Newspace parameters
Level: | \( N \) | \(=\) | \( 273 = 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 273.l (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.17991597518\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{16} + 11 x^{14} - 4 x^{13} + 87 x^{12} - 35 x^{11} + 326 x^{10} - 205 x^{9} + 895 x^{8} - 481 x^{7} + 1005 x^{6} - 544 x^{5} + 811 x^{4} - 312 x^{3} + 195 x^{2} + 13 x + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} + 11 x^{14} - 4 x^{13} + 87 x^{12} - 35 x^{11} + 326 x^{10} - 205 x^{9} + 895 x^{8} - 481 x^{7} + 1005 x^{6} - 544 x^{5} + 811 x^{4} - 312 x^{3} + 195 x^{2} + 13 x + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 850102445244 \nu^{15} - 602738721141 \nu^{14} - 9256957678228 \nu^{13} - 3074932976676 \nu^{12} - 70844833728257 \nu^{11} + \cdots - 13972229088464 ) / 200652098581830 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 945658852056 \nu^{15} + 5453415441339 \nu^{14} + 13517776750957 \nu^{13} + 52870958416314 \nu^{12} + \cdots - 611267573740024 ) / 200652098581830 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 1548397573197 \nu^{15} + 5359246221883 \nu^{14} + 19993119508609 \nu^{13} + 49756879408343 \nu^{12} + \cdots - 10161380439778 ) / 200652098581830 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 3810848648686 \nu^{15} + 2398500018441 \nu^{14} - 35957350192522 \nu^{13} + 44493471781581 \nu^{12} + \cdots - 8612982866581 ) / 200652098581830 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 22240023182504 \nu^{15} + 33095488971866 \nu^{14} + 219131096234958 \nu^{13} + 229934387339641 \nu^{12} + \cdots - 24\!\cdots\!91 ) / 601956295745490 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 23960698558757 \nu^{15} + 80722315132867 \nu^{14} - 248272416035934 \nu^{13} + 945357317741162 \nu^{12} + \cdots - 15\!\cdots\!87 ) / 601956295745490 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 1778153235146 \nu^{15} + 3078673249492 \nu^{14} - 23056845757699 \nu^{13} + 36844479871649 \nu^{12} + \cdots + 13468531477239 ) / 40130419716366 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 13972229088464 \nu^{15} - 850102445244 \nu^{14} + 153091781251963 \nu^{13} - 65145874032084 \nu^{12} + \cdots + 174261731510394 ) / 200652098581830 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 78334216662179 \nu^{15} + 42305988951004 \nu^{14} - 796493782907553 \nu^{13} + 800506448243009 \nu^{12} + \cdots - 15\!\cdots\!24 ) / 601956295745490 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 40582993882149 \nu^{15} + 45466225490261 \nu^{14} + 457612339093228 \nu^{13} + 320116699841551 \nu^{12} + \cdots + 541126055004554 ) / 200652098581830 \)
|
\(\beta_{12}\) | \(=\) |
\( ( - 24469220650027 \nu^{15} + 15238766802188 \nu^{14} - 263471571349674 \nu^{13} + 261485413803346 \nu^{12} + \cdots - 273843217222007 ) / 120391259149098 \)
|
\(\beta_{13}\) | \(=\) |
\( ( - 131547920533543 \nu^{15} + 66691456016783 \nu^{14} + \cdots + 20950999529842 ) / 601956295745490 \)
|
\(\beta_{14}\) | \(=\) |
\( ( 46673194766134 \nu^{15} + 504608087166 \nu^{14} + 508750470699368 \nu^{13} - 187060135461519 \nu^{12} + \cdots - 79869396342261 ) / 200652098581830 \)
|
\(\beta_{15}\) | \(=\) |
\( ( - 140712016641263 \nu^{15} - 74541657903737 \nu^{14} + \cdots + 431512462062377 ) / 601956295745490 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{14} - 3\beta_{9} + \beta_{5} - \beta_{3} \)
|
\(\nu^{3}\) | \(=\) |
\( -\beta_{13} + \beta_{12} - \beta_{6} + \beta_{3} - 4\beta_{2} - 3\beta _1 + 1 \)
|
\(\nu^{4}\) | \(=\) |
\( - \beta_{15} - 7 \beta_{14} - \beta_{13} + \beta_{12} - \beta_{10} + 15 \beta_{9} - \beta_{8} - 6 \beta_{5} + 6 \beta_{4} + \beta _1 - 15 \)
|
\(\nu^{5}\) | \(=\) |
\( - \beta_{15} + 8 \beta_{14} + 9 \beta_{13} - \beta_{12} - \beta_{11} - 8 \beta_{9} + \beta_{8} - 8 \beta_{7} + 8 \beta_{6} + \beta_{5} - 8 \beta_{3} + 20 \beta_{2} - 8 \beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( 11 \beta_{15} - \beta_{13} - \beta_{12} + 10 \beta_{11} + 2 \beta_{10} - 9 \beta_{7} + \beta_{6} - 34 \beta_{4} + 45 \beta_{3} - 10 \beta_{2} - 11 \beta _1 + 84 \)
|
\(\nu^{7}\) | \(=\) |
\( - \beta_{15} - 56 \beta_{14} - \beta_{13} - 41 \beta_{12} - 13 \beta_{10} + 56 \beta_{9} - 12 \beta_{8} + 54 \beta_{7} - 10 \beta_{5} + 10 \beta_{4} + 111 \beta _1 - 56 \)
|
\(\nu^{8}\) | \(=\) |
\( - 24 \beta_{15} + 286 \beta_{14} + 81 \beta_{13} - 78 \beta_{12} - 78 \beta_{11} + 65 \beta_{10} - 494 \beta_{9} + 78 \beta_{8} + 62 \beta_{7} - 8 \beta_{6} + 198 \beta_{5} - 286 \beta_{3} + 77 \beta_{2} + 8 \beta_1 \)
|
\(\nu^{9}\) | \(=\) |
\( 118 \beta_{15} - 437 \beta_{13} + 335 \beta_{12} + 105 \beta_{11} + 102 \beta_{10} - 16 \beta_{7} - 335 \beta_{6} - 79 \beta_{4} + 382 \beta_{3} - 651 \beta_{2} - 316 \beta _1 + 382 \)
|
\(\nu^{10}\) | \(=\) |
\( - 437 \beta_{15} - 1818 \beta_{14} - 437 \beta_{13} + 594 \beta_{12} - 644 \beta_{10} + 2986 \beta_{9} - 555 \beta_{8} + 50 \beta_{7} - 1184 \beta_{5} + 1184 \beta_{4} + 547 \beta _1 - 2986 \)
|
\(\nu^{11}\) | \(=\) |
\( - 762 \beta_{15} + 2583 \beta_{14} + 3017 \beta_{13} - 812 \beta_{12} - 812 \beta_{11} + 168 \beta_{10} - 2596 \beta_{9} + 812 \beta_{8} - 2037 \beta_{7} + 2087 \beta_{6} + 587 \beta_{5} - 2583 \beta_{3} + \cdots - 2087 \beta_1 \)
|
\(\nu^{12}\) | \(=\) |
\( 4423 \beta_{15} - 1476 \beta_{13} - 98 \beta_{12} + 3779 \beta_{11} + 1574 \beta_{10} - 2849 \beta_{7} + 98 \beta_{6} - 7211 \beta_{4} + 11577 \beta_{3} - 3777 \beta_{2} - 3875 \beta _1 + 18359 \)
|
\(\nu^{13}\) | \(=\) |
\( - 1476 \beta_{15} - 17376 \beta_{14} - 1476 \beta_{13} - 7051 \beta_{12} - 6829 \beta_{10} + 17658 \beta_{9} - 5899 \beta_{8} + 13880 \beta_{7} - 4266 \beta_{5} + 4266 \beta_{4} + 24295 \beta _1 - 17658 \)
|
\(\nu^{14}\) | \(=\) |
\( - 11252 \beta_{15} + 73854 \beta_{14} + 30104 \beta_{13} - 25132 \beta_{12} - 25132 \beta_{11} + 18303 \beta_{10} - 114139 \beta_{9} + 25132 \beta_{8} + 13331 \beta_{7} + 549 \beta_{6} + 44456 \beta_{5} + \cdots - 549 \beta_1 \)
|
\(\nu^{15}\) | \(=\) |
\( 48185 \beta_{15} - 116740 \beta_{13} + 80356 \beta_{12} + 41356 \beta_{11} + 36384 \beta_{10} - 11801 \beta_{7} - 80356 \beta_{6} - 30616 \beta_{4} + 116428 \beta_{3} - 151544 \beta_{2} + \cdots + 120172 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).
\(n\) | \(92\) | \(106\) | \(157\) |
\(\chi(n)\) | \(1\) | \(-\beta_{9}\) | \(-\beta_{9}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 |
|
−2.43414 | 0.500000 | − | 0.866025i | 3.92506 | −0.613891 | + | 1.06329i | −1.21707 | + | 2.10803i | 2.20121 | + | 1.46788i | −4.68588 | −0.500000 | − | 0.866025i | 1.49430 | − | 2.58820i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
16.2 | −1.71502 | 0.500000 | − | 0.866025i | 0.941295 | 1.22863 | − | 2.12806i | −0.857510 | + | 1.48525i | −2.38702 | − | 1.14112i | 1.81570 | −0.500000 | − | 0.866025i | −2.10713 | + | 3.64966i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
16.3 | −0.831251 | 0.500000 | − | 0.866025i | −1.30902 | −1.30847 | + | 2.26634i | −0.415625 | + | 0.719884i | 1.78280 | − | 1.95490i | 2.75063 | −0.500000 | − | 0.866025i | 1.08767 | − | 1.88389i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
16.4 | −0.758480 | 0.500000 | − | 0.866025i | −1.42471 | −0.357869 | + | 0.619848i | −0.379240 | + | 0.656863i | −1.32400 | + | 2.29064i | 2.59757 | −0.500000 | − | 0.866025i | 0.271437 | − | 0.470142i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
16.5 | 0.0680360 | 0.500000 | − | 0.866025i | −1.99537 | 1.52954 | − | 2.64923i | 0.0340180 | − | 0.0589209i | 0.910236 | + | 2.48424i | −0.271829 | −0.500000 | − | 0.866025i | 0.104063 | − | 0.180243i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
16.6 | 1.06556 | 0.500000 | − | 0.866025i | −0.864591 | 1.19023 | − | 2.06154i | 0.532778 | − | 0.922798i | −0.813611 | − | 2.51755i | −3.05238 | −0.500000 | − | 0.866025i | 1.26826 | − | 2.19668i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
16.7 | 2.05474 | 0.500000 | − | 0.866025i | 2.22196 | −0.274662 | + | 0.475728i | 1.02737 | − | 1.77946i | 2.59269 | − | 0.527227i | 0.456078 | −0.500000 | − | 0.866025i | −0.564359 | + | 0.977499i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
16.8 | 2.55056 | 0.500000 | − | 0.866025i | 4.50537 | −1.39351 | + | 2.41363i | 1.27528 | − | 2.20885i | −2.46231 | − | 0.968004i | 6.39011 | −0.500000 | − | 0.866025i | −3.55423 | + | 6.15611i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
256.1 | −2.43414 | 0.500000 | + | 0.866025i | 3.92506 | −0.613891 | − | 1.06329i | −1.21707 | − | 2.10803i | 2.20121 | − | 1.46788i | −4.68588 | −0.500000 | + | 0.866025i | 1.49430 | + | 2.58820i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
256.2 | −1.71502 | 0.500000 | + | 0.866025i | 0.941295 | 1.22863 | + | 2.12806i | −0.857510 | − | 1.48525i | −2.38702 | + | 1.14112i | 1.81570 | −0.500000 | + | 0.866025i | −2.10713 | − | 3.64966i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
256.3 | −0.831251 | 0.500000 | + | 0.866025i | −1.30902 | −1.30847 | − | 2.26634i | −0.415625 | − | 0.719884i | 1.78280 | + | 1.95490i | 2.75063 | −0.500000 | + | 0.866025i | 1.08767 | + | 1.88389i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
256.4 | −0.758480 | 0.500000 | + | 0.866025i | −1.42471 | −0.357869 | − | 0.619848i | −0.379240 | − | 0.656863i | −1.32400 | − | 2.29064i | 2.59757 | −0.500000 | + | 0.866025i | 0.271437 | + | 0.470142i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
256.5 | 0.0680360 | 0.500000 | + | 0.866025i | −1.99537 | 1.52954 | + | 2.64923i | 0.0340180 | + | 0.0589209i | 0.910236 | − | 2.48424i | −0.271829 | −0.500000 | + | 0.866025i | 0.104063 | + | 0.180243i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
256.6 | 1.06556 | 0.500000 | + | 0.866025i | −0.864591 | 1.19023 | + | 2.06154i | 0.532778 | + | 0.922798i | −0.813611 | + | 2.51755i | −3.05238 | −0.500000 | + | 0.866025i | 1.26826 | + | 2.19668i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
256.7 | 2.05474 | 0.500000 | + | 0.866025i | 2.22196 | −0.274662 | − | 0.475728i | 1.02737 | + | 1.77946i | 2.59269 | + | 0.527227i | 0.456078 | −0.500000 | + | 0.866025i | −0.564359 | − | 0.977499i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
256.8 | 2.55056 | 0.500000 | + | 0.866025i | 4.50537 | −1.39351 | − | 2.41363i | 1.27528 | + | 2.20885i | −2.46231 | + | 0.968004i | 6.39011 | −0.500000 | + | 0.866025i | −3.55423 | − | 6.15611i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
91.h | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 273.2.l.b | yes | 16 |
3.b | odd | 2 | 1 | 819.2.s.e | 16 | ||
7.c | even | 3 | 1 | 273.2.j.b | ✓ | 16 | |
13.c | even | 3 | 1 | 273.2.j.b | ✓ | 16 | |
21.h | odd | 6 | 1 | 819.2.n.e | 16 | ||
39.i | odd | 6 | 1 | 819.2.n.e | 16 | ||
91.h | even | 3 | 1 | inner | 273.2.l.b | yes | 16 |
273.s | odd | 6 | 1 | 819.2.s.e | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
273.2.j.b | ✓ | 16 | 7.c | even | 3 | 1 | |
273.2.j.b | ✓ | 16 | 13.c | even | 3 | 1 | |
273.2.l.b | yes | 16 | 1.a | even | 1 | 1 | trivial |
273.2.l.b | yes | 16 | 91.h | even | 3 | 1 | inner |
819.2.n.e | 16 | 21.h | odd | 6 | 1 | ||
819.2.n.e | 16 | 39.i | odd | 6 | 1 | ||
819.2.s.e | 16 | 3.b | odd | 2 | 1 | ||
819.2.s.e | 16 | 273.s | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} - 11T_{2}^{6} - 2T_{2}^{5} + 34T_{2}^{4} + 13T_{2}^{3} - 26T_{2}^{2} - 13T_{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(273, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{8} - 11 T^{6} - 2 T^{5} + 34 T^{4} + \cdots + 1)^{2} \)
$3$
\( (T^{2} - T + 1)^{8} \)
$5$
\( T^{16} + 19 T^{14} + 10 T^{13} + \cdots + 3969 \)
$7$
\( T^{16} - T^{15} - 3 T^{14} + \cdots + 5764801 \)
$11$
\( T^{16} + 2 T^{15} + 45 T^{14} + \cdots + 1290496 \)
$13$
\( T^{16} - 5 T^{15} + 6 T^{14} + \cdots + 815730721 \)
$17$
\( (T^{8} - 2 T^{7} - 68 T^{6} + 92 T^{5} + \cdots + 6257)^{2} \)
$19$
\( T^{16} + 11 T^{15} + 133 T^{14} + \cdots + 37161216 \)
$23$
\( (T^{8} + 4 T^{7} - 50 T^{6} - 158 T^{5} + \cdots - 153)^{2} \)
$29$
\( T^{16} - 15 T^{15} + \cdots + 539772289 \)
$31$
\( T^{16} - 3 T^{15} + \cdots + 1771652281 \)
$37$
\( (T^{8} + 4 T^{7} - 119 T^{6} - 333 T^{5} + \cdots - 1999)^{2} \)
$41$
\( T^{16} - 19 T^{15} + \cdots + 8083371138129 \)
$43$
\( T^{16} - 11 T^{15} + 209 T^{14} + \cdots + 99740169 \)
$47$
\( T^{16} - 5 T^{15} + \cdots + 67950412929 \)
$53$
\( T^{16} - 36 T^{15} + \cdots + 9921384931329 \)
$59$
\( (T^{8} - 17 T^{7} - 66 T^{6} + \cdots + 441561)^{2} \)
$61$
\( T^{16} + 22 T^{15} + \cdots + 124397290000 \)
$67$
\( T^{16} - 26 T^{15} + \cdots + 2264374886656 \)
$71$
\( T^{16} - 9 T^{15} + \cdots + 83773776969 \)
$73$
\( T^{16} + \cdots + 160073179912009 \)
$79$
\( T^{16} - 16 T^{15} + \cdots + 131635449856 \)
$83$
\( (T^{8} - 18 T^{7} - 196 T^{6} + \cdots - 5580400)^{2} \)
$89$
\( (T^{8} + 20 T^{7} - 82 T^{6} + \cdots + 683431)^{2} \)
$97$
\( T^{16} + \cdots + 575206497472369 \)
show more
show less