# Properties

 Label 273.2.k.d.211.1 Level $273$ Weight $2$ Character 273.211 Analytic conductor $2.180$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [273,2,Mod(22,273)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(273, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 0, 4]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("273.22");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$273 = 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 273.k (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$2.17991597518$$ Analytic rank: $$0$$ Dimension: $$6$$ Relative dimension: $$3$$ over $$\Q(\zeta_{3})$$ Coefficient field: 6.0.771147.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{6} - x^{5} + 5x^{4} + 6x^{3} + 15x^{2} + 4x + 1$$ x^6 - x^5 + 5*x^4 + 6*x^3 + 15*x^2 + 4*x + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 211.1 Root $$-0.136945 - 0.237196i$$ of defining polynomial Character $$\chi$$ $$=$$ 273.211 Dual form 273.2.k.d.22.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.825547 - 1.42989i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.363055 + 0.628829i) q^{4} +2.92498 q^{5} +(0.825547 - 1.42989i) q^{6} +(0.500000 - 0.866025i) q^{7} -2.10331 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})$$ $$q+(-0.825547 - 1.42989i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.363055 + 0.628829i) q^{4} +2.92498 q^{5} +(0.825547 - 1.42989i) q^{6} +(0.500000 - 0.866025i) q^{7} -2.10331 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-2.41471 - 4.18240i) q^{10} +(2.18860 + 3.79077i) q^{11} -0.726109 q^{12} +(2.56580 - 2.53311i) q^{13} -1.65109 q^{14} +(1.46249 + 2.53311i) q^{15} +(2.46249 + 4.26516i) q^{16} +(-1.82555 + 3.16194i) q^{17} +1.65109 q^{18} +(2.87720 - 4.98346i) q^{19} +(-1.06193 + 1.83932i) q^{20} +1.00000 q^{21} +(3.61359 - 6.25891i) q^{22} +(-3.51415 - 6.08668i) q^{23} +(-1.05166 - 1.82152i) q^{24} +3.55553 q^{25} +(-5.74026 - 1.57761i) q^{26} -1.00000 q^{27} +(0.363055 + 0.628829i) q^{28} +(-0.599437 - 1.03826i) q^{29} +(2.41471 - 4.18240i) q^{30} -6.47277 q^{31} +(1.96249 - 3.39914i) q^{32} +(-2.18860 + 3.79077i) q^{33} +6.02830 q^{34} +(1.46249 - 2.53311i) q^{35} +(-0.363055 - 0.628829i) q^{36} +(1.46249 + 2.53311i) q^{37} -9.50106 q^{38} +(3.47664 + 0.955496i) q^{39} -6.15215 q^{40} +(4.30219 + 7.45161i) q^{41} +(-0.825547 - 1.42989i) q^{42} +(2.86305 - 4.95896i) q^{43} -3.17833 q^{44} +(-1.46249 + 2.53311i) q^{45} +(-5.80219 + 10.0497i) q^{46} -9.58383 q^{47} +(-2.46249 + 4.26516i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(-2.93526 - 5.08401i) q^{50} -3.65109 q^{51} +(0.661367 + 2.53311i) q^{52} -0.302187 q^{53} +(0.825547 + 1.42989i) q^{54} +(6.40162 + 11.0879i) q^{55} +(-1.05166 + 1.82152i) q^{56} +5.75441 q^{57} +(-0.989727 + 1.71426i) q^{58} +(-1.51415 + 2.62258i) q^{59} -2.12386 q^{60} +(0.151093 - 0.261701i) q^{61} +(5.34357 + 9.25533i) q^{62} +(0.500000 + 0.866025i) q^{63} +3.36945 q^{64} +(7.50494 - 7.40931i) q^{65} +7.22717 q^{66} +(4.35384 + 7.54108i) q^{67} +(-1.32555 - 2.29591i) q^{68} +(3.51415 - 6.08668i) q^{69} -4.82942 q^{70} +(-6.76855 + 11.7235i) q^{71} +(1.05166 - 1.82152i) q^{72} +0.932734 q^{73} +(2.41471 - 4.18240i) q^{74} +(1.77777 + 3.07918i) q^{75} +(2.08916 + 3.61854i) q^{76} +4.37720 q^{77} +(-1.50388 - 5.76002i) q^{78} -16.9426 q^{79} +(7.20275 + 12.4755i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(7.10331 - 12.3033i) q^{82} -1.26614 q^{83} +(-0.363055 + 0.628829i) q^{84} +(-5.33969 + 9.24862i) q^{85} -9.45434 q^{86} +(0.599437 - 1.03826i) q^{87} +(-4.60331 - 7.97317i) q^{88} +(6.69887 + 11.6028i) q^{89} +4.82942 q^{90} +(-0.910836 - 3.48861i) q^{91} +5.10331 q^{92} +(-3.23638 - 5.60558i) q^{93} +(7.91190 + 13.7038i) q^{94} +(8.41577 - 14.5765i) q^{95} +3.92498 q^{96} +(-5.96249 + 10.3273i) q^{97} +(-0.825547 + 1.42989i) q^{98} -4.37720 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q + 2 q^{2} + 3 q^{3} - 4 q^{4} - 2 q^{6} + 3 q^{7} - 6 q^{8} - 3 q^{9}+O(q^{10})$$ 6 * q + 2 * q^2 + 3 * q^3 - 4 * q^4 - 2 * q^6 + 3 * q^7 - 6 * q^8 - 3 * q^9 $$6 q + 2 q^{2} + 3 q^{3} - 4 q^{4} - 2 q^{6} + 3 q^{7} - 6 q^{8} - 3 q^{9} - 13 q^{10} + 8 q^{11} - 8 q^{12} + 4 q^{14} + 6 q^{16} - 4 q^{17} - 4 q^{18} + 7 q^{19} + 13 q^{20} + 6 q^{21} - q^{22} - 9 q^{23} - 3 q^{24} + 22 q^{25} - 26 q^{26} - 6 q^{27} + 4 q^{28} + 7 q^{29} + 13 q^{30} - 14 q^{31} + 3 q^{32} - 8 q^{33} + 12 q^{34} - 4 q^{36} - 8 q^{38} + 26 q^{40} - 2 q^{41} + 2 q^{42} + 19 q^{43} - 30 q^{44} - 7 q^{46} - 34 q^{47} - 6 q^{48} - 3 q^{49} + 16 q^{50} - 8 q^{51} - 26 q^{52} + 26 q^{53} - 2 q^{54} - 3 q^{56} + 14 q^{57} - 22 q^{58} + 3 q^{59} + 26 q^{60} - 13 q^{61} + 17 q^{62} + 3 q^{63} + 2 q^{64} - 2 q^{66} - 5 q^{67} - q^{68} + 9 q^{69} - 26 q^{70} - 8 q^{71} + 3 q^{72} - 4 q^{73} + 13 q^{74} + 11 q^{75} + 18 q^{76} + 16 q^{77} - 13 q^{78} - 2 q^{79} + 26 q^{80} - 3 q^{81} + 36 q^{82} + 4 q^{83} - 4 q^{84} - 13 q^{85} + 34 q^{86} - 7 q^{87} - 21 q^{88} + 19 q^{89} + 26 q^{90} + 24 q^{92} - 7 q^{93} - 7 q^{94} + 6 q^{96} - 27 q^{97} + 2 q^{98} - 16 q^{99}+O(q^{100})$$ 6 * q + 2 * q^2 + 3 * q^3 - 4 * q^4 - 2 * q^6 + 3 * q^7 - 6 * q^8 - 3 * q^9 - 13 * q^10 + 8 * q^11 - 8 * q^12 + 4 * q^14 + 6 * q^16 - 4 * q^17 - 4 * q^18 + 7 * q^19 + 13 * q^20 + 6 * q^21 - q^22 - 9 * q^23 - 3 * q^24 + 22 * q^25 - 26 * q^26 - 6 * q^27 + 4 * q^28 + 7 * q^29 + 13 * q^30 - 14 * q^31 + 3 * q^32 - 8 * q^33 + 12 * q^34 - 4 * q^36 - 8 * q^38 + 26 * q^40 - 2 * q^41 + 2 * q^42 + 19 * q^43 - 30 * q^44 - 7 * q^46 - 34 * q^47 - 6 * q^48 - 3 * q^49 + 16 * q^50 - 8 * q^51 - 26 * q^52 + 26 * q^53 - 2 * q^54 - 3 * q^56 + 14 * q^57 - 22 * q^58 + 3 * q^59 + 26 * q^60 - 13 * q^61 + 17 * q^62 + 3 * q^63 + 2 * q^64 - 2 * q^66 - 5 * q^67 - q^68 + 9 * q^69 - 26 * q^70 - 8 * q^71 + 3 * q^72 - 4 * q^73 + 13 * q^74 + 11 * q^75 + 18 * q^76 + 16 * q^77 - 13 * q^78 - 2 * q^79 + 26 * q^80 - 3 * q^81 + 36 * q^82 + 4 * q^83 - 4 * q^84 - 13 * q^85 + 34 * q^86 - 7 * q^87 - 21 * q^88 + 19 * q^89 + 26 * q^90 + 24 * q^92 - 7 * q^93 - 7 * q^94 + 6 * q^96 - 27 * q^97 + 2 * q^98 - 16 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/273\mathbb{Z}\right)^\times$$.

 $$n$$ $$92$$ $$106$$ $$157$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.825547 1.42989i −0.583750 1.01108i −0.995030 0.0995752i $$-0.968252\pi$$
0.411280 0.911509i $$-0.365082\pi$$
$$3$$ 0.500000 + 0.866025i 0.288675 + 0.500000i
$$4$$ −0.363055 + 0.628829i −0.181527 + 0.314415i
$$5$$ 2.92498 1.30809 0.654046 0.756455i $$-0.273070\pi$$
0.654046 + 0.756455i $$0.273070\pi$$
$$6$$ 0.825547 1.42989i 0.337028 0.583750i
$$7$$ 0.500000 0.866025i 0.188982 0.327327i
$$8$$ −2.10331 −0.743633
$$9$$ −0.500000 + 0.866025i −0.166667 + 0.288675i
$$10$$ −2.41471 4.18240i −0.763599 1.32259i
$$11$$ 2.18860 + 3.79077i 0.659888 + 1.14296i 0.980644 + 0.195798i $$0.0627297\pi$$
−0.320756 + 0.947162i $$0.603937\pi$$
$$12$$ −0.726109 −0.209610
$$13$$ 2.56580 2.53311i 0.711626 0.702558i
$$14$$ −1.65109 −0.441273
$$15$$ 1.46249 + 2.53311i 0.377614 + 0.654046i
$$16$$ 2.46249 + 4.26516i 0.615623 + 1.06629i
$$17$$ −1.82555 + 3.16194i −0.442760 + 0.766883i −0.997893 0.0648786i $$-0.979334\pi$$
0.555133 + 0.831762i $$0.312667\pi$$
$$18$$ 1.65109 0.389166
$$19$$ 2.87720 4.98346i 0.660076 1.14328i −0.320520 0.947242i $$-0.603858\pi$$
0.980595 0.196043i $$-0.0628091\pi$$
$$20$$ −1.06193 + 1.83932i −0.237455 + 0.411283i
$$21$$ 1.00000 0.218218
$$22$$ 3.61359 6.25891i 0.770419 1.33440i
$$23$$ −3.51415 6.08668i −0.732751 1.26916i −0.955703 0.294332i $$-0.904903\pi$$
0.222953 0.974829i $$-0.428430\pi$$
$$24$$ −1.05166 1.82152i −0.214668 0.371817i
$$25$$ 3.55553 0.711106
$$26$$ −5.74026 1.57761i −1.12576 0.309396i
$$27$$ −1.00000 −0.192450
$$28$$ 0.363055 + 0.628829i 0.0686109 + 0.118838i
$$29$$ −0.599437 1.03826i −0.111313 0.192799i 0.804987 0.593292i $$-0.202172\pi$$
−0.916300 + 0.400493i $$0.868839\pi$$
$$30$$ 2.41471 4.18240i 0.440864 0.763599i
$$31$$ −6.47277 −1.16254 −0.581271 0.813710i $$-0.697445\pi$$
−0.581271 + 0.813710i $$0.697445\pi$$
$$32$$ 1.96249 3.39914i 0.346923 0.600888i
$$33$$ −2.18860 + 3.79077i −0.380987 + 0.659888i
$$34$$ 6.02830 1.03384
$$35$$ 1.46249 2.53311i 0.247206 0.428174i
$$36$$ −0.363055 0.628829i −0.0605091 0.104805i
$$37$$ 1.46249 + 2.53311i 0.240432 + 0.416441i 0.960837 0.277113i $$-0.0893775\pi$$
−0.720405 + 0.693553i $$0.756044\pi$$
$$38$$ −9.50106 −1.54128
$$39$$ 3.47664 + 0.955496i 0.556708 + 0.153002i
$$40$$ −6.15215 −0.972741
$$41$$ 4.30219 + 7.45161i 0.671889 + 1.16375i 0.977368 + 0.211547i $$0.0678500\pi$$
−0.305479 + 0.952199i $$0.598817\pi$$
$$42$$ −0.825547 1.42989i −0.127385 0.220637i
$$43$$ 2.86305 4.95896i 0.436612 0.756234i −0.560814 0.827942i $$-0.689512\pi$$
0.997426 + 0.0717081i $$0.0228450\pi$$
$$44$$ −3.17833 −0.479151
$$45$$ −1.46249 + 2.53311i −0.218015 + 0.377614i
$$46$$ −5.80219 + 10.0497i −0.855486 + 1.48174i
$$47$$ −9.58383 −1.39794 −0.698972 0.715149i $$-0.746359\pi$$
−0.698972 + 0.715149i $$0.746359\pi$$
$$48$$ −2.46249 + 4.26516i −0.355430 + 0.615623i
$$49$$ −0.500000 0.866025i −0.0714286 0.123718i
$$50$$ −2.93526 5.08401i −0.415108 0.718988i
$$51$$ −3.65109 −0.511255
$$52$$ 0.661367 + 2.53311i 0.0917150 + 0.351279i
$$53$$ −0.302187 −0.0415086 −0.0207543 0.999785i $$-0.506607\pi$$
−0.0207543 + 0.999785i $$0.506607\pi$$
$$54$$ 0.825547 + 1.42989i 0.112343 + 0.194583i
$$55$$ 6.40162 + 11.0879i 0.863195 + 1.49510i
$$56$$ −1.05166 + 1.82152i −0.140533 + 0.243411i
$$57$$ 5.75441 0.762190
$$58$$ −0.989727 + 1.71426i −0.129958 + 0.225093i
$$59$$ −1.51415 + 2.62258i −0.197125 + 0.341431i −0.947595 0.319474i $$-0.896494\pi$$
0.750470 + 0.660905i $$0.229827\pi$$
$$60$$ −2.12386 −0.274189
$$61$$ 0.151093 0.261701i 0.0193455 0.0335074i −0.856191 0.516660i $$-0.827175\pi$$
0.875536 + 0.483153i $$0.160508\pi$$
$$62$$ 5.34357 + 9.25533i 0.678634 + 1.17543i
$$63$$ 0.500000 + 0.866025i 0.0629941 + 0.109109i
$$64$$ 3.36945 0.421182
$$65$$ 7.50494 7.40931i 0.930873 0.919011i
$$66$$ 7.22717 0.889603
$$67$$ 4.35384 + 7.54108i 0.531907 + 0.921289i 0.999306 + 0.0372431i $$0.0118576\pi$$
−0.467400 + 0.884046i $$0.654809\pi$$
$$68$$ −1.32555 2.29591i −0.160746 0.278420i
$$69$$ 3.51415 6.08668i 0.423054 0.732751i
$$70$$ −4.82942 −0.577226
$$71$$ −6.76855 + 11.7235i −0.803280 + 1.39132i 0.114167 + 0.993462i $$0.463580\pi$$
−0.917446 + 0.397859i $$0.869753\pi$$
$$72$$ 1.05166 1.82152i 0.123939 0.214668i
$$73$$ 0.932734 0.109168 0.0545841 0.998509i $$-0.482617\pi$$
0.0545841 + 0.998509i $$0.482617\pi$$
$$74$$ 2.41471 4.18240i 0.280704 0.486194i
$$75$$ 1.77777 + 3.07918i 0.205279 + 0.355553i
$$76$$ 2.08916 + 3.61854i 0.239644 + 0.415075i
$$77$$ 4.37720 0.498829
$$78$$ −1.50388 5.76002i −0.170280 0.652193i
$$79$$ −16.9426 −1.90619 −0.953096 0.302668i $$-0.902123\pi$$
−0.953096 + 0.302668i $$0.902123\pi$$
$$80$$ 7.20275 + 12.4755i 0.805292 + 1.39481i
$$81$$ −0.500000 0.866025i −0.0555556 0.0962250i
$$82$$ 7.10331 12.3033i 0.784430 1.35867i
$$83$$ −1.26614 −0.138977 −0.0694885 0.997583i $$-0.522137\pi$$
−0.0694885 + 0.997583i $$0.522137\pi$$
$$84$$ −0.363055 + 0.628829i −0.0396125 + 0.0686109i
$$85$$ −5.33969 + 9.24862i −0.579171 + 1.00315i
$$86$$ −9.45434 −1.01949
$$87$$ 0.599437 1.03826i 0.0642664 0.111313i
$$88$$ −4.60331 7.97317i −0.490715 0.849943i
$$89$$ 6.69887 + 11.6028i 0.710079 + 1.22989i 0.964827 + 0.262886i $$0.0846743\pi$$
−0.254748 + 0.967008i $$0.581992\pi$$
$$90$$ 4.82942 0.509066
$$91$$ −0.910836 3.48861i −0.0954815 0.365705i
$$92$$ 5.10331 0.532057
$$93$$ −3.23638 5.60558i −0.335597 0.581271i
$$94$$ 7.91190 + 13.7038i 0.816050 + 1.41344i
$$95$$ 8.41577 14.5765i 0.863440 1.49552i
$$96$$ 3.92498 0.400592
$$97$$ −5.96249 + 10.3273i −0.605399 + 1.04858i 0.386589 + 0.922252i $$0.373653\pi$$
−0.991988 + 0.126330i $$0.959680\pi$$
$$98$$ −0.825547 + 1.42989i −0.0833928 + 0.144441i
$$99$$ −4.37720 −0.439925
$$100$$ −1.29085 + 2.23582i −0.129085 + 0.223582i
$$101$$ −5.51415 9.55078i −0.548678 0.950339i −0.998365 0.0571525i $$-0.981798\pi$$
0.449687 0.893186i $$-0.351535\pi$$
$$102$$ 3.01415 + 5.22066i 0.298445 + 0.516922i
$$103$$ −19.4543 −1.91689 −0.958447 0.285272i $$-0.907916\pi$$
−0.958447 + 0.285272i $$0.907916\pi$$
$$104$$ −5.39669 + 5.32792i −0.529189 + 0.522446i
$$105$$ 2.92498 0.285449
$$106$$ 0.249469 + 0.432094i 0.0242306 + 0.0419686i
$$107$$ 0.711961 + 1.23315i 0.0688279 + 0.119213i 0.898386 0.439208i $$-0.144741\pi$$
−0.829558 + 0.558421i $$0.811407\pi$$
$$108$$ 0.363055 0.628829i 0.0349350 0.0605091i
$$109$$ −0.0467198 −0.00447494 −0.00223747 0.999997i $$-0.500712\pi$$
−0.00223747 + 0.999997i $$0.500712\pi$$
$$110$$ 10.5697 18.3072i 1.00778 1.74553i
$$111$$ −1.46249 + 2.53311i −0.138814 + 0.240432i
$$112$$ 4.92498 0.465367
$$113$$ 5.16912 8.95317i 0.486270 0.842244i −0.513606 0.858026i $$-0.671691\pi$$
0.999875 + 0.0157826i $$0.00502397\pi$$
$$114$$ −4.75053 8.22816i −0.444928 0.770638i
$$115$$ −10.2788 17.8035i −0.958506 1.66018i
$$116$$ 0.870514 0.0808252
$$117$$ 0.910836 + 3.48861i 0.0842068 + 0.322522i
$$118$$ 5.00000 0.460287
$$119$$ 1.82555 + 3.16194i 0.167348 + 0.289855i
$$120$$ −3.07608 5.32792i −0.280806 0.486371i
$$121$$ −4.07995 + 7.06668i −0.370905 + 0.642426i
$$122$$ −0.498939 −0.0451718
$$123$$ −4.30219 + 7.45161i −0.387915 + 0.671889i
$$124$$ 2.34997 4.07026i 0.211033 0.365520i
$$125$$ −4.22505 −0.377900
$$126$$ 0.825547 1.42989i 0.0735455 0.127385i
$$127$$ 2.73638 + 4.73955i 0.242815 + 0.420567i 0.961515 0.274753i $$-0.0885960\pi$$
−0.718700 + 0.695320i $$0.755263\pi$$
$$128$$ −6.70662 11.6162i −0.592787 1.02674i
$$129$$ 5.72611 0.504156
$$130$$ −16.7902 4.61450i −1.47259 0.404718i
$$131$$ 16.1706 1.41283 0.706415 0.707798i $$-0.250311\pi$$
0.706415 + 0.707798i $$0.250311\pi$$
$$132$$ −1.58916 2.75251i −0.138319 0.239576i
$$133$$ −2.87720 4.98346i −0.249485 0.432121i
$$134$$ 7.18860 12.4510i 0.621001 1.07560i
$$135$$ −2.92498 −0.251743
$$136$$ 3.83969 6.65055i 0.329251 0.570280i
$$137$$ 6.00881 10.4076i 0.513367 0.889178i −0.486512 0.873674i $$-0.661731\pi$$
0.999880 0.0155048i $$-0.00493551\pi$$
$$138$$ −11.6044 −0.987830
$$139$$ −0.674453 + 1.16819i −0.0572064 + 0.0990844i −0.893210 0.449639i $$-0.851553\pi$$
0.836004 + 0.548723i $$0.184886\pi$$
$$140$$ 1.06193 + 1.83932i 0.0897494 + 0.155451i
$$141$$ −4.79191 8.29984i −0.403552 0.698972i
$$142$$ 22.3510 1.87566
$$143$$ 15.2180 + 4.18240i 1.27259 + 0.349750i
$$144$$ −4.92498 −0.410415
$$145$$ −1.75334 3.03688i −0.145607 0.252199i
$$146$$ −0.770016 1.33371i −0.0637269 0.110378i
$$147$$ 0.500000 0.866025i 0.0412393 0.0714286i
$$148$$ −2.12386 −0.174580
$$149$$ 1.53751 2.66304i 0.125958 0.218165i −0.796149 0.605100i $$-0.793133\pi$$
0.922107 + 0.386935i $$0.126466\pi$$
$$150$$ 2.93526 5.08401i 0.239663 0.415108i
$$151$$ 16.6610 1.35585 0.677925 0.735131i $$-0.262879\pi$$
0.677925 + 0.735131i $$0.262879\pi$$
$$152$$ −6.05166 + 10.4818i −0.490854 + 0.850184i
$$153$$ −1.82555 3.16194i −0.147587 0.255628i
$$154$$ −3.61359 6.25891i −0.291191 0.504358i
$$155$$ −18.9327 −1.52071
$$156$$ −1.86305 + 1.83932i −0.149164 + 0.147263i
$$157$$ 12.8294 1.02390 0.511950 0.859015i $$-0.328923\pi$$
0.511950 + 0.859015i $$0.328923\pi$$
$$158$$ 13.9869 + 24.2260i 1.11274 + 1.92732i
$$159$$ −0.151093 0.261701i −0.0119825 0.0207543i
$$160$$ 5.74026 9.94242i 0.453807 0.786017i
$$161$$ −7.02830 −0.553907
$$162$$ −0.825547 + 1.42989i −0.0648611 + 0.112343i
$$163$$ 10.8022 18.7099i 0.846093 1.46548i −0.0385764 0.999256i $$-0.512282\pi$$
0.884669 0.466220i $$-0.154384\pi$$
$$164$$ −6.24772 −0.487865
$$165$$ −6.40162 + 11.0879i −0.498366 + 0.863195i
$$166$$ 1.04526 + 1.81044i 0.0811278 + 0.140517i
$$167$$ −10.6599 18.4635i −0.824888 1.42875i −0.902005 0.431726i $$-0.857905\pi$$
0.0771165 0.997022i $$-0.475429\pi$$
$$168$$ −2.10331 −0.162274
$$169$$ 0.166703 12.9989i 0.0128233 0.999918i
$$170$$ 17.6327 1.35236
$$171$$ 2.87720 + 4.98346i 0.220025 + 0.381095i
$$172$$ 2.07889 + 3.60074i 0.158514 + 0.274554i
$$173$$ −1.56087 + 2.70350i −0.118671 + 0.205543i −0.919241 0.393695i $$-0.871197\pi$$
0.800570 + 0.599239i $$0.204530\pi$$
$$174$$ −1.97945 −0.150062
$$175$$ 1.77777 3.07918i 0.134386 0.232764i
$$176$$ −10.7788 + 18.6695i −0.812485 + 1.40726i
$$177$$ −3.02830 −0.227621
$$178$$ 11.0605 19.1573i 0.829017 1.43590i
$$179$$ −9.48545 16.4293i −0.708976 1.22798i −0.965237 0.261375i $$-0.915824\pi$$
0.256261 0.966608i $$-0.417509\pi$$
$$180$$ −1.06193 1.83932i −0.0791515 0.137094i
$$181$$ −1.93273 −0.143659 −0.0718295 0.997417i $$-0.522884\pi$$
−0.0718295 + 0.997417i $$0.522884\pi$$
$$182$$ −4.23638 + 4.18240i −0.314022 + 0.310020i
$$183$$ 0.302187 0.0223383
$$184$$ 7.39135 + 12.8022i 0.544898 + 0.943790i
$$185$$ 4.27777 + 7.40931i 0.314508 + 0.544743i
$$186$$ −5.34357 + 9.25533i −0.391810 + 0.678634i
$$187$$ −15.9816 −1.16869
$$188$$ 3.47945 6.02659i 0.253765 0.439534i
$$189$$ −0.500000 + 0.866025i −0.0363696 + 0.0629941i
$$190$$ −27.7905 −2.01613
$$191$$ 1.13695 1.96925i 0.0822665 0.142490i −0.821957 0.569550i $$-0.807117\pi$$
0.904223 + 0.427060i $$0.140451\pi$$
$$192$$ 1.68473 + 2.91803i 0.121585 + 0.210591i
$$193$$ 2.19354 + 3.79932i 0.157894 + 0.273481i 0.934109 0.356988i $$-0.116196\pi$$
−0.776215 + 0.630468i $$0.782863\pi$$
$$194$$ 19.6893 1.41361
$$195$$ 10.1691 + 2.79481i 0.728226 + 0.200141i
$$196$$ 0.726109 0.0518650
$$197$$ 2.62920 + 4.55390i 0.187322 + 0.324452i 0.944357 0.328923i $$-0.106686\pi$$
−0.757034 + 0.653375i $$0.773352\pi$$
$$198$$ 3.61359 + 6.25891i 0.256806 + 0.444802i
$$199$$ −6.59798 + 11.4280i −0.467718 + 0.810111i −0.999320 0.0368831i $$-0.988257\pi$$
0.531601 + 0.846995i $$0.321590\pi$$
$$200$$ −7.47839 −0.528802
$$201$$ −4.35384 + 7.54108i −0.307096 + 0.531907i
$$202$$ −9.10437 + 15.7692i −0.640581 + 1.10952i
$$203$$ −1.19887 −0.0841445
$$204$$ 1.32555 2.29591i 0.0928068 0.160746i
$$205$$ 12.5838 + 21.7958i 0.878893 + 1.52229i
$$206$$ 16.0605 + 27.8175i 1.11899 + 1.93814i
$$207$$ 7.02830 0.488500
$$208$$ 17.1224 + 4.70580i 1.18722 + 0.326289i
$$209$$ 25.1882 1.74230
$$210$$ −2.41471 4.18240i −0.166631 0.288613i
$$211$$ 8.72077 + 15.1048i 0.600363 + 1.03986i 0.992766 + 0.120065i $$0.0383105\pi$$
−0.392403 + 0.919793i $$0.628356\pi$$
$$212$$ 0.109710 0.190024i 0.00753494 0.0130509i
$$213$$ −13.5371 −0.927547
$$214$$ 1.17551 2.03605i 0.0803565 0.139182i
$$215$$ 8.37439 14.5049i 0.571129 0.989224i
$$216$$ 2.10331 0.143112
$$217$$ −3.23638 + 5.60558i −0.219700 + 0.380531i
$$218$$ 0.0385694 + 0.0668041i 0.00261225 + 0.00452454i
$$219$$ 0.466367 + 0.807771i 0.0315142 + 0.0545841i
$$220$$ −9.29656 −0.626774
$$221$$ 3.32555 + 12.7372i 0.223700 + 0.856799i
$$222$$ 4.82942 0.324130
$$223$$ −4.00106 6.93004i −0.267931 0.464070i 0.700396 0.713754i $$-0.253007\pi$$
−0.968327 + 0.249684i $$0.919673\pi$$
$$224$$ −1.96249 3.39914i −0.131125 0.227114i
$$225$$ −1.77777 + 3.07918i −0.118518 + 0.205279i
$$226$$ −17.0694 −1.13544
$$227$$ 4.02976 6.97975i 0.267464 0.463262i −0.700742 0.713415i $$-0.747148\pi$$
0.968206 + 0.250153i $$0.0804809\pi$$
$$228$$ −2.08916 + 3.61854i −0.138358 + 0.239644i
$$229$$ −8.48052 −0.560408 −0.280204 0.959940i $$-0.590402\pi$$
−0.280204 + 0.959940i $$0.590402\pi$$
$$230$$ −16.9713 + 29.3952i −1.11905 + 1.93826i
$$231$$ 2.18860 + 3.79077i 0.143999 + 0.249414i
$$232$$ 1.26080 + 2.18378i 0.0827758 + 0.143372i
$$233$$ −10.2456 −0.671211 −0.335606 0.942003i $$-0.608941\pi$$
−0.335606 + 0.942003i $$0.608941\pi$$
$$234$$ 4.23638 4.18240i 0.276941 0.273412i
$$235$$ −28.0325 −1.82864
$$236$$ −1.09944 1.90428i −0.0715673 0.123958i
$$237$$ −8.47130 14.6727i −0.550270 0.953096i
$$238$$ 3.01415 5.22066i 0.195378 0.338405i
$$239$$ −11.3022 −0.731078 −0.365539 0.930796i $$-0.619115\pi$$
−0.365539 + 0.930796i $$0.619115\pi$$
$$240$$ −7.20275 + 12.4755i −0.464935 + 0.805292i
$$241$$ −0.518023 + 0.897242i −0.0333688 + 0.0577965i −0.882228 0.470823i $$-0.843957\pi$$
0.848859 + 0.528620i $$0.177290\pi$$
$$242$$ 13.4728 0.866062
$$243$$ 0.500000 0.866025i 0.0320750 0.0555556i
$$244$$ 0.109710 + 0.190024i 0.00702349 + 0.0121650i
$$245$$ −1.46249 2.53311i −0.0934352 0.161834i
$$246$$ 14.2066 0.905781
$$247$$ −5.24132 20.0749i −0.333497 1.27733i
$$248$$ 13.6142 0.864506
$$249$$ −0.633070 1.09651i −0.0401192 0.0694885i
$$250$$ 3.48797 + 6.04135i 0.220599 + 0.382088i
$$251$$ −6.64188 + 11.5041i −0.419232 + 0.726131i −0.995862 0.0908742i $$-0.971034\pi$$
0.576631 + 0.817005i $$0.304367\pi$$
$$252$$ −0.726109 −0.0457406
$$253$$ 15.3821 26.6426i 0.967067 1.67501i
$$254$$ 4.51802 7.82545i 0.283486 0.491012i
$$255$$ −10.6794 −0.668769
$$256$$ −7.70381 + 13.3434i −0.481488 + 0.833962i
$$257$$ −6.22077 10.7747i −0.388041 0.672107i 0.604145 0.796875i $$-0.293515\pi$$
−0.992186 + 0.124768i $$0.960181\pi$$
$$258$$ −4.72717 8.18770i −0.294301 0.509744i
$$259$$ 2.92498 0.181750
$$260$$ 1.93449 + 7.40931i 0.119972 + 0.459506i
$$261$$ 1.19887 0.0742085
$$262$$ −13.3496 23.1221i −0.824739 1.42849i
$$263$$ −3.29579 5.70847i −0.203227 0.352000i 0.746339 0.665566i $$-0.231810\pi$$
−0.949566 + 0.313566i $$0.898476\pi$$
$$264$$ 4.60331 7.97317i 0.283314 0.490715i
$$265$$ −0.883892 −0.0542970
$$266$$ −4.75053 + 8.22816i −0.291274 + 0.504501i
$$267$$ −6.69887 + 11.6028i −0.409964 + 0.710079i
$$268$$ −6.32273 −0.386222
$$269$$ 1.35812 2.35233i 0.0828059 0.143424i −0.821648 0.569995i $$-0.806945\pi$$
0.904454 + 0.426571i $$0.140279\pi$$
$$270$$ 2.41471 + 4.18240i 0.146955 + 0.254533i
$$271$$ 15.3627 + 26.6089i 0.933215 + 1.61638i 0.777787 + 0.628528i $$0.216342\pi$$
0.155428 + 0.987847i $$0.450324\pi$$
$$272$$ −17.9816 −1.09029
$$273$$ 2.56580 2.53311i 0.155290 0.153311i
$$274$$ −19.8422 −1.19871
$$275$$ 7.78164 + 13.4782i 0.469251 + 0.812766i
$$276$$ 2.55166 + 4.41960i 0.153592 + 0.266029i
$$277$$ 10.7827 18.6762i 0.647870 1.12214i −0.335761 0.941947i $$-0.608993\pi$$
0.983631 0.180196i $$-0.0576732\pi$$
$$278$$ 2.22717 0.133577
$$279$$ 3.23638 5.60558i 0.193757 0.335597i
$$280$$ −3.07608 + 5.32792i −0.183831 + 0.318404i
$$281$$ 33.2058 1.98089 0.990447 0.137896i $$-0.0440340\pi$$
0.990447 + 0.137896i $$0.0440340\pi$$
$$282$$ −7.91190 + 13.7038i −0.471147 + 0.816050i
$$283$$ −0.741719 1.28470i −0.0440906 0.0763672i 0.843138 0.537697i $$-0.180706\pi$$
−0.887229 + 0.461330i $$0.847372\pi$$
$$284$$ −4.91471 8.51253i −0.291634 0.505126i
$$285$$ 16.8315 0.997015
$$286$$ −6.58277 25.2128i −0.389247 1.49086i
$$287$$ 8.60437 0.507900
$$288$$ 1.96249 + 3.39914i 0.115641 + 0.200296i
$$289$$ 1.83476 + 3.17789i 0.107927 + 0.186935i
$$290$$ −2.89494 + 5.01418i −0.169996 + 0.294442i
$$291$$ −11.9250 −0.699055
$$292$$ −0.338633 + 0.586530i −0.0198170 + 0.0343241i
$$293$$ −4.41577 + 7.64834i −0.257972 + 0.446821i −0.965699 0.259666i $$-0.916388\pi$$
0.707726 + 0.706487i $$0.249721\pi$$
$$294$$ −1.65109 −0.0962937
$$295$$ −4.42886 + 7.67101i −0.257858 + 0.446623i
$$296$$ −3.07608 5.32792i −0.178793 0.309679i
$$297$$ −2.18860 3.79077i −0.126996 0.219963i
$$298$$ −5.07714 −0.294111
$$299$$ −24.4349 6.71551i −1.41310 0.388368i
$$300$$ −2.58170 −0.149055
$$301$$ −2.86305 4.95896i −0.165024 0.285829i
$$302$$ −13.7544 23.8233i −0.791477 1.37088i
$$303$$ 5.51415 9.55078i 0.316780 0.548678i
$$304$$ 28.3404 1.62543
$$305$$ 0.441946 0.765473i 0.0253057 0.0438308i
$$306$$ −3.01415 + 5.22066i −0.172307 + 0.298445i
$$307$$ 11.6532 0.665084 0.332542 0.943088i $$-0.392094\pi$$
0.332542 + 0.943088i $$0.392094\pi$$
$$308$$ −1.58916 + 2.75251i −0.0905510 + 0.156839i
$$309$$ −9.72717 16.8480i −0.553359 0.958447i
$$310$$ 15.6299 + 27.0717i 0.887716 + 1.53757i
$$311$$ −25.0099 −1.41818 −0.709090 0.705118i $$-0.750894\pi$$
−0.709090 + 0.705118i $$0.750894\pi$$
$$312$$ −7.31246 2.00971i −0.413987 0.113777i
$$313$$ −0.186078 −0.0105178 −0.00525889 0.999986i $$-0.501674\pi$$
−0.00525889 + 0.999986i $$0.501674\pi$$
$$314$$ −10.5913 18.3446i −0.597701 1.03525i
$$315$$ 1.46249 + 2.53311i 0.0824021 + 0.142725i
$$316$$ 6.15109 10.6540i 0.346026 0.599335i
$$317$$ −0.540031 −0.0303312 −0.0151656 0.999885i $$-0.504828\pi$$
−0.0151656 + 0.999885i $$0.504828\pi$$
$$318$$ −0.249469 + 0.432094i −0.0139895 + 0.0242306i
$$319$$ 2.62386 4.54466i 0.146908 0.254452i
$$320$$ 9.85560 0.550945
$$321$$ −0.711961 + 1.23315i −0.0397378 + 0.0688279i
$$322$$ 5.80219 + 10.0497i 0.323343 + 0.560047i
$$323$$ 10.5049 + 18.1951i 0.584510 + 1.01240i
$$324$$ 0.726109 0.0403394
$$325$$ 9.12280 9.00655i 0.506042 0.499594i
$$326$$ −35.6708 −1.97563
$$327$$ −0.0233599 0.0404605i −0.00129180 0.00223747i
$$328$$ −9.04884 15.6731i −0.499639 0.865400i
$$329$$ −4.79191 + 8.29984i −0.264187 + 0.457585i
$$330$$ 21.1394 1.16368
$$331$$ −0.770016 + 1.33371i −0.0423239 + 0.0733071i −0.886411 0.462898i $$-0.846809\pi$$
0.844087 + 0.536206i $$0.180143\pi$$
$$332$$ 0.459678 0.796186i 0.0252281 0.0436964i
$$333$$ −2.92498 −0.160288
$$334$$ −17.6005 + 30.4850i −0.963056 + 1.66806i
$$335$$ 12.7349 + 22.0575i 0.695783 + 1.20513i
$$336$$ 2.46249 + 4.26516i 0.134340 + 0.232684i
$$337$$ 2.82942 0.154128 0.0770642 0.997026i $$-0.475445\pi$$
0.0770642 + 0.997026i $$0.475445\pi$$
$$338$$ −18.7246 + 10.4929i −1.01849 + 0.570736i
$$339$$ 10.3382 0.561496
$$340$$ −3.87720 6.71551i −0.210271 0.364200i
$$341$$ −14.1663 24.5368i −0.767148 1.32874i
$$342$$ 4.75053 8.22816i 0.256879 0.444928i
$$343$$ −1.00000 −0.0539949
$$344$$ −6.02190 + 10.4302i −0.324679 + 0.562361i
$$345$$ 10.2788 17.8035i 0.553393 0.958506i
$$346$$ 5.15428 0.277096
$$347$$ 12.6950 21.9884i 0.681503 1.18040i −0.293019 0.956107i $$-0.594660\pi$$
0.974522 0.224292i $$-0.0720068\pi$$
$$348$$ 0.435257 + 0.753887i 0.0233322 + 0.0404126i
$$349$$ 0.542845 + 0.940235i 0.0290578 + 0.0503296i 0.880189 0.474624i $$-0.157416\pi$$
−0.851131 + 0.524954i $$0.824083\pi$$
$$350$$ −5.87051 −0.313792
$$351$$ −2.56580 + 2.53311i −0.136953 + 0.135207i
$$352$$ 17.1805 0.915721
$$353$$ −5.26468 9.11869i −0.280211 0.485339i 0.691226 0.722639i $$-0.257071\pi$$
−0.971436 + 0.237300i $$0.923738\pi$$
$$354$$ 2.50000 + 4.33013i 0.132874 + 0.230144i
$$355$$ −19.7979 + 34.2910i −1.05076 + 1.81998i
$$356$$ −9.72823 −0.515595
$$357$$ −1.82555 + 3.16194i −0.0966182 + 0.167348i
$$358$$ −15.6614 + 27.1263i −0.827729 + 1.43367i
$$359$$ 27.2087 1.43602 0.718011 0.696031i $$-0.245053\pi$$
0.718011 + 0.696031i $$0.245053\pi$$
$$360$$ 3.07608 5.32792i 0.162124 0.280806i
$$361$$ −7.05659 12.2224i −0.371400 0.643283i
$$362$$ 1.59556 + 2.76359i 0.0838609 + 0.145251i
$$363$$ −8.15990 −0.428284
$$364$$ 2.52442 + 0.693795i 0.132316 + 0.0363647i
$$365$$ 2.72823 0.142802
$$366$$ −0.249469 0.432094i −0.0130400 0.0225859i
$$367$$ 3.12920 + 5.41993i 0.163343 + 0.282918i 0.936065 0.351826i $$-0.114439\pi$$
−0.772723 + 0.634744i $$0.781106\pi$$
$$368$$ 17.3071 29.9768i 0.902196 1.56265i
$$369$$ −8.60437 −0.447926
$$370$$ 7.06299 12.2335i 0.367187 0.635987i
$$371$$ −0.151093 + 0.261701i −0.00784438 + 0.0135869i
$$372$$ 4.69994 0.243680
$$373$$ 0.589164 1.02046i 0.0305058 0.0528375i −0.850369 0.526186i $$-0.823622\pi$$
0.880875 + 0.473349i $$0.156955\pi$$
$$374$$ 13.1935 + 22.8519i 0.682222 + 1.18164i
$$375$$ −2.11252 3.65900i −0.109090 0.188950i
$$376$$ 20.1578 1.03956
$$377$$ −4.16806 1.14552i −0.214666 0.0589973i
$$378$$ 1.65109 0.0849231
$$379$$ 12.1033 + 20.9636i 0.621705 + 1.07683i 0.989168 + 0.146787i $$0.0468932\pi$$
−0.367463 + 0.930038i $$0.619773\pi$$
$$380$$ 6.11077 + 10.5842i 0.313476 + 0.542956i
$$381$$ −2.73638 + 4.73955i −0.140189 + 0.242815i
$$382$$ −3.75441 −0.192092
$$383$$ 1.24559 2.15743i 0.0636469 0.110240i −0.832446 0.554106i $$-0.813060\pi$$
0.896093 + 0.443866i $$0.146394\pi$$
$$384$$ 6.70662 11.6162i 0.342246 0.592787i
$$385$$ 12.8032 0.652514
$$386$$ 3.62174 6.27303i 0.184341 0.319289i
$$387$$ 2.86305 + 4.95896i 0.145537 + 0.252078i
$$388$$ −4.32942 7.49878i −0.219793 0.380693i
$$389$$ 23.6065 1.19690 0.598448 0.801161i $$-0.295784\pi$$
0.598448 + 0.801161i $$0.295784\pi$$
$$390$$ −4.39881 16.8480i −0.222742 0.853129i
$$391$$ 25.6610 1.29773
$$392$$ 1.05166 + 1.82152i 0.0531167 + 0.0920007i
$$393$$ 8.08529 + 14.0041i 0.407849 + 0.706415i
$$394$$ 4.34105 7.51891i 0.218699 0.378797i
$$395$$ −49.5569 −2.49348
$$396$$ 1.58916 2.75251i 0.0798585 0.138319i
$$397$$ 4.42352 7.66177i 0.222010 0.384533i −0.733408 0.679789i $$-0.762071\pi$$
0.955418 + 0.295256i $$0.0954048\pi$$
$$398$$ 21.7877 1.09212
$$399$$ 2.87720 4.98346i 0.144040 0.249485i
$$400$$ 8.75547 + 15.1649i 0.437773 + 0.758246i
$$401$$ 9.45716 + 16.3803i 0.472268 + 0.817992i 0.999496 0.0317317i $$-0.0101022\pi$$
−0.527229 + 0.849723i $$0.676769\pi$$
$$402$$ 14.3772 0.717070
$$403$$ −16.6078 + 16.3962i −0.827296 + 0.816754i
$$404$$ 8.00775 0.398400
$$405$$ −1.46249 2.53311i −0.0726718 0.125871i
$$406$$ 0.989727 + 1.71426i 0.0491193 + 0.0850772i
$$407$$ −6.40162 + 11.0879i −0.317317 + 0.549609i
$$408$$ 7.67939 0.380186
$$409$$ −1.74947 + 3.03017i −0.0865057 + 0.149832i −0.906032 0.423210i $$-0.860903\pi$$
0.819526 + 0.573042i $$0.194237\pi$$
$$410$$ 20.7771 35.9869i 1.02611 1.77727i
$$411$$ 12.0176 0.592786
$$412$$ 7.06299 12.2335i 0.347969 0.602699i
$$413$$ 1.51415 + 2.62258i 0.0745064 + 0.129049i
$$414$$ −5.80219 10.0497i −0.285162 0.493915i
$$415$$ −3.70344 −0.181795
$$416$$ −3.57502 13.6927i −0.175280 0.671341i
$$417$$ −1.34891 −0.0660562
$$418$$ −20.7940 36.0163i −1.01707 1.76162i
$$419$$ −14.4158 24.9688i −0.704257 1.21981i −0.966959 0.254931i $$-0.917947\pi$$
0.262703 0.964877i $$-0.415386\pi$$
$$420$$ −1.06193 + 1.83932i −0.0518168 + 0.0897494i
$$421$$ 34.3227 1.67279 0.836394 0.548129i $$-0.184660\pi$$
0.836394 + 0.548129i $$0.184660\pi$$
$$422$$ 14.3988 24.9395i 0.700923 1.21403i
$$423$$ 4.79191 8.29984i 0.232991 0.403552i
$$424$$ 0.635593 0.0308671
$$425$$ −6.49079 + 11.2424i −0.314849 + 0.545335i
$$426$$ 11.1755 + 19.3566i 0.541455 + 0.937828i
$$427$$ −0.151093 0.261701i −0.00731192 0.0126646i
$$428$$ −1.03392 −0.0499766
$$429$$ 3.98691 + 15.2703i 0.192490 + 0.737259i
$$430$$ −27.6538 −1.33358
$$431$$ −14.6779 25.4229i −0.707011 1.22458i −0.965961 0.258688i $$-0.916710\pi$$
0.258950 0.965891i $$-0.416624\pi$$
$$432$$ −2.46249 4.26516i −0.118477 0.205208i
$$433$$ −14.3032 + 24.7740i −0.687370 + 1.19056i 0.285315 + 0.958434i $$0.407902\pi$$
−0.972686 + 0.232126i $$0.925432\pi$$
$$434$$ 10.6871 0.512999
$$435$$ 1.75334 3.03688i 0.0840664 0.145607i
$$436$$ 0.0169618 0.0293788i 0.000812325 0.00140699i
$$437$$ −40.4437 −1.93468
$$438$$ 0.770016 1.33371i 0.0367928 0.0637269i
$$439$$ −17.2399 29.8603i −0.822813 1.42515i −0.903579 0.428422i $$-0.859070\pi$$
0.0807654 0.996733i $$-0.474264\pi$$
$$440$$ −13.4646 23.3214i −0.641900 1.11180i
$$441$$ 1.00000 0.0476190
$$442$$ 15.4674 15.2703i 0.735711 0.726336i
$$443$$ −12.9066 −0.613209 −0.306605 0.951837i $$-0.599193\pi$$
−0.306605 + 0.951837i $$0.599193\pi$$
$$444$$ −1.06193 1.83932i −0.0503969 0.0872900i
$$445$$ 19.5941 + 33.9380i 0.928849 + 1.60881i
$$446$$ −6.60613 + 11.4421i −0.312809 + 0.541801i
$$447$$ 3.07502 0.145443
$$448$$ 1.68473 2.91803i 0.0795958 0.137864i
$$449$$ 2.81915 4.88291i 0.133044 0.230439i −0.791805 0.610774i $$-0.790858\pi$$
0.924848 + 0.380336i $$0.124192\pi$$
$$450$$ 5.87051 0.276739
$$451$$ −18.8315 + 32.6172i −0.886743 + 1.53588i
$$452$$ 3.75334 + 6.50098i 0.176542 + 0.305781i
$$453$$ 8.33048 + 14.4288i 0.391400 + 0.677925i
$$454$$ −13.3070 −0.624529
$$455$$ −2.66418 10.2041i −0.124899 0.478376i
$$456$$ −12.1033 −0.566790
$$457$$ −18.9947 32.8997i −0.888533 1.53898i −0.841610 0.540086i $$-0.818392\pi$$
−0.0469228 0.998899i $$-0.514941\pi$$
$$458$$ 7.00106 + 12.1262i 0.327138 + 0.566620i
$$459$$ 1.82555 3.16194i 0.0852092 0.147587i
$$460$$ 14.9271 0.695980
$$461$$ 3.30365 5.72209i 0.153866 0.266504i −0.778779 0.627298i $$-0.784161\pi$$
0.932646 + 0.360794i $$0.117494\pi$$
$$462$$ 3.61359 6.25891i 0.168119 0.291191i
$$463$$ 9.98933 0.464243 0.232122 0.972687i $$-0.425433\pi$$
0.232122 + 0.972687i $$0.425433\pi$$
$$464$$ 2.95222 5.11339i 0.137053 0.237383i
$$465$$ −9.46637 16.3962i −0.438992 0.760357i
$$466$$ 8.45822 + 14.6501i 0.391819 + 0.678651i
$$467$$ 3.42100 0.158305 0.0791525 0.996863i $$-0.474779\pi$$
0.0791525 + 0.996863i $$0.474779\pi$$
$$468$$ −2.52442 0.693795i −0.116691 0.0320707i
$$469$$ 8.70769 0.402084
$$470$$ 23.1422 + 40.0834i 1.06747 + 1.84891i
$$471$$ 6.41471 + 11.1106i 0.295574 + 0.511950i
$$472$$ 3.18473 5.51611i 0.146589 0.253899i
$$473$$ 25.0643 1.15246
$$474$$ −13.9869 + 24.2260i −0.642440 + 1.11274i
$$475$$ 10.2300 17.7189i 0.469384 0.812997i
$$476$$ −2.65109 −0.121513
$$477$$ 0.151093 0.261701i 0.00691809 0.0119825i
$$478$$ 9.33048 + 16.1609i 0.426766 + 0.739181i
$$479$$ −9.92071 17.1832i −0.453289 0.785119i 0.545299 0.838241i $$-0.316416\pi$$
−0.998588 + 0.0531223i $$0.983083\pi$$
$$480$$ 11.4805 0.524011
$$481$$ 10.1691 + 2.79481i 0.463672 + 0.127432i
$$482$$ 1.71061 0.0779161
$$483$$ −3.51415 6.08668i −0.159899 0.276954i
$$484$$ −2.96249 5.13119i −0.134659 0.233236i
$$485$$ −17.4402 + 30.2073i −0.791918 + 1.37164i
$$486$$ −1.65109 −0.0748951
$$487$$ 3.05166 5.28562i 0.138284 0.239514i −0.788563 0.614954i $$-0.789175\pi$$
0.926847 + 0.375439i $$0.122508\pi$$
$$488$$ −0.317797 + 0.550440i −0.0143860 + 0.0249172i
$$489$$ 21.6044 0.976984
$$490$$ −2.41471 + 4.18240i −0.109086 + 0.188942i
$$491$$ 1.18326 + 2.04947i 0.0534000 + 0.0924915i 0.891490 0.453041i $$-0.149661\pi$$
−0.838090 + 0.545532i $$0.816328\pi$$
$$492$$ −3.12386 5.41068i −0.140834 0.243932i
$$493$$ 4.37720 0.197139
$$494$$ −24.3779 + 24.0672i −1.09681 + 1.08284i
$$495$$ −12.8032 −0.575463
$$496$$ −15.9391 27.6074i −0.715688 1.23961i
$$497$$ 6.76855 + 11.7235i 0.303611 + 0.525870i
$$498$$ −1.04526 + 1.81044i −0.0468391 + 0.0811278i
$$499$$ −4.29231 −0.192150 −0.0960752 0.995374i $$-0.530629\pi$$
−0.0960752 + 0.995374i $$0.530629\pi$$
$$500$$ 1.53392 2.65683i 0.0685992 0.118817i
$$501$$ 10.6599 18.4635i 0.476249 0.824888i
$$502$$ 21.9327 0.978906
$$503$$ 1.05553 1.82823i 0.0470638 0.0815169i −0.841534 0.540204i $$-0.818347\pi$$
0.888598 + 0.458687i $$0.151680\pi$$
$$504$$ −1.05166 1.82152i −0.0468445 0.0811370i
$$505$$ −16.1288 27.9359i −0.717722 1.24313i
$$506$$ −50.7947 −2.25810
$$507$$ 11.3408 6.35510i 0.503661 0.282240i
$$508$$ −3.97383 −0.176310
$$509$$ 12.1882 + 21.1106i 0.540233 + 0.935710i 0.998890 + 0.0470972i $$0.0149970\pi$$
−0.458658 + 0.888613i $$0.651670\pi$$
$$510$$ 8.81633 + 15.2703i 0.390394 + 0.676182i
$$511$$ 0.466367 0.807771i 0.0206309 0.0357337i
$$512$$ −1.38708 −0.0613007
$$513$$ −2.87720 + 4.98346i −0.127032 + 0.220025i
$$514$$ −10.2711 + 17.7900i −0.453038 + 0.784684i
$$515$$ −56.9036 −2.50747
$$516$$ −2.07889 + 3.60074i −0.0915181 + 0.158514i
$$517$$ −20.9752 36.3301i −0.922487 1.59779i
$$518$$ −2.41471 4.18240i −0.106096 0.183764i
$$519$$ −3.12174 −0.137029
$$520$$ −15.7852 + 15.5841i −0.692228 + 0.683407i
$$521$$ −17.8401 −0.781589 −0.390794 0.920478i $$-0.627800\pi$$
−0.390794 + 0.920478i $$0.627800\pi$$
$$522$$ −0.989727 1.71426i −0.0433192 0.0750310i
$$523$$ 15.5279 + 26.8951i 0.678987 + 1.17604i 0.975286 + 0.220945i $$0.0709143\pi$$
−0.296299 + 0.955095i $$0.595752\pi$$
$$524$$ −5.87080 + 10.1685i −0.256467 + 0.444214i
$$525$$ 3.55553 0.155176
$$526$$ −5.44166 + 9.42522i −0.237267 + 0.410959i
$$527$$ 11.8163 20.4665i 0.514728 0.891534i
$$528$$ −21.5577 −0.938176
$$529$$ −13.1985 + 22.8604i −0.573847 + 0.993932i
$$530$$ 0.729694 + 1.26387i 0.0316959 + 0.0548989i
$$531$$ −1.51415 2.62258i −0.0657084 0.113810i
$$532$$ 4.17833 0.181154
$$533$$ 29.9143 + 8.22145i 1.29573 + 0.356110i
$$534$$ 22.1209 0.957266
$$535$$ 2.08248 + 3.60695i 0.0900333 + 0.155942i
$$536$$ −9.15749 15.8612i −0.395543 0.685101i
$$537$$ 9.48545 16.4293i 0.409327 0.708976i
$$538$$ −4.48476 −0.193352
$$539$$ 2.18860 3.79077i 0.0942697 0.163280i
$$540$$ 1.06193 1.83932i 0.0456982 0.0791515i
$$541$$ −33.3900 −1.43555 −0.717774 0.696276i $$-0.754839\pi$$
−0.717774 + 0.696276i $$0.754839\pi$$
$$542$$ 25.3652 43.9338i 1.08953 1.88712i
$$543$$ −0.966367 1.67380i −0.0414708 0.0718295i
$$544$$ 7.16524 + 12.4106i 0.307207 + 0.532098i
$$545$$ −0.136655 −0.00585364
$$546$$ −5.74026 1.57761i −0.245660 0.0675156i
$$547$$ 9.12306 0.390074 0.195037 0.980796i $$-0.437517\pi$$
0.195037 + 0.980796i $$0.437517\pi$$
$$548$$ 4.36305 + 7.55703i 0.186380 + 0.322820i
$$549$$ 0.151093 + 0.261701i 0.00644851 + 0.0111691i
$$550$$ 12.8482 22.2538i 0.547850 0.948904i
$$551$$ −6.89881 −0.293899
$$552$$ −7.39135 + 12.8022i −0.314597 + 0.544898i
$$553$$ −8.47130 + 14.6727i −0.360236 + 0.623948i
$$554$$ −35.6065 −1.51278
$$555$$ −4.27777 + 7.40931i −0.181581 + 0.314508i
$$556$$ −0.489727 0.848232i −0.0207690 0.0359730i
$$557$$ 19.0148 + 32.9346i 0.805683 + 1.39548i 0.915829 + 0.401569i $$0.131535\pi$$
−0.110145 + 0.993915i $$0.535132\pi$$
$$558$$ −10.6871 −0.452423
$$559$$ −5.21555 19.9761i −0.220594 0.844901i
$$560$$ 14.4055 0.608743
$$561$$ −7.99079 13.8405i −0.337371 0.584344i
$$562$$ −27.4130 47.4806i −1.15635 2.00285i
$$563$$ 1.68326 2.91550i 0.0709411 0.122874i −0.828373 0.560177i $$-0.810733\pi$$
0.899314 + 0.437303i $$0.144066\pi$$
$$564$$ 6.95891 0.293023
$$565$$ 15.1196 26.1879i 0.636086 1.10173i
$$566$$ −1.22465 + 2.12115i −0.0514758 + 0.0891587i
$$567$$ −1.00000 −0.0419961
$$568$$ 14.2364 24.6581i 0.597345 1.03463i
$$569$$ 8.96637 + 15.5302i 0.375890 + 0.651060i 0.990460 0.137802i $$-0.0440038\pi$$
−0.614570 + 0.788862i $$0.710671\pi$$
$$570$$ −13.8952 24.0672i −0.582007 1.00807i
$$571$$ 39.4274 1.64998 0.824992 0.565144i $$-0.191180\pi$$
0.824992 + 0.565144i $$0.191180\pi$$
$$572$$ −8.15497 + 8.05106i −0.340976 + 0.336632i
$$573$$ 2.27389 0.0949931
$$574$$ −7.10331 12.3033i −0.296487 0.513530i
$$575$$ −12.4947 21.6414i −0.521063 0.902508i
$$576$$ −1.68473 + 2.91803i −0.0701969 + 0.121585i
$$577$$ 16.4239 0.683737 0.341868 0.939748i $$-0.388940\pi$$
0.341868 + 0.939748i $$0.388940\pi$$
$$578$$ 3.02936 5.24700i 0.126005 0.218246i
$$579$$ −2.19354 + 3.79932i −0.0911603 + 0.157894i
$$580$$ 2.54624 0.105727
$$581$$ −0.633070 + 1.09651i −0.0262642 + 0.0454909i
$$582$$ 9.84463 + 17.0514i 0.408073 + 0.706803i
$$583$$ −0.661367 1.14552i −0.0273910 0.0474426i
$$584$$ −1.96183 −0.0811811
$$585$$ 2.66418 + 10.2041i 0.110150 + 0.421888i
$$586$$ 14.5817 0.602365
$$587$$ 7.46355 + 12.9273i 0.308054 + 0.533565i 0.977937 0.208902i $$-0.0669890\pi$$
−0.669883 + 0.742467i $$0.733656\pi$$
$$588$$ 0.363055 + 0.628829i 0.0149721 + 0.0259325i
$$589$$ −18.6235 + 32.2568i −0.767366 + 1.32912i
$$590$$ 14.6249 0.602098
$$591$$ −2.62920 + 4.55390i −0.108151 + 0.187322i
$$592$$ −7.20275 + 12.4755i −0.296031 + 0.512741i
$$593$$ 29.9164 1.22852 0.614260 0.789103i $$-0.289454\pi$$
0.614260 + 0.789103i $$0.289454\pi$$
$$594$$ −3.61359 + 6.25891i −0.148267 + 0.256806i
$$595$$ 5.33969 + 9.24862i 0.218906 + 0.379157i
$$596$$ 1.11640 + 1.93366i 0.0457295 + 0.0792058i
$$597$$ −13.1960 −0.540074
$$598$$ 10.5697 + 40.4831i 0.432226 + 1.65548i
$$599$$ 35.1911 1.43787 0.718935 0.695077i $$-0.244630\pi$$
0.718935 + 0.695077i $$0.244630\pi$$
$$600$$ −3.73920 6.47648i −0.152652 0.264401i
$$601$$ −8.56580 14.8364i −0.349406 0.605190i 0.636738 0.771080i $$-0.280283\pi$$
−0.986144 + 0.165891i $$0.946950\pi$$
$$602$$ −4.72717 + 8.18770i −0.192665 + 0.333706i
$$603$$ −8.70769 −0.354604
$$604$$ −6.04884 + 10.4769i −0.246124 + 0.426299i
$$605$$ −11.9338 + 20.6699i −0.485178 + 0.840353i
$$606$$ −18.2087 −0.739680
$$607$$ −11.2233 + 19.4393i −0.455540 + 0.789018i −0.998719 0.0505990i $$-0.983887\pi$$
0.543180 + 0.839617i $$0.317220\pi$$
$$608$$ −11.2930 19.5600i −0.457991 0.793263i
$$609$$ −0.599437 1.03826i −0.0242904 0.0420722i
$$610$$ −1.45939 −0.0590889
$$611$$ −24.5902 + 24.2769i −0.994814 + 0.982138i
$$612$$ 2.65109 0.107164
$$613$$ 10.1029 + 17.4988i 0.408053 + 0.706768i 0.994672 0.103095i $$-0.0328746\pi$$
−0.586619 + 0.809863i $$0.699541\pi$$
$$614$$ −9.62027 16.6628i −0.388243 0.672456i
$$615$$ −12.5838 + 21.7958i −0.507429 + 0.878893i
$$616$$ −9.20662 −0.370945
$$617$$ −19.3408 + 33.4992i −0.778630 + 1.34863i 0.154102 + 0.988055i $$0.450751\pi$$
−0.932732 + 0.360571i $$0.882582\pi$$
$$618$$ −16.0605 + 27.8175i −0.646047 + 1.11899i
$$619$$ 32.5109 1.30672 0.653362 0.757045i $$-0.273358\pi$$
0.653362 + 0.757045i $$0.273358\pi$$
$$620$$ 6.87362 11.9055i 0.276051 0.478135i
$$621$$ 3.51415 + 6.08668i 0.141018 + 0.244250i
$$622$$ 20.6468 + 35.7613i 0.827862 + 1.43390i
$$623$$ 13.3977 0.536769
$$624$$ 4.48585 + 17.1813i 0.179578 + 0.687804i
$$625$$ −30.1359 −1.20543
$$626$$ 0.153616 + 0.266071i 0.00613975 + 0.0106344i
$$627$$ 12.5941 + 21.8136i 0.502960 + 0.871152i
$$628$$ −4.65778 + 8.06752i −0.185866 + 0.321929i
$$629$$ −10.6794 −0.425815
$$630$$ 2.41471 4.18240i 0.0962044 0.166631i
$$631$$ 18.9310 32.7894i 0.753630 1.30533i −0.192422 0.981312i $$-0.561634\pi$$
0.946052 0.324014i $$-0.105032\pi$$
$$632$$ 35.6356 1.41751
$$633$$ −8.72077 + 15.1048i −0.346620 + 0.600363i
$$634$$ 0.445821 + 0.772184i 0.0177058 + 0.0306674i
$$635$$ 8.00388 + 13.8631i 0.317624 + 0.550141i
$$636$$ 0.219421 0.00870060
$$637$$ −3.47664 0.955496i −0.137749 0.0378581i
$$638$$ −8.66447 −0.343030
$$639$$ −6.76855 11.7235i −0.267760 0.463774i
$$640$$ −19.6168 33.9772i −0.775421 1.34307i
$$641$$ −11.4314 + 19.7997i −0.451512 + 0.782042i −0.998480 0.0551112i $$-0.982449\pi$$
0.546968 + 0.837154i $$0.315782\pi$$
$$642$$ 2.35103 0.0927877
$$643$$ −21.7915 + 37.7440i −0.859373 + 1.48848i 0.0131542 + 0.999913i $$0.495813\pi$$
−0.872528 + 0.488565i $$0.837521\pi$$
$$644$$ 2.55166 4.41960i 0.100549 0.174157i
$$645$$ 16.7488 0.659483
$$646$$ 17.3446 30.0418i 0.682415 1.18198i
$$647$$ 1.50388 + 2.60479i 0.0591234 + 0.102405i 0.894072 0.447923i $$-0.147836\pi$$
−0.834949 + 0.550328i $$0.814503\pi$$
$$648$$ 1.05166 + 1.82152i 0.0413130 + 0.0715561i
$$649$$ −13.2555 −0.520323
$$650$$ −20.4097 5.60926i −0.800533 0.220013i
$$651$$ −6.47277 −0.253688
$$652$$ 7.84357 + 13.5855i 0.307178 + 0.532048i
$$653$$ 16.9621 + 29.3792i 0.663778 + 1.14970i 0.979615 + 0.200884i $$0.0643813\pi$$
−0.315837 + 0.948813i $$0.602285\pi$$
$$654$$ −0.0385694 + 0.0668041i −0.00150818 + 0.00261225i
$$655$$ 47.2987 1.84811
$$656$$ −21.1882 + 36.6990i −0.827260 + 1.43286i
$$657$$ −0.466367 + 0.807771i −0.0181947 + 0.0315142i
$$658$$ 15.8238 0.616876
$$659$$ 21.7297 37.6369i 0.846469 1.46613i −0.0378709 0.999283i $$-0.512058\pi$$
0.884340 0.466844i $$-0.154609\pi$$
$$660$$ −4.64828 8.05106i −0.180934 0.313387i
$$661$$ −19.1429 33.1565i −0.744574 1.28964i −0.950393 0.311050i $$-0.899319\pi$$
0.205819 0.978590i $$-0.434014\pi$$
$$662$$ 2.54274 0.0988262
$$663$$ −9.36799 + 9.24862i −0.363823 + 0.359187i
$$664$$ 2.66309 0.103348
$$665$$ −8.41577 14.5765i −0.326350 0.565254i
$$666$$ 2.41471 + 4.18240i 0.0935681 + 0.162065i
$$667$$ −4.21302 + 7.29717i −0.163129 + 0.282548i
$$668$$ 15.4805 0.598959
$$669$$ 4.00106 6.93004i 0.154690 0.267931i
$$670$$ 21.0265 36.4190i 0.812326 1.40699i
$$671$$ 1.32273 0.0510635
$$672$$ 1.96249 3.39914i 0.0757048 0.131125i
$$673$$ −14.0902 24.4050i −0.543138 0.940743i −0.998722 0.0505499i $$-0.983903\pi$$
0.455583 0.890193i $$-0.349431\pi$$
$$674$$ −2.33582 4.04576i −0.0899724 0.155837i
$$675$$ −3.55553 −0.136852
$$676$$ 8.11359 + 4.82415i 0.312061 + 0.185544i
$$677$$ −31.7253 −1.21930 −0.609651 0.792670i $$-0.708691\pi$$
−0.609651 + 0.792670i $$0.708691\pi$$
$$678$$ −8.53469 14.7825i −0.327773 0.567719i
$$679$$ 5.96249 + 10.3273i 0.228819 + 0.396327i
$$680$$ 11.2310 19.4527i 0.430691 0.745979i
$$681$$ 8.05952 0.308841
$$682$$ −23.3899 + 40.5125i −0.895645 + 1.55130i
$$683$$ −4.28698 + 7.42526i −0.164037 + 0.284120i −0.936313 0.351167i $$-0.885785\pi$$
0.772276 + 0.635287i $$0.219118\pi$$
$$684$$ −4.17833 −0.159762
$$685$$ 17.5757 30.4420i 0.671532 1.16313i
$$686$$ 0.825547 + 1.42989i 0.0315195 + 0.0545934i
$$687$$ −4.24026 7.34434i −0.161776 0.280204i
$$688$$ 28.2010 1.07515
$$689$$ −0.775352 + 0.765473i −0.0295386 + 0.0291622i
$$690$$ −33.9426 −1.29217
$$691$$ 3.47518 + 6.01919i 0.132202 + 0.228981i 0.924525 0.381121i $$-0.124462\pi$$
−0.792323 + 0.610102i $$0.791129\pi$$
$$692$$ −1.13336 1.96304i −0.0430839 0.0746235i
$$693$$ −2.18860 + 3.79077i −0.0831381 + 0.143999i
$$694$$ −41.9213 −1.59131
$$695$$ −1.97277 + 3.41693i −0.0748312 + 0.129612i
$$696$$ −1.26080 + 2.18378i −0.0477906 + 0.0827758i
$$697$$ −31.4154 −1.18994
$$698$$ 0.896287 1.55242i 0.0339250 0.0587598i
$$699$$ −5.12280 8.87294i −0.193762 0.335606i
$$700$$ 1.29085 + 2.23582i 0.0487896 + 0.0845061i
$$701$$ −21.8443 −0.825049 −0.412525 0.910946i $$-0.635353\pi$$
−0.412525 + 0.910946i $$0.635353\pi$$
$$702$$ 5.74026 + 1.57761i 0.216652 + 0.0595432i
$$703$$ 16.8315 0.634814
$$704$$ 7.37439 + 12.7728i 0.277933 + 0.481394i
$$705$$ −14.0163 24.2769i −0.527883 0.914321i
$$706$$ −8.69248 + 15.0558i −0.327146 + 0.566633i
$$707$$ −11.0283 −0.414762
$$708$$ 1.09944 1.90428i 0.0413194 0.0715673i
$$709$$ −4.87187 + 8.43832i −0.182967 + 0.316908i −0.942890 0.333106i $$-0.891903\pi$$
0.759923 + 0.650013i $$0.225237\pi$$
$$710$$ 65.3764 2.45353
$$711$$ 8.47130 14.6727i 0.317699 0.550270i
$$712$$ −14.0898 24.4043i −0.528039 0.914590i
$$713$$ 22.7463 + 39.3977i 0.851854 + 1.47545i
$$714$$ 6.02830 0.225603
$$715$$ 44.5123 + 12.2335i 1.66467 + 0.457505i
$$716$$ 13.7750 0.514794
$$717$$ −5.65109 9.78798i −0.211044 0.365539i
$$718$$ −22.4621 38.9055i −0.838278 1.45194i
$$719$$ 2.52296 4.36989i 0.0940905 0.162970i −0.815138 0.579267i $$-0.803339\pi$$
0.909229 + 0.416297i $$0.136672\pi$$
$$720$$ −14.4055 −0.536861
$$721$$ −9.72717 + 16.8480i −0.362259 + 0.627451i
$$722$$ −11.6511 + 20.1803i −0.433609 + 0.751032i
$$723$$ −1.03605 −0.0385310
$$724$$ 0.701688 1.21536i 0.0260780 0.0451685i
$$725$$ −2.13132 3.69155i −0.0791552 0.137101i
$$726$$ 6.73638 + 11.6678i 0.250011 + 0.433031i
$$727$$ 6.66659 0.247250 0.123625 0.992329i $$-0.460548\pi$$
0.123625 + 0.992329i $$0.460548\pi$$
$$728$$ 1.91577 + 7.33763i 0.0710032 + 0.271951i
$$729$$ 1.00000 0.0370370
$$730$$ −2.25228 3.90107i −0.0833607 0.144385i
$$731$$ 10.4533 + 18.1056i 0.386629 + 0.669660i
$$732$$ −0.109710 + 0.190024i −0.00405501 + 0.00702349i
$$733$$ 47.4076 1.75104 0.875520 0.483181i $$-0.160519\pi$$
0.875520 + 0.483181i $$0.160519\pi$$
$$734$$ 5.16659 8.94880i 0.190702 0.330306i
$$735$$ 1.46249 2.53311i 0.0539448 0.0934352i
$$736$$ −27.5860 −1.01683
$$737$$ −19.0577 + 33.0088i −0.701998 + 1.21590i
$$738$$ 7.10331 + 12.3033i 0.261477 + 0.452891i
$$739$$ −3.09023 5.35243i −0.113676 0.196892i 0.803574 0.595205i $$-0.202929\pi$$
−0.917250 + 0.398313i $$0.869596\pi$$
$$740$$ −6.21225 −0.228367
$$741$$ 14.7647 14.5765i 0.542394 0.535483i
$$742$$ 0.498939 0.0183166
$$743$$ 11.6667 + 20.2073i 0.428010 + 0.741335i 0.996696 0.0812197i $$-0.0258815\pi$$
−0.568686 + 0.822554i $$0.692548\pi$$
$$744$$ 6.80712 + 11.7903i 0.249561 + 0.432253i
$$745$$ 4.49719 7.78936i 0.164764 0.285380i
$$746$$ −1.94553 −0.0712309
$$747$$ 0.633070 1.09651i 0.0231628 0.0401192i
$$748$$ 5.80219 10.0497i 0.212149 0.367453i
$$749$$ 1.42392 0.0520290
$$750$$ −3.48797 + 6.04135i −0.127363 + 0.220599i
$$751$$ 0.488375 + 0.845890i 0.0178211 + 0.0308670i 0.874798 0.484487i $$-0.160994\pi$$
−0.856977 + 0.515354i $$0.827660\pi$$
$$752$$ −23.6001 40.8766i −0.860607 1.49062i
$$753$$ −13.2838 −0.484087
$$754$$ 1.80296 + 6.90554i 0.0656598 + 0.251485i
$$755$$ 48.7331 1.77358
$$756$$ −0.363055 0.628829i −0.0132042 0.0228703i
$$757$$ 4.38254 + 7.59078i 0.159286 + 0.275892i 0.934611 0.355670i $$-0.115747\pi$$
−0.775325 + 0.631562i $$0.782414\pi$$
$$758$$ 19.9837 34.6128i 0.725841 1.25719i
$$759$$ 30.7643 1.11667
$$760$$ −17.7010 + 30.6590i −0.642083 + 1.11212i
$$761$$ 10.7276 18.5807i 0.388874 0.673550i −0.603424 0.797420i $$-0.706197\pi$$
0.992298 + 0.123871i $$0.0395308\pi$$
$$762$$ 9.03605 0.327341
$$763$$ −0.0233599 + 0.0404605i −0.000845685 + 0.00146477i
$$764$$ 0.825547 + 1.42989i 0.0298672 + 0.0517316i
$$765$$ −5.33969 9.24862i −0.193057 0.334385i
$$766$$ −4.11319 −0.148615
$$767$$ 2.75828 + 10.5645i 0.0995957 + 0.381463i
$$768$$ −15.4076 −0.555975
$$769$$ −11.0750 19.1825i −0.399375 0.691738i 0.594274 0.804263i $$-0.297440\pi$$
−0.993649 + 0.112525i $$0.964106\pi$$
$$770$$ −10.5697 18.3072i −0.380905 0.659746i
$$771$$ 6.22077 10.7747i