[N,k,chi] = [273,2,Mod(100,273)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(273, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("273.100");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).
\(n\)
\(92\)
\(106\)
\(157\)
\(\chi(n)\)
\(1\)
\(-1 + \beta_{7}\)
\(-\beta_{7}\)
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{20} + 18 T_{2}^{18} + 4 T_{2}^{17} + 211 T_{2}^{16} + 59 T_{2}^{15} + 1458 T_{2}^{14} + 526 T_{2}^{13} + 7324 T_{2}^{12} + 2645 T_{2}^{11} + 23428 T_{2}^{10} + 8506 T_{2}^{9} + 54235 T_{2}^{8} + 18801 T_{2}^{7} + 74141 T_{2}^{6} + \cdots + 1369 \)
T2^20 + 18*T2^18 + 4*T2^17 + 211*T2^16 + 59*T2^15 + 1458*T2^14 + 526*T2^13 + 7324*T2^12 + 2645*T2^11 + 23428*T2^10 + 8506*T2^9 + 54235*T2^8 + 18801*T2^7 + 74141*T2^6 + 25533*T2^5 + 68867*T2^4 + 16327*T2^3 + 16588*T2^2 - 2997*T2 + 1369
acting on \(S_{2}^{\mathrm{new}}(273, [\chi])\).
$p$
$F_p(T)$
$2$
\( T^{20} + 18 T^{18} + 4 T^{17} + \cdots + 1369 \)
T^20 + 18*T^18 + 4*T^17 + 211*T^16 + 59*T^15 + 1458*T^14 + 526*T^13 + 7324*T^12 + 2645*T^11 + 23428*T^10 + 8506*T^9 + 54235*T^8 + 18801*T^7 + 74141*T^6 + 25533*T^5 + 68867*T^4 + 16327*T^3 + 16588*T^2 - 2997*T + 1369
$3$
\( (T - 1)^{20} \)
(T - 1)^20
$5$
\( T^{20} + 41 T^{18} - 6 T^{17} + \cdots + 21904 \)
T^20 + 41*T^18 - 6*T^17 + 1097*T^16 - 250*T^15 + 17091*T^14 - 6876*T^13 + 193385*T^12 - 113648*T^11 + 1409381*T^10 - 1358388*T^9 + 7642531*T^8 - 8096156*T^7 + 27505483*T^6 - 31950698*T^5 + 65723253*T^4 - 48038324*T^3 + 44388788*T^2 + 973840*T + 21904
$7$
\( T^{20} + 9 T^{19} + 51 T^{18} + \cdots + 282475249 \)
T^20 + 9*T^19 + 51*T^18 + 192*T^17 + 527*T^16 + 1071*T^15 + 1945*T^14 + 5733*T^13 + 26665*T^12 + 108285*T^11 + 331910*T^10 + 757995*T^9 + 1306585*T^8 + 1966419*T^7 + 4669945*T^6 + 18000297*T^5 + 62001023*T^4 + 158120256*T^3 + 294004851*T^2 + 363182463*T + 282475249
$11$
\( (T^{10} - 8 T^{9} - 17 T^{8} + 251 T^{7} + \cdots - 64)^{2} \)
(T^10 - 8*T^9 - 17*T^8 + 251*T^7 - 306*T^6 - 1067*T^5 + 1187*T^4 + 1692*T^3 - 140*T^2 - 368*T - 64)^2
$13$
\( T^{20} + 5 T^{19} + \cdots + 137858491849 \)
T^20 + 5*T^19 - 17*T^18 - 115*T^17 - 104*T^16 - 49*T^15 + 1772*T^14 + 10201*T^13 - 33490*T^12 - 14374*T^11 + 958780*T^10 - 186862*T^9 - 5659810*T^8 + 22411597*T^7 + 50610092*T^6 - 18193357*T^5 - 501988136*T^4 - 7216079455*T^3 - 13867422257*T^2 + 53022496865*T + 137858491849
$17$
\( T^{20} + 102 T^{18} + \cdots + 353590416 \)
T^20 + 102*T^18 + 92*T^17 + 6853*T^16 + 6746*T^15 + 262012*T^14 + 225896*T^13 + 7230222*T^12 + 5321002*T^11 + 132198383*T^10 + 79114040*T^9 + 1755767902*T^8 + 1008545094*T^7 + 13816529557*T^6 + 7940105970*T^5 + 71149581549*T^4 + 40022628276*T^3 + 18228226716*T^2 + 2854672848*T + 353590416
$19$
\( (T^{10} + 7 T^{9} - 65 T^{8} - 325 T^{7} + \cdots + 65216)^{2} \)
(T^10 + 7*T^9 - 65*T^8 - 325*T^7 + 2002*T^6 + 3920*T^5 - 28381*T^4 + 6272*T^3 + 127281*T^2 - 184664*T + 65216)^2
$23$
\( T^{20} + 14 T^{19} + \cdots + 24437192976 \)
T^20 + 14*T^19 + 248*T^18 + 1860*T^17 + 21928*T^16 + 131787*T^15 + 1273402*T^14 + 5572157*T^13 + 41936503*T^12 + 132129234*T^11 + 933523587*T^10 + 1967836174*T^9 + 10635619813*T^8 + 5018817126*T^7 + 61510677601*T^6 + 52026288735*T^5 + 99608955489*T^4 + 32404054200*T^3 + 60759814500*T^2 + 19854398592*T + 24437192976
$29$
\( T^{20} + 9 T^{19} + 190 T^{18} + \cdots + 1882384 \)
T^20 + 9*T^19 + 190*T^18 + 701*T^17 + 15174*T^16 + 33949*T^15 + 864015*T^14 + 14171*T^13 + 27512288*T^12 - 34869883*T^11 + 679142868*T^10 - 1557031481*T^9 + 4031830689*T^8 - 2718924106*T^7 + 2374013675*T^6 - 355617598*T^5 + 600779901*T^4 - 81602444*T^3 + 78062684*T^2 + 9411920*T + 1882384
$31$
\( T^{20} + 9 T^{19} + \cdots + 64085935104 \)
T^20 + 9*T^19 + 204*T^18 + 1331*T^17 + 22639*T^16 + 135902*T^15 + 1545541*T^14 + 7484372*T^13 + 67670703*T^12 + 299751613*T^11 + 1944756458*T^10 + 6587017103*T^9 + 30939258292*T^8 + 100060555692*T^7 + 317476826179*T^6 + 648705932469*T^5 + 1050662929545*T^4 + 1040630058000*T^3 + 756837512352*T^2 + 261921185280*T + 64085935104
$37$
\( T^{20} - 18 T^{19} + \cdots + 300571569 \)
T^20 - 18*T^19 + 294*T^18 - 2330*T^17 + 20137*T^16 - 99338*T^15 + 756661*T^14 - 2876900*T^13 + 18173505*T^12 - 46749232*T^11 + 276429653*T^10 - 514470296*T^9 + 2808631621*T^8 - 2107203582*T^7 + 14521057357*T^6 - 154741614*T^5 + 59639767695*T^4 + 29836846266*T^3 + 24188180634*T^2 - 2468442060*T + 300571569
$41$
\( T^{20} + T^{19} + 205 T^{18} + \cdots + 5541909136 \)
T^20 + T^19 + 205*T^18 - 490*T^17 + 31185*T^16 - 81478*T^15 + 2097731*T^14 - 11339752*T^13 + 105341557*T^12 - 351554495*T^11 + 1283790892*T^10 - 2459144385*T^9 + 6470904248*T^8 - 9865119752*T^7 + 21334149520*T^6 - 20447210680*T^5 + 29377645777*T^4 - 14755145932*T^3 + 25485188004*T^2 - 10704153872*T + 5541909136
$43$
\( T^{20} + 11 T^{19} + \cdots + 29\!\cdots\!89 \)
T^20 + 11*T^19 + 338*T^18 + 2161*T^17 + 54400*T^16 + 266750*T^15 + 5853149*T^14 + 18255660*T^13 + 421614783*T^12 + 820971472*T^11 + 22459986660*T^10 + 16014493349*T^9 + 808237643635*T^8 - 25133212091*T^7 + 21155753310012*T^6 - 11297692784674*T^5 + 294015164693034*T^4 - 19113604128220*T^3 + 2223003658681029*T^2 - 2154091832745125*T + 2988746904541489
$47$
\( T^{20} - 13 T^{19} + \cdots + 6617497104 \)
T^20 - 13*T^19 + 270*T^18 - 2695*T^17 + 39596*T^16 - 355205*T^15 + 3567182*T^14 - 25515846*T^13 + 197895994*T^12 - 1209493030*T^11 + 6879192767*T^10 - 28612314884*T^9 + 96961200829*T^8 - 221666708762*T^7 + 384290459824*T^6 - 344381757756*T^5 + 262931491617*T^4 - 49385771004*T^3 + 99577379052*T^2 - 23440914288*T + 6617497104
$53$
\( T^{20} + 6 T^{19} + \cdots + 406192078224 \)
T^20 + 6*T^19 + 210*T^18 + 1404*T^17 + 30776*T^16 + 186567*T^15 + 2269606*T^14 + 10073857*T^13 + 100356265*T^12 + 390112848*T^11 + 2879582113*T^10 + 8076589660*T^9 + 45782556337*T^8 + 133442030762*T^7 + 423339028669*T^6 + 691260531051*T^5 + 1056685335177*T^4 + 643759769256*T^3 + 651928741380*T^2 + 156600120384*T + 406192078224
$59$
\( T^{20} + 15 T^{19} + \cdots + 9269028962064 \)
T^20 + 15*T^19 + 507*T^18 + 4160*T^17 + 118900*T^16 + 770465*T^15 + 17257090*T^14 + 41637821*T^13 + 1207988979*T^12 - 1556359088*T^11 + 72109900163*T^10 - 228094374274*T^9 + 2941289100829*T^8 - 13678980345597*T^7 + 93165783257698*T^6 - 313931987248197*T^5 + 982605240142101*T^4 - 1408380290195352*T^3 + 1642891236119676*T^2 + 119334094356096*T + 9269028962064
$61$
\( (T^{10} - 308 T^{8} + 195 T^{7} + \cdots - 163441132)^{2} \)
(T^10 - 308*T^8 + 195*T^7 + 34125*T^6 - 38244*T^5 - 1610315*T^4 + 2044543*T^3 + 29043959*T^2 - 19193636*T - 163441132)^2
$67$
\( (T^{10} - 22 T^{9} - 11 T^{8} + \cdots - 289024)^{2} \)
(T^10 - 22*T^9 - 11*T^8 + 3635*T^7 - 31048*T^6 + 63555*T^5 + 254949*T^4 - 1260948*T^3 + 1585760*T^2 - 326976*T - 289024)^2
$71$
\( T^{20} + 11 T^{19} + \cdots + 1342437380496 \)
T^20 + 11*T^19 + 374*T^18 + 4635*T^17 + 104554*T^16 + 1121877*T^15 + 13291201*T^14 + 103125071*T^13 + 899163028*T^12 + 5791477539*T^11 + 37481526306*T^10 + 165400854559*T^9 + 666628282159*T^8 + 1671849814326*T^7 + 4649305132075*T^6 + 8557985307498*T^5 + 22219676855109*T^4 + 24306684386772*T^3 + 22070393593596*T^2 + 6077068992720*T + 1342437380496
$73$
\( T^{20} + 398 T^{18} + \cdots + 21167631081 \)
T^20 + 398*T^18 + 764*T^17 + 118412*T^16 + 239688*T^15 + 13755978*T^14 + 51800986*T^13 + 1167480453*T^12 + 3696946376*T^11 + 47751920411*T^10 + 112074099462*T^9 + 1313999536463*T^8 + 1980543913936*T^7 + 14566865747797*T^6 - 18076808346426*T^5 + 38509113632298*T^4 - 3664201438884*T^3 + 1127008030167*T^2 + 66343896000*T + 21167631081
$79$
\( T^{20} + 36 T^{19} + \cdots + 22\!\cdots\!76 \)
T^20 + 36*T^19 + 1045*T^18 + 19388*T^17 + 338973*T^16 + 4842680*T^15 + 65685932*T^14 + 737743008*T^13 + 7453068320*T^12 + 62971048064*T^11 + 484898817984*T^10 + 3227304038912*T^9 + 19752699208192*T^8 + 101617375094784*T^7 + 453990955138048*T^6 + 1542811898634240*T^5 + 4200044509827072*T^4 + 6945314972958720*T^3 + 9150160623501312*T^2 + 818903770988544*T + 22605069576830976
$83$
\( (T^{10} - 20 T^{9} - 378 T^{8} + \cdots + 548326464)^{2} \)
(T^10 - 20*T^9 - 378*T^8 + 8460*T^7 + 43352*T^6 - 1184759*T^5 - 1726265*T^4 + 66428716*T^3 + 7340772*T^2 - 1237459440*T + 548326464)^2
$89$
\( T^{20} - 2 T^{19} + \cdots + 204256994704 \)
T^20 - 2*T^19 + 170*T^18 - 1682*T^17 + 25917*T^16 - 195794*T^15 + 1695685*T^14 - 10634186*T^13 + 70414444*T^12 - 355436322*T^11 + 1676708150*T^10 - 6121845605*T^9 + 21025884530*T^8 - 59577504741*T^7 + 162785433552*T^6 - 353821927057*T^5 + 657146359973*T^4 - 859612341288*T^3 + 863472228404*T^2 - 511532824320*T + 204256994704
$97$
\( T^{20} - 21 T^{19} + \cdots + 479579795289 \)
T^20 - 21*T^19 + 623*T^18 - 5300*T^17 + 121468*T^16 - 822352*T^15 + 16035305*T^14 - 73596997*T^13 + 1216431363*T^12 - 4452113328*T^11 + 66531678192*T^10 - 176830516984*T^9 + 1940150029491*T^8 - 4908707369839*T^7 + 38607494021365*T^6 - 56930956920732*T^5 + 125108940206676*T^4 + 63845221136712*T^3 + 27986565300003*T^2 + 4067227825353*T + 479579795289
show more
show less