48.4314i 1.12117 1.94192i
\(623\) −3.78477 + 4.47674i −0.151634 + 0.179357i
\(624\) 9.65826 + 14.8970i 0.386640 + 0.596357i
\(625\) −18.8598 32.6662i −0.754393 1.30665i
\(626\) 6.77926 + 11.7420i 0.270954 + 0.469305i
\(627\) −0.998630 1.72968i −0.0398814 0.0690767i
\(628\) −11.8855 + 20.5862i −0.474281 + 0.821479i
\(629\) 20.0831 0.800766
\(630\) −12.2904 + 14.5374i −0.489660 + 0.579184i
\(631\) −11.5676 20.0356i −0.460497 0.797604i 0.538489 0.842633i \(-0.318995\pi\)
−0.998986 + 0.0450286i \(0.985662\pi\)
\(632\) 5.04002 + 8.72957i 0.200481 + 0.347244i
\(633\) −2.81576 −0.111916
\(634\) 14.6852 + 25.4355i 0.583224 + 1.01017i
\(635\) −31.1818 −1.23741
\(636\) 1.46494 0.0580887
\(637\) −5.47660 24.6375i −0.216991 0.976174i
\(638\) 0.437615 0.0173253
\(639\) 6.44737 0.255054
\(640\) 19.4816 + 33.7430i 0.770076 + 1.33381i
\(641\) −36.6525 −1.44769 −0.723843 0.689965i \(-0.757626\pi\)
−0.723843 + 0.689965i \(0.757626\pi\)
\(642\) −13.1265 22.7358i −0.518062 0.897310i
\(643\) −1.86917 3.23749i −0.0737127 0.127674i 0.826813 0.562477i \(-0.190151\pi\)
−0.900526 + 0.434803i \(0.856818\pi\)
\(644\) −15.7720 + 18.6556i −0.621503 + 0.735132i
\(645\) 4.65368 0.183238
\(646\) −29.0148 + 50.2552i −1.14157 + 1.97726i
\(647\) 0.763093 + 1.32172i 0.0300003 + 0.0519620i 0.880636 0.473794i \(-0.157116\pi\)
−0.850635 + 0.525756i \(0.823783\pi\)
\(648\) 0.655549 + 1.13544i 0.0257524 + 0.0446045i
\(649\) −0.696361 1.20613i −0.0273345 0.0473448i
\(650\) −32.0569 + 62.7981i −1.25737 + 2.46314i
\(651\) 0.727175 0.860123i 0.0285002 0.0337109i
\(652\) −6.82769 + 11.8259i −0.267393 + 0.463138i
\(653\) 8.95092 0.350277 0.175138 0.984544i \(-0.443963\pi\)
0.175138 + 0.984544i \(0.443963\pi\)
\(654\) −7.59031 −0.296804
\(655\) 16.0721 27.8377i 0.627990 1.08771i
\(656\) 2.51070 4.34867i 0.0980265 0.169787i
\(657\) 8.24845 + 14.2867i 0.321803 + 0.557379i
\(658\) 25.5670 + 4.60587i 0.996707 + 0.179555i
\(659\) 4.30599 + 7.45819i 0.167737 + 0.290530i 0.937624 0.347651i \(-0.113021\pi\)
−0.769887 + 0.638181i \(0.779687\pi\)
\(660\) 1.45365 0.0565833
\(661\) 20.0392 + 34.7088i 0.779433 + 1.35002i 0.932269 + 0.361765i \(0.117826\pi\)
−0.152837 + 0.988251i \(0.548841\pi\)
\(662\) −5.05343 + 8.75279i −0.196407 + 0.340187i
\(663\) 9.02622 + 13.9221i 0.350549 + 0.540691i
\(664\) −17.5540 −0.681228
\(665\) 47.3148 55.9653i 1.83479 2.17024i
\(666\) 3.94925 6.84031i 0.153031 0.265057i
\(667\) −3.05290 + 5.28778i −0.118209 + 0.204744i
\(668\) 0.0306930 0.0531618i 0.00118755 0.00205689i
\(669\) 16.3246 0.631147
\(670\) 5.66211 9.80707i 0.218747 0.378880i
\(671\) −2.34153 −0.0903938
\(672\) 16.3772 + 2.95033i 0.631764 + 0.113811i
\(673\) −22.0131 + 38.1277i −0.848541 + 1.46972i 0.0339689 + 0.999423i \(0.489185\pi\)
−0.882510 + 0.470294i \(0.844148\pi\)
\(674\) −0.912342 −0.0351421
\(675\) −5.40240 + 9.35723i −0.207938 + 0.360160i
\(676\) 16.4943 1.70847i 0.634395 0.0657105i
\(677\) −12.0556 20.8809i −0.463334 0.802518i 0.535791 0.844351i \(-0.320014\pi\)
−0.999125 + 0.0418328i \(0.986680\pi\)
\(678\) 7.46213 12.9248i 0.286581 0.496373i
\(679\) 49.5896 + 8.93350i 1.90307 + 0.342836i
\(680\) 11.9931 + 20.7726i 0.459913 + 0.796592i
\(681\) 3.10289 + 5.37436i 0.118903 + 0.205946i
\(682\) −0.220859 −0.00845713
\(683\) −18.5855 −0.711155 −0.355578 0.934647i \(-0.615716\pi\)
−0.355578 + 0.934647i \(0.615716\pi\)
\(684\) 4.44379 + 7.69686i 0.169912 + 0.294297i
\(685\) 3.00089 + 5.19769i 0.114658 + 0.198594i
\(686\) −28.8403 17.0810i −1.10113 0.652157i
\(687\) 0.261463 0.452867i 0.00997543 0.0172779i
\(688\) −2.88201 4.99178i −0.109875 0.190310i
\(689\) −1.88267 + 3.68807i −0.0717239 + 0.140504i
\(690\) −26.0412 + 45.1047i −0.991372 + 1.71711i
\(691\) −22.6374 −0.861166 −0.430583 0.902551i \(-0.641692\pi\)
−0.430583 + 0.902551i \(0.641692\pi\)
\(692\) 8.94801 15.4984i 0.340152 0.589161i
\(693\) −0.489649 + 0.579171i −0.0186002 + 0.0220009i
\(694\) −21.9598 −0.833581
\(695\) −8.03582 + 13.9185i −0.304816 + 0.527957i
\(696\) 1.10592 0.0419199
\(697\) 2.34640 4.06409i 0.0888763 0.153938i
\(698\) 19.7430 34.1959i 0.747284 1.29433i
\(699\) −6.48273 + 11.2284i −0.245199 + 0.424697i
\(700\) 12.3447 + 34.3116i 0.466584 + 1.29686i
\(701\) 50.1432 1.89388 0.946941 0.321407i \(-0.104156\pi\)
0.946941 + 0.321407i \(0.104156\pi\)
\(702\) 6.51684 0.336606i 0.245962 0.0127044i
\(703\) −15.2036 + 26.3335i −0.573416 + 0.993185i
\(704\) −0.220039 0.381118i −0.00829302 0.0143639i
\(705\) 21.5684 0.812311
\(706\) 10.9387 + 18.9464i 0.411683 + 0.713056i
\(707\) 23.6651 + 4.26324i 0.890018 + 0.160336i
\(708\) 3.09872 + 5.36715i 0.116457 + 0.201710i
\(709\) 14.8556 25.7306i 0.557913 0.966334i −0.439757 0.898117i \(-0.644936\pi\)
0.997670 0.0682172i \(-0.0217311\pi\)
\(710\) 23.1948 40.1746i 0.870487 1.50773i
\(711\) 7.68824 0.288332
\(712\) 2.90502 0.108870
\(713\) 1.54076 2.66868i 0.0577020 0.0999428i
\(714\) 21.6864 + 3.90678i 0.811594 + 0.146208i
\(715\) −1.86816 + 3.65964i −0.0698651 + 0.136863i
\(716\) −2.99673 5.19049i −0.111993 0.193978i
\(717\) 2.39803 + 4.15351i 0.0895560 + 0.155116i
\(718\) −13.0677 22.6338i −0.487681 0.844687i
\(719\) 14.9346 25.8675i 0.556968 0.964697i −0.440780 0.897615i \(-0.645298\pi\)
0.997748 0.0670813i \(-0.0213687\pi\)
\(720\) 19.5757 0.729544
\(721\) 12.2079 + 2.19923i 0.454645 + 0.0819037i
\(722\) −26.7369 46.3096i −0.995044 1.72347i
\(723\) −5.20975 9.02355i −0.193753 0.335589i
\(724\) −28.1115 −1.04476
\(725\) 4.55697 + 7.89291i 0.169242 + 0.293135i
\(726\) −19.7597 −0.733351
\(727\) 36.0210 1.33594 0.667972 0.744186i \(-0.267163\pi\)
0.667972 + 0.744186i \(0.267163\pi\)
\(728\) −7.57141 + 9.95495i −0.280615 + 0.368955i
\(729\) 1.00000 0.0370370
\(730\) 118.697 4.39318
\(731\) −2.69341 4.66512i −0.0996192 0.172546i
\(732\) 10.4195 0.385117
\(733\) 8.97642 + 15.5476i 0.331552 + 0.574265i 0.982816 0.184586i \(-0.0590945\pi\)
−0.651265 + 0.758851i \(0.725761\pi\)
\(734\) −22.0610 38.2108i −0.814286 1.41038i
\(735\) −26.0792 9.71143i −0.961945 0.358211i
\(736\) 45.5280 1.67818
\(737\) 0.225579 0.390714i 0.00830931 0.0143921i
\(738\) −0.922819 1.59837i −0.0339694 0.0588368i
\(739\) −22.2469 38.5328i −0.818366 1.41745i −0.906886 0.421377i \(-0.861547\pi\)
0.0885201 0.996074i \(-0.471786\pi\)
\(740\) −11.0655 19.1661i −0.406777 0.704559i
\(741\) −25.0882 + 1.29585i −0.921637 + 0.0476042i
\(742\) 1.86171 + 5.17457i 0.0683456 + 0.189964i
\(743\) −10.7390 + 18.6004i −0.393975 + 0.682384i −0.992970 0.118368i \(-0.962234\pi\)
0.598995 + 0.800753i \(0.295567\pi\)
\(744\) −0.558146 −0.0204626
\(745\) 76.3092 2.79575
\(746\) 7.60169 13.1665i 0.278318 0.482061i
\(747\) −6.69439 + 11.5950i −0.244935 + 0.424240i
\(748\) −0.841329 1.45722i −0.0307620 0.0532814i
\(749\) 24.7777 29.3078i 0.905359 1.07088i
\(750\) 20.8831 + 36.1706i 0.762544 + 1.32077i
\(751\) 3.20035 0.116783 0.0583913 0.998294i \(-0.481403\pi\)
0.0583913 + 0.998294i \(0.481403\pi\)
\(752\) −13.3572 23.1354i −0.487087 0.843660i
\(753\) −5.10645 + 8.84463i −0.186089 + 0.322316i
\(754\) 2.50262 4.90252i 0.0911399 0.178539i
\(755\) −75.3230 −2.74128
\(756\) 2.17888 2.57724i 0.0792451 0.0937334i
\(757\) −12.8640 + 22.2811i −0.467550 + 0.809821i −0.999313 0.0370727i \(-0.988197\pi\)
0.531762 + 0.846894i \(0.321530\pi\)
\(758\) −3.31013 + 5.73331i −0.120229 + 0.208243i
\(759\) −1.03748 + 1.79698i −0.0376583 + 0.0652261i
\(760\) −36.3167 −1.31734
\(761\) −14.3748 + 24.8979i −0.521087 + 0.902548i 0.478613 + 0.878026i \(0.341140\pi\)
−0.999699 + 0.0245222i \(0.992194\pi\)
\(762\) 14.1955 0.514249
\(763\) −3.75639 10.4408i −0.135990 0.377981i
\(764\) −7.07782 + 12.2591i −0.256066 + 0.443520i
\(765\) 18.2947 0.661445
\(766\) 27.7860 48.1268i 1.00395 1.73889i
\(767\) −17.4944 + 0.903616i −0.631686 + 0.0326277i
\(768\) −10.4042 18.0206i −0.375429 0.650262i
\(769\) 8.98213 15.5575i 0.323904 0.561018i −0.657386 0.753554i \(-0.728338\pi\)
0.981290 + 0.192536i \(0.0616712\pi\)
\(770\) 1.84736 + 5.13469i 0.0665744 + 0.185041i
\(771\) 3.18140 + 5.51035i 0.114575 + 0.198450i
\(772\) 0.310112 + 0.537131i 0.0111612 + 0.0193318i
\(773\) 39.6652 1.42666 0.713329 0.700829i \(-0.247187\pi\)
0.713329 + 0.700829i \(0.247187\pi\)
\(774\) −2.11858 −0.0761509
\(775\) −2.29985 3.98345i −0.0826130 0.143090i
\(776\) −12.4848 21.6243i −0.448179 0.776269i
\(777\) 11.3636 + 2.04713i 0.407666 + 0.0734405i
\(778\) −16.6849 + 28.8990i −0.598182 + 1.03608i
\(779\) 3.55262 + 6.15331i 0.127286 + 0.220465i
\(780\) 8.31308 16.2850i 0.297656 0.583096i
\(781\) 0.924084 1.60056i 0.0330663 0.0572725i
\(782\) 60.2875 2.15587
\(783\) 0.421754 0.730500i 0.0150723 0.0261059i
\(784\) 5.73375 + 33.9882i 0.204777 + 1.21386i
\(785\) −74.0855 −2.64422
\(786\) −7.31683 + 12.6731i −0.260983 + 0.452035i
\(787\) −39.5666 −1.41040 −0.705199 0.709010i \(-0.749142\pi\)
−0.705199 + 0.709010i \(0.749142\pi\)
\(788\) −10.8911 + 18.8639i −0.387978 + 0.671998i
\(789\) 8.50677 14.7342i 0.302849 0.524550i
\(790\) 27.6589 47.9067i 0.984061 1.70444i
\(791\) 21.4715 + 3.86806i 0.763439 + 0.137533i
\(792\) 0.375832 0.0133546
\(793\) −13.3907 + 26.2317i −0.475516 + 0.931516i
\(794\) 2.04571 3.54328i 0.0725996 0.125746i
\(795\) 2.28285 + 3.95401i 0.0809644 + 0.140234i
\(796\) 29.5548 1.04754
\(797\) −9.72309 16.8409i −0.344409 0.596535i 0.640837 0.767677i \(-0.278588\pi\)
−0.985246 + 0.171142i \(0.945254\pi\)
\(798\) −21.5400 + 25.4782i −0.762509 + 0.901917i
\(799\) −12.4831 21.6214i −0.441621 0.764909i
\(800\) 33.9791 58.8536i 1.20134 2.08079i
\(801\) 1.10786 1.91886i 0.0391442 0.0677997i
\(802\) 51.6202 1.82277
\(803\) 4.72891 0.166880
\(804\) −1.00380 + 1.73863i −0.0354013 + 0.0613168i
\(805\) −74.9309 13.4987i −2.64097 0.475767i
\(806\) −1.26304 + 2.47424i −0.0444887 + 0.0871515i
\(807\) 4.53019 + 7.84653i 0.159470 + 0.276211i
\(808\) −5.95799 10.3195i −0.209601 0.363040i
\(809\) 8.65420 + 14.9895i 0.304265 + 0.527003i 0.977098 0.212792i \(-0.0682557\pi\)
−0.672832 + 0.739795i \(0.734922\pi\)
\(810\) 3.59756 6.23116i 0.126405 0.218941i
\(811\) −2.62646 −0.0922275 −0.0461138 0.998936i \(-0.514684\pi\)
−0.0461138 + 0.998936i \(0.514684\pi\)
\(812\) −0.963723 2.67864i −0.0338200 0.0940017i
\(813\) −1.11398 1.92947i −0.0390690 0.0676696i
\(814\) −1.13207 1.96080i −0.0396791 0.0687262i
\(815\) −42.5590 −1.49078
\(816\) −11.3298 19.6238i −0.396623 0.686971i
\(817\) 8.15601 0.285343
\(818\) 19.6442 0.686842
\(819\) 3.68815 + 8.79759i 0.128875 + 0.307413i
\(820\) −5.17135 −0.180591
\(821\) −32.3955 −1.13061 −0.565305 0.824882i \(-0.691242\pi\)
−0.565305 + 0.824882i \(0.691242\pi\)
\(822\) −1.36615 2.36625i −0.0476501 0.0825323i
\(823\) −41.0161 −1.42973 −0.714866 0.699261i \(-0.753512\pi\)
−0.714866 + 0.699261i \(0.753512\pi\)
\(824\) −3.07349 5.32344i −0.107070 0.185451i
\(825\) 1.54862 + 2.68229i 0.0539161 + 0.0933854i
\(826\) −15.0202 + 17.7663i −0.522620 + 0.618170i
\(827\) −44.2260 −1.53789 −0.768944 0.639316i \(-0.779218\pi\)
−0.768944 + 0.639316i \(0.779218\pi\)
\(828\) 4.61668 7.99633i 0.160441 0.277892i
\(829\) 2.74781 + 4.75935i 0.0954354 + 0.165299i 0.909790 0.415068i \(-0.136242\pi\)
−0.814355 + 0.580367i \(0.802909\pi\)
\(830\) 48.1670 + 83.4276i 1.67190 + 2.89582i
\(831\) 3.90377 + 6.76153i 0.135420 + 0.234555i
\(832\) −5.52794 + 0.285528i −0.191647 + 0.00989890i
\(833\) 5.35853 + 31.7640i 0.185662 + 1.10056i
\(834\) 3.65830 6.33637i 0.126677 0.219411i
\(835\) 0.191318 0.00662084
\(836\) 2.54766 0.0881127
\(837\) −0.212854 + 0.368675i −0.00735732 + 0.0127433i
\(838\) −13.9047 + 24.0837i −0.480332 + 0.831959i
\(839\) −21.4269 37.1125i −0.739739 1.28127i −0.952612 0.304186i \(-0.901615\pi\)
0.212873 0.977080i \(-0.431718\pi\)
\(840\) 4.66858 + 12.9762i 0.161081 + 0.447721i
\(841\) 14.1442 + 24.4986i 0.487733 + 0.844778i
\(842\) −6.03941 −0.208132
\(843\) 6.37657 + 11.0445i 0.219621 + 0.380394i
\(844\) 1.79586 3.11052i 0.0618160 0.107069i
\(845\) 30.3147 + 41.8572i 1.04286 + 1.43993i
\(846\) −9.81898 −0.337584
\(847\) −9.77894 27.1802i −0.336008 0.933924i
\(848\) 2.82752 4.89741i 0.0970975 0.168178i
\(849\) −8.17193 + 14.1542i −0.280460 + 0.485771i
\(850\) 44.9946 77.9330i 1.54330 2.67308i
\(851\) 31.5903 1.08290
\(852\) −4.11206 + 7.12230i −0.140877 + 0.244006i
\(853\) −46.0876 −1.57801 −0.789004 0.614388i \(-0.789403\pi\)
−0.789004 + 0.614388i \(0.789403\pi\)
\(854\) 13.2416 + 36.8046i 0.453118 + 1.25943i
\(855\) −13.8497 + 23.9884i −0.473650 + 0.820386i
\(856\) −19.0183 −0.650031
\(857\) 3.33662 5.77919i 0.113977 0.197413i −0.803394 0.595448i \(-0.796974\pi\)
0.917370 + 0.398035i \(0.130308\pi\)
\(858\) 0.850478 1.66605i 0.0290348 0.0568780i
\(859\) 8.20940 + 14.2191i 0.280101 + 0.485149i 0.971409 0.237411i \(-0.0762987\pi\)
−0.691308 + 0.722560i \(0.742965\pi\)
\(860\) −2.96806 + 5.14084i −0.101210 + 0.175301i
\(861\) 1.74192 2.06039i 0.0593646 0.0702181i
\(862\) 3.85584 + 6.67851i 0.131330 + 0.227471i
\(863\) 4.92500 + 8.53035i 0.167649 + 0.290377i 0.937593 0.347735i \(-0.113049\pi\)
−0.769944 + 0.638112i \(0.779716\pi\)
\(864\) −6.28963 −0.213978
\(865\) 55.7755 1.89643
\(866\) −10.0703 17.4423i −0.342204 0.592714i
\(867\) −2.08840 3.61721i −0.0709256 0.122847i
\(868\) 0.486379 + 1.35188i 0.0165088 + 0.0458856i
\(869\) 1.10193 1.90861i 0.0373805 0.0647450i
\(870\) −3.03458 5.25604i −0.102882 0.178196i
\(871\) −3.08707 4.76152i −0.104601 0.161338i
\(872\) −2.74929 + 4.76191i −0.0931027 + 0.161259i
\(873\) −19.0448 −0.644569
\(874\) −45.6397 + 79.0503i −1.54379 + 2.67392i
\(875\) −39.4192 + 46.6262i −1.33261 + 1.57625i
\(876\) −21.0431 −0.710980
\(877\) −3.02056 + 5.23177i −0.101997 + 0.176664i −0.912507 0.409060i \(-0.865857\pi\)
0.810510 + 0.585724i \(0.199190\pi\)
\(878\) 74.2085 2.50442
\(879\) 11.8319 20.4935i 0.399080 0.691227i
\(880\) 2.80573 4.85967i 0.0945812 0.163819i
\(881\) 15.5861 26.9959i 0.525109 0.909516i −0.474463 0.880275i \(-0.657358\pi\)
0.999572 0.0292404i \(-0.00930885\pi\)
\(882\) 11.8725 + 4.42112i 0.399769 + 0.148867i
\(883\) −18.2205 −0.613169 −0.306584 0.951844i \(-0.599186\pi\)
−0.306584 + 0.951844i \(0.599186\pi\)
\(884\) −21.1364 + 1.09173i −0.710893 + 0.0367189i
\(885\) −9.65762 + 16.7275i −0.324637 + 0.562288i
\(886\) −14.3466 24.8490i −0.481984 0.834820i
\(887\) 7.41684 0.249033 0.124517 0.992218i \(-0.460262\pi\)
0.124517 + 0.992218i \(0.460262\pi\)
\(888\) −2.86093 4.95527i −0.0960064 0.166288i
\(889\) 7.02526 + 19.5265i 0.235620 + 0.654898i
\(890\) −7.97117 13.8065i −0.267194 0.462794i
\(891\) 0.143327 0.248250i 0.00480164 0.00831669i
\(892\) −10.4117 + 18.0336i −0.348609 + 0.603808i
\(893\) 37.8006 1.26495
\(894\) −34.7397 −1.16187
\(895\) 9.33975 16.1769i 0.312194 0.540735i
\(896\) 16.7412 19.8019i 0.559283 0.661535i
\(897\) 14.1980 + 21.8992i 0.474059 + 0.731193i
\(898\) −13.6644 23.6674i −0.455986 0.789790i
\(899\) 0.179545 + 0.310980i 0.00598815 + 0.0103718i
\(900\) −6.89118 11.9359i −0.229706 0.397863i
\(901\) 2.64249 4.57692i 0.0880341 0.152479i
\(902\) −0.529060 −0.0176158
\(903\) −1.04847 2.91420i −0.0348910 0.0969783i
\(904\) −5.40573 9.36299i −0.179792 0.311409i
\(905\) −43.8068 75.8756i −1.45619 2.52219i
\(906\) 34.2907 1.13923
\(907\) 8.70718 + 15.0813i 0.289117 + 0.500766i 0.973599 0.228264i \(-0.0733049\pi\)
−0.684482 + 0.729030i \(0.739972\pi\)
\(908\) −7.91595 −0.262700
\(909\) −9.08855 −0.301448
\(910\) 68.0876 + 8.66839i 2.25708 + 0.287354i
\(911\) −40.5753 −1.34432 −0.672159 0.740407i \(-0.734633\pi\)
−0.672159 + 0.740407i \(0.734633\pi\)
\(912\) 34.3083 1.13606
\(913\) 1.91898 + 3.32376i 0.0635088 + 0.110001i
\(914\) −0.0504007 −0.00166711
\(915\) 16.2370 + 28.1233i 0.536779 + 0.929728i
\(916\) 0.333516 + 0.577667i 0.0110197 + 0.0190867i
\(917\) −21.0534 3.79275i −0.695245 0.125247i
\(918\) −8.32864 −0.274886
\(919\) 24.2733 42.0426i 0.800702 1.38686i −0.118452 0.992960i \(-0.537793\pi\)
0.919154 0.393898i \(-0.128874\pi\)
\(920\) 18.8648 + 32.6748i 0.621955 + 1.07726i
\(921\) −4.49845 7.79155i −0.148229 0.256740i
\(922\) 25.4363 + 44.0570i 0.837700 + 1.45094i
\(923\) −12.6462 19.5056i −0.416253 0.642033i
\(924\) −0.327507 0.910296i −0.0107742 0.0299465i
\(925\) 23.5770 40.8365i 0.775206 1.34270i
\(926\) −0.482395 −0.0158525
\(927\) −4.68842 −0.153988
\(928\) −2.65268 + 4.59458i −0.0870785 + 0.150824i
\(929\) 4.06964 7.04883i 0.133521 0.231264i −0.791511 0.611155i \(-0.790705\pi\)
0.925031 + 0.379891i \(0.124038\pi\)
\(930\) 1.53151 + 2.65266i 0.0502203 + 0.0869842i
\(931\) −45.7062 17.0202i −1.49796 0.557815i
\(932\) −8.26922 14.3227i −0.270867 0.469156i
\(933\) −30.8996 −1.01161
\(934\) −33.5548 58.1186i −1.09795 1.90170i
\(935\) 2.62212 4.54165i 0.0857526 0.148528i
\(936\) 2.14929 4.21038i 0.0702519 0.137620i
\(937\) 30.6536 1.00141 0.500705 0.865618i \(-0.333074\pi\)
0.500705 + 0.865618i \(0.333074\pi\)
\(938\) −7.41699 1.33616i −0.242173 0.0436272i
\(939\) 3.74574 6.48782i 0.122238 0.211722i
\(940\) −13.7561 + 23.8262i −0.448673 + 0.777125i
\(941\) 4.34815 7.53122i 0.141746 0.245511i −0.786408 0.617707i \(-0.788062\pi\)
0.928154 + 0.372196i \(0.121395\pi\)
\(942\) 33.7274 1.09890
\(943\) 3.69084 6.39272i 0.120190 0.208176i
\(944\) 23.9237 0.778651
\(945\) 10.3516 + 1.86483i 0.336738 + 0.0606629i
\(946\) −0.303651 + 0.525938i −0.00987254 + 0.0170997i
\(947\) −11.4722 −0.372796 −0.186398 0.982474i \(-0.559681\pi\)
−0.186398 + 0.982474i \(0.559681\pi\)
\(948\) −4.90348 + 8.49307i −0.159258 + 0.275842i
\(949\) 27.0435 52.9771i 0.877869 1.71971i
\(950\) 68.1250 + 117.996i 2.21027 + 3.82830i
\(951\) 8.11402 14.0539i 0.263115 0.455729i
\(952\) 10.3060 12.1903i 0.334021 0.395089i
\(953\) −23.1731 40.1370i −0.750650 1.30016i −0.947508 0.319731i \(-0.896407\pi\)
0.196859 0.980432i \(-0.436926\pi\)
\(954\) −1.03927 1.80006i −0.0336475 0.0582792i
\(955\) −44.1181 −1.42763
\(956\) −6.11774 −0.197862
\(957\) −0.120898 0.209401i −0.00390807 0.00676897i
\(958\) −26.0607 45.1384i −0.841983 1.45836i
\(959\) 2.57876 3.05024i 0.0832727 0.0984972i
\(960\) −3.05165 + 5.28562i −0.0984916 + 0.170593i
\(961\) 15.4094 + 26.6898i 0.497077 + 0.860963i
\(962\) −28.4406 + 1.46900i −0.916961 + 0.0473626i
\(963\) −7.25279 + 12.5622i −0.233718 + 0.404811i
\(964\) 13.2909 0.428071
\(965\) −0.966511 + 1.67405i −0.0311131 + 0.0538894i
\(966\) 34.1123 + 6.14528i 1.09754 + 0.197721i
\(967\) 8.71419 0.280229 0.140115 0.990135i \(-0.455253\pi\)
0.140115 + 0.990135i \(0.455253\pi\)
\(968\) −7.15718 + 12.3966i −0.230040 + 0.398442i
\(969\) 32.0632 1.03002
\(970\) −68.5149 + 118.671i −2.19988 + 3.81031i
\(971\) −20.0281 + 34.6897i −0.642733 + 1.11325i 0.342087 + 0.939668i \(0.388866\pi\)
−0.984820 + 0.173578i \(0.944467\pi\)
\(972\) −0.637789 + 1.10468i −0.0204571 + 0.0354327i
\(973\) 10.5264 + 1.89632i 0.337461 + 0.0607931i
\(974\) −24.8499 −0.796243
\(975\) 38.9054 2.00953i 1.24597 0.0643565i
\(976\) 20.1110 34.8333i 0.643738 1.11499i
\(977\) 21.1533 + 36.6387i 0.676755 + 1.17217i 0.975953 + 0.217983i \(0.0699478\pi\)
−0.299197 + 0.954191i \(0.596719\pi\)
\(978\) 19.3750 0.619543
\(979\) −0.317572 0.550050i −0.0101496 0.0175797i
\(980\) 27.3611 22.6154i 0.874017 0.722422i
\(981\) 2.09694 + 3.63200i 0.0669500 + 0.115961i
\(982\) 24.9095 43.1445i 0.794893 1.37680i
\(983\) 2.44395 4.23305i 0.0779501 0.135013i −0.824415 0.565985i \(-0.808496\pi\)
0.902365 + 0.430972i \(0.141829\pi\)
\(984\) −1.33702 −0.0426226
\(985\) −67.8872 −2.16307
\(986\) −3.51264 + 6.08407i −0.111865 + 0.193756i
\(987\) −4.85935 13.5064i −0.154675 0.429913i
\(988\) 14.5695 28.5410i 0.463517 0.908009i
\(989\) −4.23667 7.33813i −0.134718 0.233339i
\(990\) −1.03126 1.78619i −0.0327755 0.0567688i
\(991\) 9.29795 + 16.1045i 0.295359 + 0.511577i 0.975068 0.221905i \(-0.0712273\pi\)
−0.679709 + 0.733482i \(0.737894\pi\)
\(992\) 1.33878 2.31883i 0.0425062 0.0736229i
\(993\) 5.58434 0.177214
\(994\) −30.3837 5.47358i −0.963712 0.173612i
\(995\) 46.0560 + 79.7713i 1.46007 + 2.52892i
\(996\) −8.53922 14.7904i −0.270575 0.468650i
\(997\) −25.6363 −0.811909 −0.405954 0.913893i \(-0.633061\pi\)
−0.405954 + 0.913893i \(0.633061\pi\)
\(998\) 3.52138 + 6.09921i 0.111467 + 0.193067i
\(999\) −4.36416 −0.138076
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 273.2.l.c.256.8 yes 20
3.2 odd 2 819.2.s.f.802.3 20
7.2 even 3 273.2.j.c.100.3 20
13.3 even 3 273.2.j.c.172.3 yes 20
21.2 odd 6 819.2.n.f.100.8 20
39.29 odd 6 819.2.n.f.172.8 20
91.16 even 3 inner 273.2.l.c.16.8 yes 20
273.107 odd 6 819.2.s.f.289.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.j.c.100.3 20 7.2 even 3
273.2.j.c.172.3 yes 20 13.3 even 3
273.2.l.c.16.8 yes 20 91.16 even 3 inner
273.2.l.c.256.8 yes 20 1.1 even 1 trivial
819.2.n.f.100.8 20 21.2 odd 6
819.2.n.f.172.8 20 39.29 odd 6
819.2.s.f.289.3 20 273.107 odd 6
819.2.s.f.802.3 20 3.2 odd 2