# Properties

 Label 273.2.j.b.172.5 Level $273$ Weight $2$ Character 273.172 Analytic conductor $2.180$ Analytic rank $0$ Dimension $16$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$273 = 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 273.j (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.17991597518$$ Analytic rank: $$0$$ Dimension: $$16$$ Relative dimension: $$8$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{16} + \cdots)$$ Defining polynomial: $$x^{16} + 11 x^{14} - 4 x^{13} + 87 x^{12} - 35 x^{11} + 326 x^{10} - 205 x^{9} + 895 x^{8} - 481 x^{7} + 1005 x^{6} - 544 x^{5} + 811 x^{4} - 312 x^{3} + 195 x^{2} + 13 x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 172.5 Root $$0.379240 - 0.656863i$$ of defining polynomial Character $$\chi$$ $$=$$ 273.172 Dual form 273.2.j.b.100.5

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.379240 - 0.656863i) q^{2} -1.00000 q^{3} +(0.712354 + 1.23383i) q^{4} +(-0.357869 - 0.619848i) q^{5} +(-0.379240 + 0.656863i) q^{6} +(-1.32176 + 2.29193i) q^{7} +2.59757 q^{8} +1.00000 q^{9} +O(q^{10})$$ $$q+(0.379240 - 0.656863i) q^{2} -1.00000 q^{3} +(0.712354 + 1.23383i) q^{4} +(-0.357869 - 0.619848i) q^{5} +(-0.379240 + 0.656863i) q^{6} +(-1.32176 + 2.29193i) q^{7} +2.59757 q^{8} +1.00000 q^{9} -0.542874 q^{10} +4.48772 q^{11} +(-0.712354 - 1.23383i) q^{12} +(3.26504 + 1.52954i) q^{13} +(1.00422 + 1.73741i) q^{14} +(0.357869 + 0.619848i) q^{15} +(-0.439604 + 0.761417i) q^{16} +(1.88727 + 3.26885i) q^{17} +(0.379240 - 0.656863i) q^{18} -5.92010 q^{19} +(0.509859 - 0.883102i) q^{20} +(1.32176 - 2.29193i) q^{21} +(1.70192 - 2.94782i) q^{22} +(0.465673 - 0.806569i) q^{23} -2.59757 q^{24} +(2.24386 - 3.88648i) q^{25} +(2.24293 - 1.56463i) q^{26} -1.00000 q^{27} +(-3.76942 + 0.00184259i) q^{28} +(-1.12150 - 1.94250i) q^{29} +0.542874 q^{30} +(0.191136 - 0.331058i) q^{31} +(2.93100 + 5.07665i) q^{32} -4.48772 q^{33} +2.86291 q^{34} +(1.89367 - 0.000925671i) q^{35} +(0.712354 + 1.23383i) q^{36} +(0.328723 - 0.569365i) q^{37} +(-2.24514 + 3.88870i) q^{38} +(-3.26504 - 1.52954i) q^{39} +(-0.929592 - 1.61010i) q^{40} +(-2.29549 - 3.97591i) q^{41} +(-1.00422 - 1.73741i) q^{42} +(-2.50110 + 4.33202i) q^{43} +(3.19684 + 5.53710i) q^{44} +(-0.357869 - 0.619848i) q^{45} +(-0.353203 - 0.611766i) q^{46} +(-4.18536 - 7.24926i) q^{47} +(0.439604 - 0.761417i) q^{48} +(-3.50593 - 6.05875i) q^{49} +(-1.70192 - 2.94782i) q^{50} +(-1.88727 - 3.26885i) q^{51} +(0.438674 + 5.11809i) q^{52} +(-1.21338 + 2.10164i) q^{53} +(-0.379240 + 0.656863i) q^{54} +(-1.60602 - 2.78170i) q^{55} +(-3.43336 + 5.95347i) q^{56} +5.92010 q^{57} -1.70127 q^{58} +(-2.80700 - 4.86187i) q^{59} +(-0.509859 + 0.883102i) q^{60} +1.99378 q^{61} +(-0.144973 - 0.251101i) q^{62} +(-1.32176 + 2.29193i) q^{63} +2.68780 q^{64} +(-0.220379 - 2.57121i) q^{65} +(-1.70192 + 2.94782i) q^{66} -14.4655 q^{67} +(-2.68881 + 4.65715i) q^{68} +(-0.465673 + 0.806569i) q^{69} +(0.717546 - 1.24423i) q^{70} +(2.14741 - 3.71943i) q^{71} +2.59757 q^{72} +(-1.34127 + 2.32315i) q^{73} +(-0.249330 - 0.431852i) q^{74} +(-2.24386 + 3.88648i) q^{75} +(-4.21721 - 7.30442i) q^{76} +(-5.93167 + 10.2856i) q^{77} +(-2.24293 + 1.56463i) q^{78} +(2.75173 + 4.76614i) q^{79} +0.629283 q^{80} +1.00000 q^{81} -3.48217 q^{82} +11.5302 q^{83} +(3.76942 - 0.00184259i) q^{84} +(1.35079 - 2.33964i) q^{85} +(1.89703 + 3.28575i) q^{86} +(1.12150 + 1.94250i) q^{87} +11.6572 q^{88} +(6.05088 - 10.4804i) q^{89} -0.542874 q^{90} +(-7.82119 + 5.46159i) q^{91} +1.32689 q^{92} +(-0.191136 + 0.331058i) q^{93} -6.34903 q^{94} +(2.11862 + 3.66956i) q^{95} +(-2.93100 - 5.07665i) q^{96} +(-1.79870 + 3.11544i) q^{97} +(-5.30936 + 0.00519069i) q^{98} +4.48772 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$16q - 16q^{3} - 6q^{4} + q^{7} + 12q^{8} + 16q^{9} + O(q^{10})$$ $$16q - 16q^{3} - 6q^{4} + q^{7} + 12q^{8} + 16q^{9} + 8q^{10} + 4q^{11} + 6q^{12} + 5q^{13} - 7q^{14} - 6q^{16} - 2q^{17} + 22q^{19} - 20q^{20} - q^{21} + 7q^{22} + 4q^{23} - 12q^{24} + 2q^{25} - 6q^{26} - 16q^{27} - 7q^{28} + 15q^{29} - 8q^{30} + 3q^{31} + 3q^{32} - 4q^{33} - 68q^{34} - 12q^{35} - 6q^{36} + 4q^{37} + 2q^{38} - 5q^{39} - 25q^{40} + 19q^{41} + 7q^{42} + 11q^{43} - 16q^{44} + 2q^{46} + 5q^{47} + 6q^{48} + 13q^{49} - 7q^{50} + 2q^{51} + 36q^{52} + 36q^{53} - 15q^{55} + 39q^{56} - 22q^{57} - 40q^{58} - 17q^{59} + 20q^{60} + 44q^{61} - 6q^{62} + q^{63} - 20q^{64} - 21q^{65} - 7q^{66} - 52q^{67} + 5q^{68} - 4q^{69} + 46q^{70} + 9q^{71} + 12q^{72} - 6q^{73} + 15q^{74} - 2q^{75} - 16q^{76} - 36q^{77} + 6q^{78} + 16q^{79} + 56q^{80} + 16q^{81} + 2q^{82} + 36q^{83} + 7q^{84} - 4q^{85} + 16q^{86} - 15q^{87} - 48q^{88} + 20q^{89} + 8q^{90} - 7q^{91} - 94q^{92} - 3q^{93} + 40q^{94} - 3q^{96} + 7q^{97} - 3q^{98} + 4q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/273\mathbb{Z}\right)^\times$$.

 $$n$$ $$92$$ $$106$$ $$157$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.379240 0.656863i 0.268163 0.464472i −0.700224 0.713923i $$-0.746917\pi$$
0.968388 + 0.249451i $$0.0802500\pi$$
$$3$$ −1.00000 −0.577350
$$4$$ 0.712354 + 1.23383i 0.356177 + 0.616917i
$$5$$ −0.357869 0.619848i −0.160044 0.277204i 0.774840 0.632157i $$-0.217830\pi$$
−0.934884 + 0.354953i $$0.884497\pi$$
$$6$$ −0.379240 + 0.656863i −0.154824 + 0.268163i
$$7$$ −1.32176 + 2.29193i −0.499577 + 0.866270i
$$8$$ 2.59757 0.918381
$$9$$ 1.00000 0.333333
$$10$$ −0.542874 −0.171672
$$11$$ 4.48772 1.35310 0.676549 0.736398i $$-0.263475\pi$$
0.676549 + 0.736398i $$0.263475\pi$$
$$12$$ −0.712354 1.23383i −0.205639 0.356177i
$$13$$ 3.26504 + 1.52954i 0.905560 + 0.424217i
$$14$$ 1.00422 + 1.73741i 0.268390 + 0.464341i
$$15$$ 0.357869 + 0.619848i 0.0924015 + 0.160044i
$$16$$ −0.439604 + 0.761417i −0.109901 + 0.190354i
$$17$$ 1.88727 + 3.26885i 0.457730 + 0.792812i 0.998841 0.0481394i $$-0.0153292\pi$$
−0.541110 + 0.840952i $$0.681996\pi$$
$$18$$ 0.379240 0.656863i 0.0893877 0.154824i
$$19$$ −5.92010 −1.35816 −0.679082 0.734062i $$-0.737622\pi$$
−0.679082 + 0.734062i $$0.737622\pi$$
$$20$$ 0.509859 0.883102i 0.114008 0.197468i
$$21$$ 1.32176 2.29193i 0.288431 0.500141i
$$22$$ 1.70192 2.94782i 0.362851 0.628477i
$$23$$ 0.465673 0.806569i 0.0970995 0.168181i −0.813383 0.581728i $$-0.802377\pi$$
0.910483 + 0.413547i $$0.135710\pi$$
$$24$$ −2.59757 −0.530227
$$25$$ 2.24386 3.88648i 0.448772 0.777296i
$$26$$ 2.24293 1.56463i 0.439875 0.306848i
$$27$$ −1.00000 −0.192450
$$28$$ −3.76942 + 0.00184259i −0.712354 + 0.000348216i
$$29$$ −1.12150 1.94250i −0.208257 0.360713i 0.742908 0.669393i $$-0.233446\pi$$
−0.951166 + 0.308681i $$0.900113\pi$$
$$30$$ 0.542874 0.0991147
$$31$$ 0.191136 0.331058i 0.0343291 0.0594597i −0.848350 0.529435i $$-0.822404\pi$$
0.882679 + 0.469975i $$0.155737\pi$$
$$32$$ 2.93100 + 5.07665i 0.518133 + 0.897433i
$$33$$ −4.48772 −0.781211
$$34$$ 2.86291 0.490986
$$35$$ 1.89367 0.000925671i 0.320088 0.000156467i
$$36$$ 0.712354 + 1.23383i 0.118726 + 0.205639i
$$37$$ 0.328723 0.569365i 0.0540417 0.0936030i −0.837739 0.546071i $$-0.816123\pi$$
0.891781 + 0.452468i $$0.149456\pi$$
$$38$$ −2.24514 + 3.88870i −0.364210 + 0.630830i
$$39$$ −3.26504 1.52954i −0.522826 0.244922i
$$40$$ −0.929592 1.61010i −0.146981 0.254579i
$$41$$ −2.29549 3.97591i −0.358495 0.620932i 0.629214 0.777232i $$-0.283377\pi$$
−0.987710 + 0.156300i $$0.950043\pi$$
$$42$$ −1.00422 1.73741i −0.154955 0.268088i
$$43$$ −2.50110 + 4.33202i −0.381413 + 0.660627i −0.991265 0.131889i $$-0.957896\pi$$
0.609851 + 0.792516i $$0.291229\pi$$
$$44$$ 3.19684 + 5.53710i 0.481942 + 0.834749i
$$45$$ −0.357869 0.619848i −0.0533480 0.0924015i
$$46$$ −0.353203 0.611766i −0.0520770 0.0902000i
$$47$$ −4.18536 7.24926i −0.610498 1.05741i −0.991157 0.132698i $$-0.957636\pi$$
0.380659 0.924716i $$-0.375697\pi$$
$$48$$ 0.439604 0.761417i 0.0634514 0.109901i
$$49$$ −3.50593 6.05875i −0.500846 0.865536i
$$50$$ −1.70192 2.94782i −0.240688 0.416884i
$$51$$ −1.88727 3.26885i −0.264271 0.457730i
$$52$$ 0.438674 + 5.11809i 0.0608332 + 0.709752i
$$53$$ −1.21338 + 2.10164i −0.166671 + 0.288682i −0.937247 0.348665i $$-0.886635\pi$$
0.770577 + 0.637347i $$0.219968\pi$$
$$54$$ −0.379240 + 0.656863i −0.0516080 + 0.0893877i
$$55$$ −1.60602 2.78170i −0.216555 0.375085i
$$56$$ −3.43336 + 5.95347i −0.458802 + 0.795565i
$$57$$ 5.92010 0.784137
$$58$$ −1.70127 −0.223388
$$59$$ −2.80700 4.86187i −0.365441 0.632962i 0.623406 0.781898i $$-0.285748\pi$$
−0.988847 + 0.148937i $$0.952415\pi$$
$$60$$ −0.509859 + 0.883102i −0.0658225 + 0.114008i
$$61$$ 1.99378 0.255277 0.127639 0.991821i $$-0.459260\pi$$
0.127639 + 0.991821i $$0.459260\pi$$
$$62$$ −0.144973 0.251101i −0.0184116 0.0318898i
$$63$$ −1.32176 + 2.29193i −0.166526 + 0.288757i
$$64$$ 2.68780 0.335975
$$65$$ −0.220379 2.57121i −0.0273347 0.318919i
$$66$$ −1.70192 + 2.94782i −0.209492 + 0.362851i
$$67$$ −14.4655 −1.76724 −0.883618 0.468208i $$-0.844900\pi$$
−0.883618 + 0.468208i $$0.844900\pi$$
$$68$$ −2.68881 + 4.65715i −0.326066 + 0.564763i
$$69$$ −0.465673 + 0.806569i −0.0560604 + 0.0970995i
$$70$$ 0.717546 1.24423i 0.0857632 0.148714i
$$71$$ 2.14741 3.71943i 0.254851 0.441415i −0.710004 0.704198i $$-0.751307\pi$$
0.964855 + 0.262783i $$0.0846402\pi$$
$$72$$ 2.59757 0.306127
$$73$$ −1.34127 + 2.32315i −0.156984 + 0.271905i −0.933780 0.357848i $$-0.883511\pi$$
0.776796 + 0.629753i $$0.216844\pi$$
$$74$$ −0.249330 0.431852i −0.0289840 0.0502018i
$$75$$ −2.24386 + 3.88648i −0.259099 + 0.448772i
$$76$$ −4.21721 7.30442i −0.483747 0.837874i
$$77$$ −5.93167 + 10.2856i −0.675976 + 1.17215i
$$78$$ −2.24293 + 1.56463i −0.253962 + 0.177159i
$$79$$ 2.75173 + 4.76614i 0.309594 + 0.536233i 0.978274 0.207318i $$-0.0664735\pi$$
−0.668679 + 0.743551i $$0.733140\pi$$
$$80$$ 0.629283 0.0703560
$$81$$ 1.00000 0.111111
$$82$$ −3.48217 −0.384541
$$83$$ 11.5302 1.26560 0.632800 0.774316i $$-0.281906\pi$$
0.632800 + 0.774316i $$0.281906\pi$$
$$84$$ 3.76942 0.00184259i 0.411278 0.000201043i
$$85$$ 1.35079 2.33964i 0.146514 0.253770i
$$86$$ 1.89703 + 3.28575i 0.204562 + 0.354312i
$$87$$ 1.12150 + 1.94250i 0.120238 + 0.208257i
$$88$$ 11.6572 1.24266
$$89$$ 6.05088 10.4804i 0.641392 1.11092i −0.343730 0.939069i $$-0.611690\pi$$
0.985122 0.171856i $$-0.0549763\pi$$
$$90$$ −0.542874 −0.0572239
$$91$$ −7.82119 + 5.46159i −0.819883 + 0.572531i
$$92$$ 1.32689 0.138338
$$93$$ −0.191136 + 0.331058i −0.0198199 + 0.0343291i
$$94$$ −6.34903 −0.654852
$$95$$ 2.11862 + 3.66956i 0.217366 + 0.376489i
$$96$$ −2.93100 5.07665i −0.299144 0.518133i
$$97$$ −1.79870 + 3.11544i −0.182630 + 0.316325i −0.942775 0.333429i $$-0.891794\pi$$
0.760145 + 0.649753i $$0.225128\pi$$
$$98$$ −5.30936 + 0.00519069i −0.536326 + 0.000524339i
$$99$$ 4.48772 0.451033
$$100$$ 6.39369 0.639369
$$101$$ 11.9792 1.19197 0.595986 0.802995i $$-0.296761\pi$$
0.595986 + 0.802995i $$0.296761\pi$$
$$102$$ −2.86291 −0.283471
$$103$$ −1.54966 2.68409i −0.152692 0.264471i 0.779524 0.626372i $$-0.215461\pi$$
−0.932216 + 0.361901i $$0.882128\pi$$
$$104$$ 8.48119 + 3.97308i 0.831649 + 0.389593i
$$105$$ −1.89367 0.000925671i −0.184803 9.03363e-5i
$$106$$ 0.920325 + 1.59405i 0.0893898 + 0.154828i
$$107$$ −5.59313 + 9.68758i −0.540708 + 0.936534i 0.458155 + 0.888872i $$0.348510\pi$$
−0.998864 + 0.0476618i $$0.984823\pi$$
$$108$$ −0.712354 1.23383i −0.0685463 0.118726i
$$109$$ 10.1906 17.6506i 0.976082 1.69062i 0.299766 0.954013i $$-0.403091\pi$$
0.676316 0.736611i $$-0.263575\pi$$
$$110$$ −2.43626 −0.232289
$$111$$ −0.328723 + 0.569365i −0.0312010 + 0.0540417i
$$112$$ −1.16407 2.01395i −0.109994 0.190300i
$$113$$ 8.55107 14.8109i 0.804417 1.39329i −0.112266 0.993678i $$-0.535811\pi$$
0.916684 0.399613i $$-0.130856\pi$$
$$114$$ 2.24514 3.88870i 0.210277 0.364210i
$$115$$ −0.666600 −0.0621608
$$116$$ 1.59781 2.76749i 0.148353 0.256955i
$$117$$ 3.26504 + 1.52954i 0.301853 + 0.141406i
$$118$$ −4.25811 −0.391991
$$119$$ −9.98650 + 0.00488165i −0.915461 + 0.000447500i
$$120$$ 0.929592 + 1.61010i 0.0848597 + 0.146981i
$$121$$ 9.13961 0.830874
$$122$$ 0.756122 1.30964i 0.0684560 0.118569i
$$123$$ 2.29549 + 3.97591i 0.206977 + 0.358495i
$$124$$ 0.544627 0.0489089
$$125$$ −6.79073 −0.607381
$$126$$ 1.00422 + 1.73741i 0.0894634 + 0.154780i
$$127$$ 9.01920 + 15.6217i 0.800325 + 1.38620i 0.919402 + 0.393318i $$0.128673\pi$$
−0.119077 + 0.992885i $$0.537994\pi$$
$$128$$ −4.84269 + 8.38778i −0.428037 + 0.741382i
$$129$$ 2.50110 4.33202i 0.220209 0.381413i
$$130$$ −1.77251 0.830345i −0.155459 0.0728261i
$$131$$ −9.83728 17.0387i −0.859487 1.48868i −0.872419 0.488759i $$-0.837450\pi$$
0.0129316 0.999916i $$-0.495884\pi$$
$$132$$ −3.19684 5.53710i −0.278250 0.481942i
$$133$$ 7.82493 13.5685i 0.678507 1.17654i
$$134$$ −5.48588 + 9.50182i −0.473908 + 0.820832i
$$135$$ 0.357869 + 0.619848i 0.0308005 + 0.0533480i
$$136$$ 4.90232 + 8.49107i 0.420371 + 0.728104i
$$137$$ −9.64137 16.6993i −0.823718 1.42672i −0.902895 0.429861i $$-0.858563\pi$$
0.0791773 0.996861i $$-0.474771\pi$$
$$138$$ 0.353203 + 0.611766i 0.0300667 + 0.0520770i
$$139$$ −1.31388 + 2.27571i −0.111442 + 0.193023i −0.916352 0.400374i $$-0.868880\pi$$
0.804910 + 0.593397i $$0.202214\pi$$
$$140$$ 1.35010 + 2.33581i 0.114105 + 0.197412i
$$141$$ 4.18536 + 7.24926i 0.352471 + 0.610498i
$$142$$ −1.62877 2.82111i −0.136683 0.236743i
$$143$$ 14.6526 + 6.86413i 1.22531 + 0.574007i
$$144$$ −0.439604 + 0.761417i −0.0366337 + 0.0634514i
$$145$$ −0.802702 + 1.39032i −0.0666607 + 0.115460i
$$146$$ 1.01733 + 1.76207i 0.0841948 + 0.145830i
$$147$$ 3.50593 + 6.05875i 0.289164 + 0.499718i
$$148$$ 0.936669 0.0769937
$$149$$ −15.5896 −1.27715 −0.638573 0.769561i $$-0.720475\pi$$
−0.638573 + 0.769561i $$0.720475\pi$$
$$150$$ 1.70192 + 2.94782i 0.138961 + 0.240688i
$$151$$ 4.61134 7.98707i 0.375265 0.649978i −0.615102 0.788448i $$-0.710885\pi$$
0.990367 + 0.138470i $$0.0442183\pi$$
$$152$$ −15.3779 −1.24731
$$153$$ 1.88727 + 3.26885i 0.152577 + 0.264271i
$$154$$ 4.50668 + 7.79699i 0.363158 + 0.628299i
$$155$$ −0.273607 −0.0219767
$$156$$ −0.438674 5.11809i −0.0351221 0.409775i
$$157$$ −9.20539 + 15.9442i −0.734670 + 1.27249i 0.220197 + 0.975455i $$0.429330\pi$$
−0.954868 + 0.297031i $$0.904003\pi$$
$$158$$ 4.17427 0.332087
$$159$$ 1.21338 2.10164i 0.0962273 0.166671i
$$160$$ 2.09783 3.63355i 0.165848 0.287258i
$$161$$ 1.23310 + 2.13338i 0.0971817 + 0.168134i
$$162$$ 0.379240 0.656863i 0.0297959 0.0516080i
$$163$$ 11.1686 0.874793 0.437396 0.899269i $$-0.355901\pi$$
0.437396 + 0.899269i $$0.355901\pi$$
$$164$$ 3.27040 5.66451i 0.255376 0.442324i
$$165$$ 1.60602 + 2.78170i 0.125028 + 0.216555i
$$166$$ 4.37270 7.57374i 0.339387 0.587836i
$$167$$ 7.09719 + 12.2927i 0.549197 + 0.951237i 0.998330 + 0.0577721i $$0.0183997\pi$$
−0.449133 + 0.893465i $$0.648267\pi$$
$$168$$ 3.43336 5.95347i 0.264889 0.459320i
$$169$$ 8.32104 + 9.98801i 0.640080 + 0.768309i
$$170$$ −1.02455 1.77457i −0.0785794 0.136103i
$$171$$ −5.92010 −0.452722
$$172$$ −7.12666 −0.543403
$$173$$ 19.2725 1.46526 0.732630 0.680627i $$-0.238293\pi$$
0.732630 + 0.680627i $$0.238293\pi$$
$$174$$ 1.70127 0.128973
$$175$$ 5.94172 + 10.2798i 0.449152 + 0.777076i
$$176$$ −1.97282 + 3.41702i −0.148707 + 0.257568i
$$177$$ 2.80700 + 4.86187i 0.210987 + 0.365441i
$$178$$ −4.58948 7.94921i −0.343996 0.595818i
$$179$$ −11.2324 −0.839553 −0.419776 0.907628i $$-0.637891\pi$$
−0.419776 + 0.907628i $$0.637891\pi$$
$$180$$ 0.509859 0.883102i 0.0380027 0.0658225i
$$181$$ 2.43304 0.180846 0.0904232 0.995903i $$-0.471178\pi$$
0.0904232 + 0.995903i $$0.471178\pi$$
$$182$$ 0.621412 + 7.20871i 0.0460621 + 0.534345i
$$183$$ −1.99378 −0.147385
$$184$$ 1.20962 2.09512i 0.0891743 0.154454i
$$185$$ −0.470560 −0.0345962
$$186$$ 0.144973 + 0.251101i 0.0106299 + 0.0184116i
$$187$$ 8.46954 + 14.6697i 0.619354 + 1.07275i
$$188$$ 5.96292 10.3281i 0.434890 0.753252i
$$189$$ 1.32176 2.29193i 0.0961436 0.166714i
$$190$$ 3.21387 0.233158
$$191$$ −13.7391 −0.994124 −0.497062 0.867715i $$-0.665588\pi$$
−0.497062 + 0.867715i $$0.665588\pi$$
$$192$$ −2.68780 −0.193975
$$193$$ −13.8673 −0.998187 −0.499094 0.866548i $$-0.666334\pi$$
−0.499094 + 0.866548i $$0.666334\pi$$
$$194$$ 1.36428 + 2.36300i 0.0979493 + 0.169653i
$$195$$ 0.220379 + 2.57121i 0.0157817 + 0.184128i
$$196$$ 4.97803 8.64170i 0.355574 0.617265i
$$197$$ −9.15733 15.8610i −0.652433 1.13005i −0.982531 0.186100i $$-0.940415\pi$$
0.330098 0.943947i $$-0.392918\pi$$
$$198$$ 1.70192 2.94782i 0.120950 0.209492i
$$199$$ 3.55862 + 6.16371i 0.252264 + 0.436933i 0.964149 0.265363i $$-0.0854916\pi$$
−0.711885 + 0.702296i $$0.752158\pi$$
$$200$$ 5.82859 10.0954i 0.412143 0.713853i
$$201$$ 14.4655 1.02031
$$202$$ 4.54298 7.86867i 0.319643 0.553638i
$$203$$ 5.93442 0.00290089i 0.416515 0.000203603i
$$204$$ 2.68881 4.65715i 0.188254 0.326066i
$$205$$ −1.64297 + 2.84571i −0.114750 + 0.198753i
$$206$$ −2.35077 −0.163786
$$207$$ 0.465673 0.806569i 0.0323665 0.0560604i
$$208$$ −2.59994 + 1.81367i −0.180274 + 0.125755i
$$209$$ −26.5678 −1.83773
$$210$$ −0.717546 + 1.24423i −0.0495154 + 0.0858601i
$$211$$ −5.95003 10.3058i −0.409617 0.709478i 0.585230 0.810868i $$-0.301004\pi$$
−0.994847 + 0.101390i $$0.967671\pi$$
$$212$$ −3.45742 −0.237457
$$213$$ −2.14741 + 3.71943i −0.147138 + 0.254851i
$$214$$ 4.24228 + 7.34784i 0.289996 + 0.502288i
$$215$$ 3.58026 0.244172
$$216$$ −2.59757 −0.176742
$$217$$ 0.506127 + 0.875649i 0.0343581 + 0.0594429i
$$218$$ −7.72937 13.3877i −0.523499 0.906726i
$$219$$ 1.34127 2.32315i 0.0906349 0.156984i
$$220$$ 2.28810 3.96311i 0.154264 0.267193i
$$221$$ 1.16220 + 13.5596i 0.0781780 + 0.912117i
$$222$$ 0.249330 + 0.431852i 0.0167339 + 0.0289840i
$$223$$ 11.9432 + 20.6863i 0.799778 + 1.38526i 0.919760 + 0.392481i $$0.128383\pi$$
−0.119982 + 0.992776i $$0.538284\pi$$
$$224$$ −15.5094 + 0.00758139i −1.03627 + 0.000506553i
$$225$$ 2.24386 3.88648i 0.149591 0.259099i
$$226$$ −6.48582 11.2338i −0.431430 0.747259i
$$227$$ −6.29391 10.9014i −0.417741 0.723549i 0.577971 0.816058i $$-0.303845\pi$$
−0.995712 + 0.0925083i $$0.970512\pi$$
$$228$$ 4.21721 + 7.30442i 0.279291 + 0.483747i
$$229$$ 7.66365 + 13.2738i 0.506429 + 0.877160i 0.999972 + 0.00743905i $$0.00236795\pi$$
−0.493544 + 0.869721i $$0.664299\pi$$
$$230$$ −0.252801 + 0.437865i −0.0166692 + 0.0288720i
$$231$$ 5.93167 10.2856i 0.390275 0.676740i
$$232$$ −2.91318 5.04578i −0.191260 0.331271i
$$233$$ 13.3343 + 23.0957i 0.873559 + 1.51305i 0.858289 + 0.513166i $$0.171527\pi$$
0.0152699 + 0.999883i $$0.495139\pi$$
$$234$$ 2.24293 1.56463i 0.146625 0.102283i
$$235$$ −2.99563 + 5.18858i −0.195413 + 0.338465i
$$236$$ 3.99916 6.92675i 0.260323 0.450893i
$$237$$ −2.75173 4.76614i −0.178744 0.309594i
$$238$$ −3.78407 + 6.56161i −0.245285 + 0.425326i
$$239$$ −14.5891 −0.943693 −0.471846 0.881681i $$-0.656412\pi$$
−0.471846 + 0.881681i $$0.656412\pi$$
$$240$$ −0.629283 −0.0406201
$$241$$ −6.44615 11.1651i −0.415233 0.719204i 0.580220 0.814460i $$-0.302967\pi$$
−0.995453 + 0.0952555i $$0.969633\pi$$
$$242$$ 3.46611 6.00347i 0.222810 0.385918i
$$243$$ −1.00000 −0.0641500
$$244$$ 1.42028 + 2.45999i 0.0909240 + 0.157485i
$$245$$ −2.50084 + 4.34138i −0.159773 + 0.277361i
$$246$$ 3.48217 0.222015
$$247$$ −19.3294 9.05501i −1.22990 0.576157i
$$248$$ 0.496490 0.859947i 0.0315272 0.0546067i
$$249$$ −11.5302 −0.730694
$$250$$ −2.57532 + 4.46058i −0.162877 + 0.282112i
$$251$$ −12.0203 + 20.8198i −0.758717 + 1.31414i 0.184787 + 0.982779i $$0.440840\pi$$
−0.943505 + 0.331359i $$0.892493\pi$$
$$252$$ −3.76942 + 0.00184259i −0.237451 + 0.000116072i
$$253$$ 2.08981 3.61965i 0.131385 0.227566i
$$254$$ 13.6818 0.858471
$$255$$ −1.35079 + 2.33964i −0.0845899 + 0.146514i
$$256$$ 6.36088 + 11.0174i 0.397555 + 0.688586i
$$257$$ −9.35724 + 16.2072i −0.583689 + 1.01098i 0.411349 + 0.911478i $$0.365058\pi$$
−0.995038 + 0.0995004i $$0.968276\pi$$
$$258$$ −1.89703 3.28575i −0.118104 0.204562i
$$259$$ 0.870456 + 1.50597i 0.0540875 + 0.0935766i
$$260$$ 3.01545 2.10352i 0.187010 0.130455i
$$261$$ −1.12150 1.94250i −0.0694192 0.120238i
$$262$$ −14.9228 −0.921931
$$263$$ −9.37129 −0.577859 −0.288929 0.957350i $$-0.593299\pi$$
−0.288929 + 0.957350i $$0.593299\pi$$
$$264$$ −11.6572 −0.717450
$$265$$ 1.73693 0.106699
$$266$$ −5.94511 10.2856i −0.364518 0.630652i
$$267$$ −6.05088 + 10.4804i −0.370308 + 0.641392i
$$268$$ −10.3045 17.8480i −0.629449 1.09024i
$$269$$ −6.07464 10.5216i −0.370377 0.641512i 0.619246 0.785197i $$-0.287438\pi$$
−0.989624 + 0.143685i $$0.954105\pi$$
$$270$$ 0.542874 0.0330382
$$271$$ 7.32926 12.6946i 0.445221 0.771145i −0.552847 0.833283i $$-0.686459\pi$$
0.998068 + 0.0621380i $$0.0197919\pi$$
$$272$$ −3.31861 −0.201220
$$273$$ 7.82119 5.46159i 0.473360 0.330551i
$$274$$ −14.6256 −0.883563
$$275$$ 10.0698 17.4414i 0.607232 1.05176i
$$276$$ −1.32689 −0.0798697
$$277$$ 2.51608 + 4.35797i 0.151176 + 0.261845i 0.931660 0.363331i $$-0.118361\pi$$
−0.780484 + 0.625176i $$0.785027\pi$$
$$278$$ 0.996555 + 1.72608i 0.0597694 + 0.103524i
$$279$$ 0.191136 0.331058i 0.0114430 0.0198199i
$$280$$ 4.91894 0.00240450i 0.293963 0.000143696i
$$281$$ 0.854888 0.0509984 0.0254992 0.999675i $$-0.491882\pi$$
0.0254992 + 0.999675i $$0.491882\pi$$
$$282$$ 6.34903 0.378079
$$283$$ −31.2774 −1.85925 −0.929625 0.368506i $$-0.879869\pi$$
−0.929625 + 0.368506i $$0.879869\pi$$
$$284$$ 6.11888 0.363088
$$285$$ −2.11862 3.66956i −0.125496 0.217366i
$$286$$ 10.0656 7.02160i 0.595194 0.415196i
$$287$$ 12.1466 0.00593756i 0.716991 0.000350483i
$$288$$ 2.93100 + 5.07665i 0.172711 + 0.299144i
$$289$$ 1.37642 2.38403i 0.0809657 0.140237i
$$290$$ 0.608833 + 1.05453i 0.0357519 + 0.0619241i
$$291$$ 1.79870 3.11544i 0.105442 0.182630i
$$292$$ −3.82185 −0.223657
$$293$$ 0.339044 0.587241i 0.0198071 0.0343070i −0.855952 0.517055i $$-0.827028\pi$$
0.875759 + 0.482748i $$0.160361\pi$$
$$294$$ 5.30936 0.00519069i 0.309648 0.000302727i
$$295$$ −2.00908 + 3.47983i −0.116973 + 0.202603i
$$296$$ 0.853882 1.47897i 0.0496309 0.0859632i
$$297$$ −4.48772 −0.260404
$$298$$ −5.91219 + 10.2402i −0.342484 + 0.593199i
$$299$$ 2.75412 1.92122i 0.159275 0.111107i
$$300$$ −6.39369 −0.369140
$$301$$ −6.62288 11.4582i −0.381736 0.660441i
$$302$$ −3.49761 6.05803i −0.201265 0.348601i
$$303$$ −11.9792 −0.688185
$$304$$ 2.60250 4.50766i 0.149264 0.258532i
$$305$$ −0.713513 1.23584i −0.0408556 0.0707640i
$$306$$ 2.86291 0.163662
$$307$$ −27.2103 −1.55297 −0.776487 0.630134i $$-0.783000\pi$$
−0.776487 + 0.630134i $$0.783000\pi$$
$$308$$ −16.9161 + 0.00826901i −0.963885 + 0.000471171i
$$309$$ 1.54966 + 2.68409i 0.0881569 + 0.152692i
$$310$$ −0.103763 + 0.179722i −0.00589333 + 0.0102076i
$$311$$ 7.06426 12.2357i 0.400577 0.693821i −0.593218 0.805042i $$-0.702143\pi$$
0.993796 + 0.111221i $$0.0354762\pi$$
$$312$$ −8.48119 3.97308i −0.480153 0.224932i
$$313$$ 9.84907 + 17.0591i 0.556703 + 0.964237i 0.997769 + 0.0667627i $$0.0212670\pi$$
−0.441066 + 0.897475i $$0.645400\pi$$
$$314$$ 6.98211 + 12.0934i 0.394023 + 0.682468i
$$315$$ 1.89367 0.000925671i 0.106696 5.21557e-5i
$$316$$ −3.92042 + 6.79036i −0.220541 + 0.381988i
$$317$$ −7.83931 13.5781i −0.440299 0.762621i 0.557412 0.830236i $$-0.311794\pi$$
−0.997711 + 0.0676152i $$0.978461\pi$$
$$318$$ −0.920325 1.59405i −0.0516092 0.0893898i
$$319$$ −5.03298 8.71738i −0.281793 0.488079i
$$320$$ −0.961881 1.66603i −0.0537708 0.0931338i
$$321$$ 5.59313 9.68758i 0.312178 0.540708i
$$322$$ 1.86898 0.000913602i 0.104154 5.09131e-5i
$$323$$ −11.1728 19.3519i −0.621673 1.07677i
$$324$$ 0.712354 + 1.23383i 0.0395752 + 0.0685463i
$$325$$ 13.2708 9.25746i 0.736132 0.513511i
$$326$$ 4.23558 7.33625i 0.234587 0.406317i
$$327$$ −10.1906 + 17.6506i −0.563541 + 0.976082i
$$328$$ −5.96270 10.3277i −0.329235 0.570252i
$$329$$ 22.1469 0.0108259i 1.22100 0.000596853i
$$330$$ 2.43626 0.134112
$$331$$ 14.4236 0.792793 0.396396 0.918079i $$-0.370261\pi$$
0.396396 + 0.918079i $$0.370261\pi$$
$$332$$ 8.21355 + 14.2263i 0.450777 + 0.780769i
$$333$$ 0.328723 0.569365i 0.0180139 0.0312010i
$$334$$ 10.7662 0.589098
$$335$$ 5.17674 + 8.96638i 0.282836 + 0.489886i
$$336$$ 1.16407 + 2.01395i 0.0635051 + 0.109870i
$$337$$ 14.4299 0.786049 0.393025 0.919528i $$-0.371429\pi$$
0.393025 + 0.919528i $$0.371429\pi$$
$$338$$ 9.71643 1.67793i 0.528504 0.0912672i
$$339$$ −8.55107 + 14.8109i −0.464431 + 0.804417i
$$340$$ 3.84897 0.208740
$$341$$ 0.857766 1.48569i 0.0464506 0.0804548i
$$342$$ −2.24514 + 3.88870i −0.121403 + 0.210277i
$$343$$ 18.5202 0.0271595i 0.999999 0.00146647i
$$344$$ −6.49678 + 11.2527i −0.350283 + 0.606707i
$$345$$ 0.666600 0.0358885
$$346$$ 7.30890 12.6594i 0.392929 0.680573i
$$347$$ 2.33434 + 4.04319i 0.125314 + 0.217050i 0.921856 0.387534i $$-0.126673\pi$$
−0.796542 + 0.604584i $$0.793340\pi$$
$$348$$ −1.59781 + 2.76749i −0.0856517 + 0.148353i
$$349$$ 2.06807 + 3.58201i 0.110701 + 0.191740i 0.916053 0.401057i $$-0.131357\pi$$
−0.805352 + 0.592797i $$0.798024\pi$$
$$350$$ 9.00573 0.00440222i 0.481376 0.000235309i
$$351$$ −3.26504 1.52954i −0.174275 0.0816406i
$$352$$ 13.1535 + 22.7826i 0.701085 + 1.21431i
$$353$$ 35.7899 1.90491 0.952453 0.304684i $$-0.0985509\pi$$
0.952453 + 0.304684i $$0.0985509\pi$$
$$354$$ 4.25811 0.226316
$$355$$ −3.07397 −0.163150
$$356$$ 17.2415 0.913797
$$357$$ 9.98650 0.00488165i 0.528541 0.000258364i
$$358$$ −4.25979 + 7.37818i −0.225137 + 0.389949i
$$359$$ 12.6381 + 21.8899i 0.667014 + 1.15530i 0.978735 + 0.205129i $$0.0657614\pi$$
−0.311721 + 0.950174i $$0.600905\pi$$
$$360$$ −0.929592 1.61010i −0.0489938 0.0848597i
$$361$$ 16.0476 0.844611
$$362$$ 0.922706 1.59817i 0.0484964 0.0839982i
$$363$$ −9.13961 −0.479705
$$364$$ −12.3102 5.75945i −0.645227 0.301877i
$$365$$ 1.92000 0.100498
$$366$$ −0.756122 + 1.30964i −0.0395231 + 0.0684560i
$$367$$ 35.3997 1.84785 0.923925 0.382573i $$-0.124962\pi$$
0.923925 + 0.382573i $$0.124962\pi$$
$$368$$ 0.409423 + 0.709142i 0.0213427 + 0.0369666i
$$369$$ −2.29549 3.97591i −0.119498 0.206977i
$$370$$ −0.178455 + 0.309093i −0.00927744 + 0.0160690i
$$371$$ −3.21302 5.55884i −0.166812 0.288600i
$$372$$ −0.544627 −0.0282376
$$373$$ −32.7804 −1.69730 −0.848652 0.528951i $$-0.822586\pi$$
−0.848652 + 0.528951i $$0.822586\pi$$
$$374$$ 12.8480 0.664352
$$375$$ 6.79073 0.350672
$$376$$ −10.8718 18.8305i −0.560669 0.971108i
$$377$$ −0.690631 8.05771i −0.0355693 0.414993i
$$378$$ −1.00422 1.73741i −0.0516517 0.0893625i
$$379$$ −6.04308 10.4669i −0.310412 0.537650i 0.668039 0.744126i $$-0.267134\pi$$
−0.978452 + 0.206476i $$0.933800\pi$$
$$380$$ −3.01842 + 5.22806i −0.154842 + 0.268194i
$$381$$ −9.01920 15.6217i −0.462068 0.800325i
$$382$$ −5.21040 + 9.02468i −0.266587 + 0.461743i
$$383$$ −0.512172 −0.0261708 −0.0130854 0.999914i $$-0.504165\pi$$
−0.0130854 + 0.999914i $$0.504165\pi$$
$$384$$ 4.84269 8.38778i 0.247127 0.428037i
$$385$$ 8.49824 0.00415415i 0.433110 0.000211715i
$$386$$ −5.25902 + 9.10889i −0.267677 + 0.463630i
$$387$$ −2.50110 + 4.33202i −0.127138 + 0.220209i
$$388$$ −5.12524 −0.260195
$$389$$ −17.7577 + 30.7573i −0.900353 + 1.55946i −0.0733162 + 0.997309i $$0.523358\pi$$
−0.827037 + 0.562148i $$0.809975\pi$$
$$390$$ 1.77251 + 0.830345i 0.0897544 + 0.0420462i
$$391$$ 3.51540 0.177781
$$392$$ −9.10690 15.7381i −0.459968 0.794892i
$$393$$ 9.83728 + 17.0387i 0.496225 + 0.859487i
$$394$$ −13.8913 −0.699834
$$395$$ 1.96952 3.41131i 0.0990974 0.171642i
$$396$$ 3.19684 + 5.53710i 0.160647 + 0.278250i
$$397$$ −8.29730 −0.416430 −0.208215 0.978083i $$-0.566765\pi$$
−0.208215 + 0.978083i $$0.566765\pi$$
$$398$$ 5.39828 0.270591
$$399$$ −7.82493 + 13.5685i −0.391736 + 0.679274i
$$400$$ 1.97282 + 3.41702i 0.0986410 + 0.170851i
$$401$$ −6.96021 + 12.0554i −0.347576 + 0.602019i −0.985818 0.167816i $$-0.946329\pi$$
0.638242 + 0.769836i $$0.279662\pi$$
$$402$$ 5.48588 9.50182i 0.273611 0.473908i
$$403$$ 1.13043 0.788568i 0.0563109 0.0392814i
$$404$$ 8.53341 + 14.7803i 0.424553 + 0.735347i
$$405$$ −0.357869 0.619848i −0.0177827 0.0308005i
$$406$$ 2.24867 3.89920i 0.111599 0.193514i
$$407$$ 1.47522 2.55515i 0.0731238 0.126654i
$$408$$ −4.90232 8.49107i −0.242701 0.420371i
$$409$$ 2.45871 + 4.25862i 0.121576 + 0.210575i 0.920389 0.391004i $$-0.127872\pi$$
−0.798814 + 0.601579i $$0.794539\pi$$
$$410$$ 1.24616 + 2.15841i 0.0615435 + 0.106597i
$$411$$ 9.64137 + 16.6993i 0.475574 + 0.823718i
$$412$$ 2.20781 3.82404i 0.108771 0.188397i
$$413$$ 14.8533 0.00726064i 0.730881 0.000357273i
$$414$$ −0.353203 0.611766i −0.0173590 0.0300667i
$$415$$ −4.12629 7.14694i −0.202552 0.350830i
$$416$$ 1.80494 + 21.0586i 0.0884945 + 1.03248i
$$417$$ 1.31388 2.27571i 0.0643412 0.111442i
$$418$$ −10.0756 + 17.4514i −0.492812 + 0.853575i
$$419$$ 4.85147 + 8.40299i 0.237010 + 0.410513i 0.959855 0.280497i $$-0.0904993\pi$$
−0.722845 + 0.691010i $$0.757166\pi$$
$$420$$ −1.35010 2.33581i −0.0658783 0.113976i
$$421$$ −15.2944 −0.745405 −0.372702 0.927951i $$-0.621569\pi$$
−0.372702 + 0.927951i $$0.621569\pi$$
$$422$$ −9.02596 −0.439377
$$423$$ −4.18536 7.24926i −0.203499 0.352471i
$$424$$ −3.15184 + 5.45915i −0.153067 + 0.265120i
$$425$$ 16.9391 0.821666
$$426$$ 1.62877 + 2.82111i 0.0789142 + 0.136683i
$$427$$ −2.63529 + 4.56961i −0.127531 + 0.221139i
$$428$$ −15.9371 −0.770351
$$429$$ −14.6526 6.86413i −0.707434 0.331403i
$$430$$ 1.35778 2.35174i 0.0654779 0.113411i
$$431$$ 32.6580 1.57308 0.786541 0.617538i $$-0.211870\pi$$
0.786541 + 0.617538i $$0.211870\pi$$
$$432$$ 0.439604 0.761417i 0.0211505 0.0366337i
$$433$$ 9.28189 16.0767i 0.446059 0.772597i −0.552066 0.833800i $$-0.686160\pi$$
0.998125 + 0.0612034i $$0.0194938\pi$$
$$434$$ 0.767125 0.000374990i 0.0368232 1.80001e-5i
$$435$$ 0.802702 1.39032i 0.0384866 0.0666607i
$$436$$ 29.0372 1.39063
$$437$$ −2.75683 + 4.77497i −0.131877 + 0.228418i
$$438$$ −1.01733 1.76207i −0.0486099 0.0841948i
$$439$$ −4.72738 + 8.18806i −0.225625 + 0.390795i −0.956507 0.291710i $$-0.905776\pi$$
0.730881 + 0.682504i $$0.239109\pi$$
$$440$$ −4.17175 7.22568i −0.198880 0.344471i
$$441$$ −3.50593 6.05875i −0.166949 0.288512i
$$442$$ 9.34755 + 4.37893i 0.444617 + 0.208285i
$$443$$ −3.71593 6.43618i −0.176549 0.305792i 0.764147 0.645042i $$-0.223160\pi$$
−0.940696 + 0.339250i $$0.889827\pi$$
$$444$$ −0.936669 −0.0444523
$$445$$ −8.66170 −0.410604
$$446$$ 18.1174 0.857885
$$447$$ 15.5896 0.737361
$$448$$ −3.55261 + 6.16026i −0.167845 + 0.291045i
$$449$$ −9.42362 + 16.3222i −0.444728 + 0.770291i −0.998033 0.0626872i $$-0.980033\pi$$
0.553305 + 0.832979i $$0.313366\pi$$
$$450$$ −1.70192 2.94782i −0.0802294 0.138961i
$$451$$ −10.3015 17.8427i −0.485079 0.840182i
$$452$$ 24.3656 1.14606
$$453$$ −4.61134 + 7.98707i −0.216659 + 0.375265i
$$454$$ −9.54761 −0.448092
$$455$$ 6.18432 + 2.89341i 0.289925 + 0.135645i
$$456$$ 15.3779 0.720136
$$457$$ 3.40003 5.88903i 0.159047 0.275477i −0.775478 0.631374i $$-0.782491\pi$$
0.934525 + 0.355897i $$0.115825\pi$$
$$458$$ 11.6255 0.543222
$$459$$ −1.88727 3.26885i −0.0880903 0.152577i
$$460$$ −0.474855 0.822473i −0.0221402 0.0383480i
$$461$$ −4.80595 + 8.32415i −0.223836 + 0.387694i −0.955969 0.293466i $$-0.905191\pi$$
0.732134 + 0.681161i $$0.238525\pi$$
$$462$$ −4.50668 7.79699i −0.209670 0.362749i
$$463$$ −23.4929 −1.09181 −0.545905 0.837847i $$-0.683814\pi$$
−0.545905 + 0.837847i $$0.683814\pi$$
$$464$$ 1.97207 0.0915508
$$465$$ 0.273607 0.0126882
$$466$$ 20.2276 0.937026
$$467$$ 7.24654 + 12.5514i 0.335330 + 0.580808i 0.983548 0.180646i $$-0.0578189\pi$$
−0.648218 + 0.761455i $$0.724486\pi$$
$$468$$ 0.438674 + 5.11809i 0.0202777 + 0.236584i
$$469$$ 19.1198 33.1539i 0.882870 1.53090i
$$470$$ 2.27212 + 3.93543i 0.104805 + 0.181528i
$$471$$ 9.20539 15.9442i 0.424162 0.734670i
$$472$$ −7.29139 12.6291i −0.335614 0.581300i
$$473$$ −11.2242 + 19.4409i −0.516090 + 0.893894i
$$474$$ −4.17427 −0.191731
$$475$$ −13.2839 + 23.0083i −0.609506 + 1.05570i
$$476$$ −7.11994 12.3182i −0.326342 0.564604i
$$477$$ −1.21338 + 2.10164i −0.0555569 + 0.0962273i
$$478$$ −5.53279 + 9.58307i −0.253064 + 0.438319i
$$479$$ 14.5134 0.663134 0.331567 0.943432i $$-0.392423\pi$$
0.331567 + 0.943432i $$0.392423\pi$$
$$480$$ −2.09783 + 3.63355i −0.0957525 + 0.165848i
$$481$$ 1.94416 1.35621i 0.0886461 0.0618378i
$$482$$ −9.77855 −0.445401
$$483$$ −1.23310 2.13338i −0.0561079 0.0970720i
$$484$$ 6.51064 + 11.2768i 0.295938 + 0.512580i
$$485$$ 2.57480 0.116915
$$486$$ −0.379240 + 0.656863i −0.0172027 + 0.0297959i
$$487$$ −11.6964 20.2587i −0.530013 0.918009i −0.999387 0.0350099i $$-0.988854\pi$$
0.469374 0.882999i $$-0.344480\pi$$
$$488$$ 5.17899 0.234442
$$489$$ −11.1686 −0.505062
$$490$$ 1.90327 + 3.28914i 0.0859812 + 0.148588i
$$491$$ 0.786824 + 1.36282i 0.0355089 + 0.0615032i 0.883234 0.468933i $$-0.155361\pi$$
−0.847725 + 0.530436i $$0.822028\pi$$
$$492$$ −3.27040 + 5.66451i −0.147441 + 0.255376i
$$493$$ 4.23315 7.33203i 0.190652 0.330218i
$$494$$ −13.2784 + 9.26275i −0.597423 + 0.416751i
$$495$$ −1.60602 2.78170i −0.0721851 0.125028i
$$496$$ 0.168049 + 0.291069i 0.00754560 + 0.0130694i
$$497$$ 5.68633 + 9.83791i 0.255067 + 0.441291i
$$498$$ −4.37270 + 7.57374i −0.195945 + 0.339387i
$$499$$ −7.86689 13.6259i −0.352170 0.609977i 0.634459 0.772956i $$-0.281223\pi$$
−0.986629 + 0.162980i $$0.947890\pi$$
$$500$$ −4.83740 8.37862i −0.216335 0.374703i
$$501$$ −7.09719 12.2927i −0.317079 0.549197i
$$502$$ 9.11719 + 15.7914i 0.406920 + 0.704807i
$$503$$ 17.7055 30.6668i 0.789447 1.36736i −0.136858 0.990591i $$-0.543701\pi$$
0.926306 0.376773i $$-0.122966\pi$$
$$504$$ −3.43336 + 5.95347i −0.152934 + 0.265188i
$$505$$ −4.28698 7.42526i −0.190768 0.330420i
$$506$$ −1.58508 2.74543i −0.0704653 0.122049i
$$507$$ −8.32104 9.98801i −0.369550 0.443583i
$$508$$ −12.8497 + 22.2564i −0.570115 + 0.987467i
$$509$$ 5.20477 9.01493i 0.230697 0.399580i −0.727316 0.686303i $$-0.759233\pi$$
0.958014 + 0.286723i $$0.0925659\pi$$
$$510$$ 1.02455 + 1.77457i 0.0453678 + 0.0785794i
$$511$$ −3.55168 6.14475i −0.157117 0.271828i
$$512$$ −9.72154 −0.429635
$$513$$ 5.92010 0.261379
$$514$$ 7.09728 + 12.2929i 0.313048 + 0.542214i
$$515$$ −1.10915 + 1.92110i −0.0488750 + 0.0846540i
$$516$$ 7.12666 0.313734
$$517$$ −18.7827 32.5326i −0.826063 1.43078i
$$518$$ 1.31933 0.000644921i 0.0579680 2.83362e-5i
$$519$$ −19.2725 −0.845968
$$520$$ −0.572451 6.67889i −0.0251037 0.292889i
$$521$$ −0.513222 + 0.888926i −0.0224847 + 0.0389446i −0.877049 0.480401i $$-0.840491\pi$$
0.854564 + 0.519346i $$0.173824\pi$$
$$522$$ −1.70127 −0.0744627
$$523$$ 9.02138 15.6255i 0.394477 0.683255i −0.598557 0.801080i $$-0.704259\pi$$
0.993034 + 0.117826i $$0.0375924\pi$$
$$524$$ 14.0153 24.2751i 0.612259 1.06046i
$$525$$ −5.94172 10.2798i −0.259318 0.448645i
$$526$$ −3.55397 + 6.15566i −0.154960 + 0.268399i
$$527$$ 1.44290 0.0628539
$$528$$ 1.97282 3.41702i 0.0858559 0.148707i
$$529$$ 11.0663 + 19.1674i 0.481143 + 0.833365i
$$530$$ 0.658712 1.14092i 0.0286126 0.0495585i
$$531$$ −2.80700 4.86187i −0.121814 0.210987i
$$532$$ 22.3154 0.0109083i 0.967494 0.000472935i
$$533$$ −1.41359 16.4926i −0.0612292 0.714372i
$$534$$ 4.58948 + 7.94921i 0.198606 + 0.343996i
$$535$$ 8.00644 0.346148
$$536$$ −37.5751 −1.62300
$$537$$ 11.2324 0.484716
$$538$$ −9.21499 −0.397286
$$539$$ −15.7336 27.1900i −0.677694 1.17116i
$$540$$ −0.509859 + 0.883102i −0.0219408 + 0.0380027i
$$541$$ 16.7318 + 28.9803i 0.719355 + 1.24596i 0.961256 + 0.275659i $$0.0888960\pi$$
−0.241900 + 0.970301i $$0.577771\pi$$
$$542$$ −5.55910 9.62864i −0.238784 0.413585i
$$543$$ −2.43304 −0.104412
$$544$$ −11.0632 + 19.1620i −0.474331 + 0.821565i
$$545$$ −14.5876 −0.624865
$$546$$ −0.621412 7.20871i −0.0265940 0.308504i
$$547$$ 30.7718 1.31571 0.657853 0.753146i $$-0.271465\pi$$
0.657853 + 0.753146i $$0.271465\pi$$
$$548$$ 13.7361 23.7917i 0.586779 1.01633i
$$549$$ 1.99378 0.0850925
$$550$$ −7.63775 13.2290i −0.325675 0.564085i
$$551$$ 6.63940 + 11.4998i 0.282848 + 0.489907i
$$552$$ −1.20962 + 2.09512i −0.0514848 + 0.0891743i
$$553$$ −14.5608 + 0.00711768i −0.619188 + 0.000302675i
$$554$$ 3.81679 0.162160
$$555$$ 0.470560 0.0199741
$$556$$ −3.74380 −0.158773
$$557$$ 15.6343 0.662446 0.331223 0.943553i $$-0.392539\pi$$
0.331223 + 0.943553i $$0.392539\pi$$
$$558$$ −0.144973 0.251101i −0.00613720 0.0106299i
$$559$$ −14.7922 + 10.3187i −0.625642 + 0.436436i
$$560$$ −0.831759 + 1.44228i −0.0351482 + 0.0609473i
$$561$$ −8.46954 14.6697i −0.357584 0.619354i
$$562$$ 0.324208 0.561545i 0.0136759 0.0236873i
$$563$$ −16.7621 29.0328i −0.706438 1.22359i −0.966170 0.257905i $$-0.916968\pi$$
0.259733 0.965681i $$-0.416366\pi$$
$$564$$ −5.96292 + 10.3281i −0.251084 + 0.434890i
$$565$$ −12.2407 −0.514969
$$566$$ −11.8617 + 20.5450i −0.498583 + 0.863570i
$$567$$ −1.32176 + 2.29193i −0.0555085 + 0.0962522i
$$568$$ 5.57806 9.66149i 0.234050 0.405387i
$$569$$ −10.6031 + 18.3651i −0.444504 + 0.769903i −0.998018 0.0629368i $$-0.979953\pi$$
0.553514 + 0.832840i $$0.313287\pi$$
$$570$$ −3.21387 −0.134614
$$571$$ −0.869647 + 1.50627i −0.0363936 + 0.0630356i −0.883648 0.468151i $$-0.844920\pi$$
0.847255 + 0.531187i $$0.178254\pi$$
$$572$$ 1.96865 + 22.9686i 0.0823133 + 0.960364i
$$573$$ 13.7391 0.573958
$$574$$ 4.60258 7.98090i 0.192108 0.333116i
$$575$$ −2.08981 3.61965i −0.0871510 0.150950i
$$576$$ 2.68780 0.111992
$$577$$ −2.83193 + 4.90504i −0.117895 + 0.204199i −0.918933 0.394413i $$-0.870948\pi$$
0.801039 + 0.598613i $$0.204281\pi$$
$$578$$ −1.04399 1.80824i −0.0434241 0.0752127i
$$579$$ 13.8673 0.576304
$$580$$ −2.28723 −0.0949721
$$581$$ −15.2401 + 26.4264i −0.632264 + 1.09635i
$$582$$ −1.36428 2.36300i −0.0565511 0.0979493i
$$583$$ −5.44531 + 9.43155i −0.225522 + 0.390615i
$$584$$ −3.48406 + 6.03456i −0.144171 + 0.249712i
$$585$$ −0.220379 2.57121i −0.00911157 0.106306i
$$586$$ −0.257158 0.445411i −0.0106231 0.0183997i
$$587$$ 8.06910 + 13.9761i 0.333047 + 0.576855i 0.983108 0.183028i $$-0.0585898\pi$$
−0.650060 + 0.759882i $$0.725256\pi$$
$$588$$ −4.97803 + 8.64170i −0.205291 + 0.356378i
$$589$$ −1.13155 + 1.95990i −0.0466246 + 0.0807561i
$$590$$ 1.52385 + 2.63938i 0.0627358 + 0.108662i
$$591$$ 9.15733 + 15.8610i 0.376682 + 0.652433i
$$592$$ 0.289016 + 0.500590i 0.0118785 + 0.0205741i
$$593$$ −21.1595 36.6493i −0.868917 1.50501i −0.863105 0.505025i $$-0.831483\pi$$
−0.00581233 0.999983i $$-0.501850\pi$$
$$594$$ −1.70192 + 2.94782i −0.0698307 + 0.120950i
$$595$$ 3.57689 + 6.18836i 0.146638 + 0.253698i
$$596$$ −11.1053 19.2349i −0.454890 0.787893i
$$597$$ −3.55862 6.16371i −0.145644 0.252264i
$$598$$ −0.217506 2.53768i −0.00889448 0.103774i
$$599$$ 22.9026 39.6685i 0.935776 1.62081i 0.162532 0.986703i $$-0.448034\pi$$
0.773244 0.634108i $$-0.218633\pi$$
$$600$$ −5.82859 + 10.0954i −0.237951 + 0.412143i
$$601$$ 6.27579 + 10.8700i 0.255995 + 0.443396i 0.965165 0.261641i $$-0.0842637\pi$$
−0.709170 + 0.705037i $$0.750930\pi$$
$$602$$ −10.0381 + 0.00490689i −0.409124 + 0.000199990i
$$603$$ −14.4655 −0.589079
$$604$$ 13.1396 0.534643
$$605$$ −3.27079 5.66517i −0.132976 0.230322i
$$606$$ −4.54298 + 7.86867i −0.184546 + 0.319643i
$$607$$ 34.4923 1.40000 0.700000 0.714143i $$-0.253183\pi$$
0.700000 + 0.714143i $$0.253183\pi$$
$$608$$ −17.3518 30.0543i −0.703710 1.21886i
$$609$$ −5.93442 + 0.00290089i −0.240475 + 0.000117550i
$$610$$ −1.08237 −0.0438239
$$611$$ −2.57739 30.0708i −0.104270 1.21654i
$$612$$ −2.68881 + 4.65715i −0.108689 + 0.188254i
$$613$$ −34.1674 −1.38001 −0.690003 0.723806i $$-0.742391\pi$$
−0.690003 + 0.723806i $$0.742391\pi$$
$$614$$ −10.3192 + 17.8734i −0.416450 + 0.721313i
$$615$$ 1.64297 2.84571i 0.0662510 0.114750i
$$616$$ −15.4079 + 26.7175i −0.620803 + 1.07648i
$$617$$ −18.4048 + 31.8781i −0.740950 + 1.28336i 0.211113 + 0.977462i $$0.432291\pi$$
−0.952063 + 0.305902i $$0.901042\pi$$
$$618$$ 2.35077 0.0945618
$$619$$ −17.9351 + 31.0644i −0.720871 + 1.24858i 0.239780 + 0.970827i $$0.422925\pi$$
−0.960651 + 0.277758i $$0.910409\pi$$
$$620$$ −0.194905 0.337586i −0.00782758 0.0135578i
$$621$$ −0.465673 + 0.806569i −0.0186868 + 0.0323665i
$$622$$ −5.35810 9.28050i −0.214840 0.372114i
$$623$$ 16.0227 + 27.7208i 0.641935 + 1.11061i
$$624$$ 2.59994 1.81367i 0.104081 0.0726049i
$$625$$ −8.78910 15.2232i −0.351564 0.608927i
$$626$$ 14.9407 0.597149
$$627$$ 26.5678 1.06101
$$628$$ −26.2300 −1.04669
$$629$$ 2.48156 0.0989462
$$630$$ 0.717546 1.24423i 0.0285877 0.0495713i
$$631$$ −9.93368 + 17.2056i −0.395453 + 0.684945i −0.993159 0.116770i $$-0.962746\pi$$
0.597706 + 0.801716i $$0.296079\pi$$
$$632$$ 7.14783 + 12.3804i 0.284325 + 0.492466i
$$633$$ 5.95003 + 10.3058i 0.236493 + 0.409617i
$$634$$ −11.8919 −0.472288
$$635$$ 6.45539 11.1811i 0.256174 0.443707i
$$636$$ 3.45742 0.137096
$$637$$ −2.17992 25.1445i −0.0863715 0.996263i
$$638$$ −7.63483 −0.302266
$$639$$ 2.14741 3.71943i 0.0849504 0.147138i
$$640$$ 6.93220 0.274019
$$641$$ 1.27505 + 2.20844i 0.0503613 + 0.0872282i 0.890107 0.455751i $$-0.150629\pi$$
−0.839746 + 0.542980i $$0.817296\pi$$
$$642$$ −4.24228 7.34784i −0.167429 0.289996i
$$643$$ 7.23729 12.5354i 0.285411 0.494346i −0.687298 0.726376i $$-0.741203\pi$$
0.972709 + 0.232029i $$0.0745366\pi$$
$$644$$ −1.75383 + 3.04116i −0.0691106 + 0.119838i
$$645$$ −3.58026 −0.140973
$$646$$ −16.9488 −0.666840
$$647$$ −31.6619 −1.24476 −0.622379 0.782716i $$-0.713834\pi$$
−0.622379 + 0.782716i $$0.713834\pi$$
$$648$$ 2.59757 0.102042
$$649$$ −12.5970 21.8187i −0.494477 0.856459i
$$650$$ −1.04806 12.2279i −0.0411083 0.479618i
$$651$$ −0.506127 0.875649i −0.0198367 0.0343194i
$$652$$ 7.95600 + 13.7802i 0.311581 + 0.539674i
$$653$$ −3.52992 + 6.11399i −0.138136 + 0.239259i −0.926791 0.375577i $$-0.877445\pi$$
0.788655 + 0.614836i $$0.210778\pi$$
$$654$$ 7.72937 + 13.3877i 0.302242 + 0.523499i
$$655$$ −7.04092 + 12.1952i −0.275112 + 0.476507i
$$656$$ 4.03643 0.157596
$$657$$ −1.34127 + 2.32315i −0.0523281 + 0.0906349i
$$658$$ 8.39186 14.5516i 0.327149 0.567279i
$$659$$ 6.73098 11.6584i 0.262202 0.454147i −0.704625 0.709580i $$-0.748885\pi$$
0.966827 + 0.255433i $$0.0822181\pi$$
$$660$$ −2.28810 + 3.96311i −0.0890644 + 0.154264i
$$661$$ 4.13958 0.161011 0.0805054 0.996754i $$-0.474347\pi$$
0.0805054 + 0.996754i $$0.474347\pi$$
$$662$$ 5.47001 9.47433i 0.212598 0.368230i
$$663$$ −1.16220 13.5596i −0.0451361 0.526611i
$$664$$ 29.9504 1.16230
$$665$$ −11.2107 + 0.00548007i −0.434732 + 0.000212508i
$$666$$ −0.249330 0.431852i −0.00966134 0.0167339i
$$667$$ −2.08901 −0.0808868
$$668$$ −10.1114 + 17.5135i −0.391223 + 0.677617i
$$669$$ −11.9432 20.6863i −0.461752 0.799778i
$$670$$ 7.85291 0.303384
$$671$$ 8.94753 0.345415
$$672$$ 15.5094 0.00758139i 0.598289 0.000292458i
$$673$$ −3.09545 5.36148i −0.119321 0.206670i 0.800178 0.599763i $$-0.204738\pi$$
−0.919499 + 0.393093i $$0.871405\pi$$
$$674$$ 5.47241 9.47850i 0.210790 0.365098i
$$675$$ −2.24386 + 3.88648i −0.0863662 + 0.149591i
$$676$$ −6.39602 + 17.3818i −0.246001 + 0.668530i
$$677$$ 8.44416 + 14.6257i 0.324535 + 0.562112i 0.981418 0.191881i $$-0.0614587\pi$$
−0.656883 + 0.753993i $$0.728125\pi$$
$$678$$ 6.48582 + 11.2338i 0.249086 + 0.431430i
$$679$$ −4.76294 8.24034i −0.182785 0.316235i
$$680$$ 3.50878 6.07739i 0.134556 0.233057i
$$681$$ 6.29391 + 10.9014i 0.241183 + 0.417741i
$$682$$ −0.650598 1.12687i −0.0249127 0.0431501i
$$683$$ −6.68862 11.5850i −0.255933 0.443289i 0.709215 0.704992i $$-0.249049\pi$$
−0.965149 + 0.261703i $$0.915716\pi$$
$$684$$ −4.21721 7.30442i −0.161249 0.279291i
$$685$$ −6.90070 + 11.9524i −0.263662 + 0.456676i
$$686$$ 7.00578 12.1756i 0.267482 0.464865i
$$687$$ −7.66365 13.2738i −0.292387 0.506429i
$$688$$ −2.19898 3.80875i −0.0838354 0.145207i
$$689$$ −7.17627 + 5.00603i −0.273394 + 0.190714i
$$690$$ 0.252801 0.437865i 0.00962398 0.0166692i
$$691$$ −4.90190 + 8.49034i −0.186477 + 0.322988i −0.944073 0.329736i $$-0.893040\pi$$
0.757596 + 0.652723i $$0.226374\pi$$
$$692$$ 13.7288 + 23.7790i 0.521892 + 0.903943i
$$693$$ −5.93167 + 10.2856i −0.225325 + 0.390716i
$$694$$ 3.54110 0.134418
$$695$$ 1.88079 0.0713426
$$696$$ 2.91318 + 5.04578i 0.110424 + 0.191260i
$$697$$ 8.66443 15.0072i 0.328189 0.568439i
$$698$$ 3.13718 0.118744
$$699$$ −13.3343 23.0957i −0.504350 0.873559i
$$700$$ −8.45089 + 14.6539i −0.319414 + 0.553866i
$$701$$ 35.6715 1.34729 0.673647 0.739054i $$-0.264727\pi$$
0.673647 + 0.739054i $$0.264727\pi$$
$$702$$ −2.24293 + 1.56463i −0.0846540 + 0.0590530i
$$703$$ −1.94607 + 3.37070i −0.0733976 + 0.127128i
$$704$$ 12.0621 0.454607
$$705$$ 2.99563 5.18858i 0.112822 0.195413i
$$706$$ 13.5730 23.5091i 0.510826 0.884777i
$$707$$ −15.8335 + 27.4555i −0.595481 + 1.03257i
$$708$$ −3.99916 + 6.92675i −0.150298 + 0.260323i
$$709$$ 31.7496 1.19238 0.596191 0.802842i $$-0.296680\pi$$
0.596191 + 0.802842i $$0.296680\pi$$
$$710$$ −1.16577 + 2.01918i −0.0437507 + 0.0757785i
$$711$$ 2.75173 + 4.76614i 0.103198 + 0.178744i
$$712$$ 15.7176 27.2237i 0.589043 1.02025i
$$713$$ −0.178014 0.308329i −0.00666667 0.0115470i
$$714$$ 3.78407 6.56161i 0.141615 0.245562i
$$715$$ −0.989000 11.5388i −0.0369865 0.431528i
$$716$$ −8.00148 13.8590i −0.299029 0.517934i
$$717$$ 14.5891 0.544841
$$718$$ 19.1715 0.715475
$$719$$ −6.98125 −0.260357 −0.130178 0.991491i $$-0.541555\pi$$
−0.130178 + 0.991491i $$0.541555\pi$$
$$720$$ 0.629283 0.0234520
$$721$$ 8.20002 0.00400837i 0.305385 0.000149280i
$$722$$ 6.08590 10.5411i 0.226494 0.392299i
$$723$$ 6.44615 + 11.1651i 0.239735 + 0.415233i
$$724$$ 1.73319 + 3.00197i 0.0644133 + 0.111567i
$$725$$ −10.0660 −0.373840
$$726$$ −3.46611 + 6.00347i −0.128639 + 0.222810i
$$727$$ −2.58607 −0.0959121 −0.0479561 0.998849i $$-0.515271\pi$$
−0.0479561 + 0.998849i $$0.515271\pi$$
$$728$$ −20.3161 + 14.1869i −0.752965 + 0.525801i
$$729$$ 1.00000 0.0370370
$$730$$ 0.728142 1.26118i 0.0269498 0.0466783i
$$731$$ −18.8810 −0.698338
$$732$$ −1.42028 2.45999i −0.0524950 0.0909240i
$$733$$ 6.30712 + 10.9243i 0.232959 + 0.403497i 0.958678 0.284495i $$-0.0918259\pi$$
−0.725719 + 0.687992i $$0.758493\pi$$
$$734$$ 13.4250 23.2528i 0.495526 0.858276i
$$735$$ 2.50084 4.34138i 0.0922450 0.160134i
$$736$$ 5.45955 0.201242
$$737$$ −64.9169 −2.39124
$$738$$ −3.48217 −0.128180
$$739$$ 2.94077 0.108178 0.0540889 0.998536i $$-0.482775\pi$$
0.0540889 + 0.998536i $$0.482775\pi$$
$$740$$ −0.335205 0.580592i −0.0123224 0.0213430i
$$741$$ 19.3294 + 9.05501i 0.710083 + 0.332644i
$$742$$ −4.86990 + 0.00238053i −0.178780 + 8.73920e-5i
$$743$$ 20.5461 + 35.5869i 0.753763 + 1.30556i 0.945987 + 0.324205i $$0.105097\pi$$
−0.192224 + 0.981351i $$0.561570\pi$$
$$744$$ −0.496490 + 0.859947i −0.0182022 + 0.0315272i
$$745$$ 5.57903 + 9.66316i 0.204400 + 0.354031i
$$746$$ −12.4316 + 21.5322i −0.455155 + 0.788351i
$$747$$ 11.5302 0.421866
$$748$$ −12.0666 + 20.9000i −0.441199 + 0.764180i
$$749$$ −14.8106 25.6237i −0.541166 0.936270i
$$750$$ 2.57532 4.46058i 0.0940372 0.162877i
$$751$$ 15.2160 26.3549i 0.555241 0.961705i −0.442644 0.896698i $$-0.645959\pi$$
0.997885 0.0650079i $$-0.0207073\pi$$
$$752$$ 7.35961 0.268377
$$753$$ 12.0203 20.8198i 0.438046 0.758717i
$$754$$ −5.55473 2.60216i −0.202291 0.0947650i
$$755$$ −6.60102 −0.240236
$$756$$ 3.76942 0.00184259i 0.137093 6.70143e-5i
$$757$$ 15.7459 + 27.2726i 0.572293 + 0.991241i 0.996330 + 0.0855959i $$0.0272794\pi$$
−0.424037 + 0.905645i $$0.639387\pi$$
$$758$$ −9.16711 −0.332965
$$759$$ −2.08981 + 3.61965i −0.0758552 + 0.131385i
$$760$$ 5.50328 + 9.53196i 0.199625 + 0.345760i
$$761$$ −44.1732 −1.60128 −0.800638 0.599148i $$-0.795506\pi$$
−0.800638 + 0.599148i $$0.795506\pi$$
$$762$$ −13.6818 −0.495638
$$763$$ 26.9846 + 46.6860i 0.976909 + 1.69015i
$$764$$ −9.78707 16.9517i −0.354084 0.613291i
$$765$$ 1.35079 2.33964i 0.0488380 0.0845899i
$$766$$ −0.194236 + 0.336427i −0.00701804 + 0.0121556i
$$767$$ −1.72858 20.1676i −0.0624154 0.728211i
$$768$$ −6.36088 11.0174i −0.229529 0.397555i
$$769$$ 25.4717 + 44.1182i 0.918532 + 1.59094i 0.801646 + 0.597799i $$0.203958\pi$$
0.116887 + 0.993145i $$0.462709\pi$$
$$770$$ 3.22014 5.58376i 0.116046 0.201225i
$$771$$ 9.35724 16.2072i 0.336993 0.583689i
$$772$$ −9.87840 17.1099i −0.355531 0.615798i
$$773$$ 2.87103 + 4.97278i 0.103264 + 0.178858i 0.913028 0.407898i $$-0.133738\pi$$
−0.809764 + 0.586756i $$0.800405\pi$$
$$774$$ 1.89703 + 3.28575i 0.0681874 + 0.118104i
$$775$$ −0.857766 1.48569i −0.0308119 0.0533677i