# Properties

 Label 273.2.j.b.172.4 Level $273$ Weight $2$ Character 273.172 Analytic conductor $2.180$ Analytic rank $0$ Dimension $16$ CM no Inner twists $2$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$273 = 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 273.j (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.17991597518$$ Analytic rank: $$0$$ Dimension: $$16$$ Relative dimension: $$8$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{16} + \cdots)$$ Defining polynomial: $$x^{16} + 11 x^{14} - 4 x^{13} + 87 x^{12} - 35 x^{11} + 326 x^{10} - 205 x^{9} + 895 x^{8} - 481 x^{7} + 1005 x^{6} - 544 x^{5} + 811 x^{4} - 312 x^{3} + 195 x^{2} + 13 x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 172.4 Root $$-0.0340180 + 0.0589209i$$ of defining polynomial Character $$\chi$$ $$=$$ 273.172 Dual form 273.2.j.b.100.4

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.0340180 + 0.0589209i) q^{2} -1.00000 q^{3} +(0.997686 + 1.72804i) q^{4} +(1.52954 + 2.64923i) q^{5} +(0.0340180 - 0.0589209i) q^{6} +(-2.60654 + 0.453835i) q^{7} -0.271829 q^{8} +1.00000 q^{9} +O(q^{10})$$ $$q+(-0.0340180 + 0.0589209i) q^{2} -1.00000 q^{3} +(0.997686 + 1.72804i) q^{4} +(1.52954 + 2.64923i) q^{5} +(0.0340180 - 0.0589209i) q^{6} +(-2.60654 + 0.453835i) q^{7} -0.271829 q^{8} +1.00000 q^{9} -0.208127 q^{10} -4.35793 q^{11} +(-0.997686 - 1.72804i) q^{12} +(-1.79952 - 3.12437i) q^{13} +(0.0619288 - 0.169018i) q^{14} +(-1.52954 - 2.64923i) q^{15} +(-1.98612 + 3.44007i) q^{16} +(1.76434 + 3.05592i) q^{17} +(-0.0340180 + 0.0589209i) q^{18} +6.90224 q^{19} +(-3.05199 + 5.28621i) q^{20} +(2.60654 - 0.453835i) q^{21} +(0.148248 - 0.256773i) q^{22} +(-1.66762 + 2.88840i) q^{23} +0.271829 q^{24} +(-2.17896 + 3.77408i) q^{25} +(0.245307 + 0.000255364i) q^{26} -1.00000 q^{27} +(-3.38475 - 4.05142i) q^{28} +(4.95991 + 8.59082i) q^{29} +0.208127 q^{30} +(4.62451 - 8.00989i) q^{31} +(-0.406957 - 0.704870i) q^{32} +4.35793 q^{33} -0.240077 q^{34} +(-5.18911 - 6.21117i) q^{35} +(0.997686 + 1.72804i) q^{36} +(0.0545230 - 0.0944366i) q^{37} +(-0.234800 + 0.406686i) q^{38} +(1.79952 + 3.12437i) q^{39} +(-0.415772 - 0.720139i) q^{40} +(1.76899 + 3.06399i) q^{41} +(-0.0619288 + 0.169018i) q^{42} +(-0.844102 + 1.46203i) q^{43} +(-4.34784 - 7.53068i) q^{44} +(1.52954 + 2.64923i) q^{45} +(-0.113458 - 0.196515i) q^{46} +(1.28133 + 2.21933i) q^{47} +(1.98612 - 3.44007i) q^{48} +(6.58807 - 2.36587i) q^{49} +(-0.148248 - 0.256773i) q^{50} +(-1.76434 - 3.05592i) q^{51} +(3.60369 - 6.22680i) q^{52} +(2.65681 - 4.60173i) q^{53} +(0.0340180 - 0.0589209i) q^{54} +(-6.66561 - 11.5452i) q^{55} +(0.708532 - 0.123365i) q^{56} -6.90224 q^{57} -0.674905 q^{58} +(-3.77852 - 6.54459i) q^{59} +(3.05199 - 5.28621i) q^{60} +4.87317 q^{61} +(0.314633 + 0.544960i) q^{62} +(-2.60654 + 0.453835i) q^{63} -7.88912 q^{64} +(5.52476 - 9.54621i) q^{65} +(-0.148248 + 0.256773i) q^{66} +0.680435 q^{67} +(-3.52051 + 6.09770i) q^{68} +(1.66762 - 2.88840i) q^{69} +(0.542491 - 0.0944552i) q^{70} +(-2.61572 + 4.53055i) q^{71} -0.271829 q^{72} +(1.75956 - 3.04764i) q^{73} +(0.00370952 + 0.00642508i) q^{74} +(2.17896 - 3.77408i) q^{75} +(6.88626 + 11.9274i) q^{76} +(11.3591 - 1.97778i) q^{77} +(-0.245307 - 0.000255364i) q^{78} +(4.85408 + 8.40751i) q^{79} -12.1514 q^{80} +1.00000 q^{81} -0.240710 q^{82} +5.41662 q^{83} +(3.38475 + 4.05142i) q^{84} +(-5.39723 + 9.34828i) q^{85} +(-0.0574293 - 0.0994705i) q^{86} +(-4.95991 - 8.59082i) q^{87} +1.18461 q^{88} +(3.85207 - 6.67198i) q^{89} -0.208127 q^{90} +(6.10848 + 7.32711i) q^{91} -6.65503 q^{92} +(-4.62451 + 8.00989i) q^{93} -0.174354 q^{94} +(10.5572 + 18.2856i) q^{95} +(0.406957 + 0.704870i) q^{96} +(-3.86359 + 6.69194i) q^{97} +(-0.0847135 + 0.468657i) q^{98} -4.35793 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$16q - 16q^{3} - 6q^{4} + q^{7} + 12q^{8} + 16q^{9} + O(q^{10})$$ $$16q - 16q^{3} - 6q^{4} + q^{7} + 12q^{8} + 16q^{9} + 8q^{10} + 4q^{11} + 6q^{12} + 5q^{13} - 7q^{14} - 6q^{16} - 2q^{17} + 22q^{19} - 20q^{20} - q^{21} + 7q^{22} + 4q^{23} - 12q^{24} + 2q^{25} - 6q^{26} - 16q^{27} - 7q^{28} + 15q^{29} - 8q^{30} + 3q^{31} + 3q^{32} - 4q^{33} - 68q^{34} - 12q^{35} - 6q^{36} + 4q^{37} + 2q^{38} - 5q^{39} - 25q^{40} + 19q^{41} + 7q^{42} + 11q^{43} - 16q^{44} + 2q^{46} + 5q^{47} + 6q^{48} + 13q^{49} - 7q^{50} + 2q^{51} + 36q^{52} + 36q^{53} - 15q^{55} + 39q^{56} - 22q^{57} - 40q^{58} - 17q^{59} + 20q^{60} + 44q^{61} - 6q^{62} + q^{63} - 20q^{64} - 21q^{65} - 7q^{66} - 52q^{67} + 5q^{68} - 4q^{69} + 46q^{70} + 9q^{71} + 12q^{72} - 6q^{73} + 15q^{74} - 2q^{75} - 16q^{76} - 36q^{77} + 6q^{78} + 16q^{79} + 56q^{80} + 16q^{81} + 2q^{82} + 36q^{83} + 7q^{84} - 4q^{85} + 16q^{86} - 15q^{87} - 48q^{88} + 20q^{89} + 8q^{90} - 7q^{91} - 94q^{92} - 3q^{93} + 40q^{94} - 3q^{96} + 7q^{97} - 3q^{98} + 4q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/273\mathbb{Z}\right)^\times$$.

 $$n$$ $$92$$ $$106$$ $$157$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.0340180 + 0.0589209i −0.0240543 + 0.0416633i −0.877802 0.479024i $$-0.840991\pi$$
0.853748 + 0.520687i $$0.174324\pi$$
$$3$$ −1.00000 −0.577350
$$4$$ 0.997686 + 1.72804i 0.498843 + 0.864021i
$$5$$ 1.52954 + 2.64923i 0.684030 + 1.18477i 0.973741 + 0.227660i $$0.0731074\pi$$
−0.289711 + 0.957114i $$0.593559\pi$$
$$6$$ 0.0340180 0.0589209i 0.0138878 0.0240543i
$$7$$ −2.60654 + 0.453835i −0.985178 + 0.171533i
$$8$$ −0.271829 −0.0961060
$$9$$ 1.00000 0.333333
$$10$$ −0.208127 −0.0658155
$$11$$ −4.35793 −1.31396 −0.656982 0.753906i $$-0.728167\pi$$
−0.656982 + 0.753906i $$0.728167\pi$$
$$12$$ −0.997686 1.72804i −0.288007 0.498843i
$$13$$ −1.79952 3.12437i −0.499098 0.866545i
$$14$$ 0.0619288 0.169018i 0.0165512 0.0451719i
$$15$$ −1.52954 2.64923i −0.394925 0.684030i
$$16$$ −1.98612 + 3.44007i −0.496531 + 0.860017i
$$17$$ 1.76434 + 3.05592i 0.427914 + 0.741170i 0.996688 0.0813248i $$-0.0259151\pi$$
−0.568773 + 0.822494i $$0.692582\pi$$
$$18$$ −0.0340180 + 0.0589209i −0.00801811 + 0.0138878i
$$19$$ 6.90224 1.58348 0.791741 0.610857i $$-0.209175\pi$$
0.791741 + 0.610857i $$0.209175\pi$$
$$20$$ −3.05199 + 5.28621i −0.682446 + 1.18203i
$$21$$ 2.60654 0.453835i 0.568793 0.0990348i
$$22$$ 0.148248 0.256773i 0.0316066 0.0547442i
$$23$$ −1.66762 + 2.88840i −0.347722 + 0.602273i −0.985844 0.167662i $$-0.946378\pi$$
0.638122 + 0.769935i $$0.279711\pi$$
$$24$$ 0.271829 0.0554868
$$25$$ −2.17896 + 3.77408i −0.435793 + 0.754815i
$$26$$ 0.245307 0.000255364i 0.0481087 5.00811e-5i
$$27$$ −1.00000 −0.192450
$$28$$ −3.38475 4.05142i −0.639658 0.765647i
$$29$$ 4.95991 + 8.59082i 0.921033 + 1.59528i 0.797820 + 0.602896i $$0.205987\pi$$
0.123213 + 0.992380i $$0.460680\pi$$
$$30$$ 0.208127 0.0379986
$$31$$ 4.62451 8.00989i 0.830587 1.43862i −0.0669867 0.997754i $$-0.521339\pi$$
0.897574 0.440865i $$-0.145328\pi$$
$$32$$ −0.406957 0.704870i −0.0719405 0.124605i
$$33$$ 4.35793 0.758618
$$34$$ −0.240077 −0.0411728
$$35$$ −5.18911 6.21117i −0.877119 1.04988i
$$36$$ 0.997686 + 1.72804i 0.166281 + 0.288007i
$$37$$ 0.0545230 0.0944366i 0.00896352 0.0155253i −0.861509 0.507743i $$-0.830480\pi$$
0.870472 + 0.492217i $$0.163813\pi$$
$$38$$ −0.234800 + 0.406686i −0.0380896 + 0.0659731i
$$39$$ 1.79952 + 3.12437i 0.288154 + 0.500300i
$$40$$ −0.415772 0.720139i −0.0657394 0.113864i
$$41$$ 1.76899 + 3.06399i 0.276270 + 0.478514i 0.970455 0.241283i $$-0.0775682\pi$$
−0.694185 + 0.719797i $$0.744235\pi$$
$$42$$ −0.0619288 + 0.169018i −0.00955582 + 0.0260800i
$$43$$ −0.844102 + 1.46203i −0.128724 + 0.222957i −0.923183 0.384362i $$-0.874422\pi$$
0.794458 + 0.607319i $$0.207755\pi$$
$$44$$ −4.34784 7.53068i −0.655462 1.13529i
$$45$$ 1.52954 + 2.64923i 0.228010 + 0.394925i
$$46$$ −0.113458 0.196515i −0.0167285 0.0289746i
$$47$$ 1.28133 + 2.21933i 0.186902 + 0.323723i 0.944216 0.329328i $$-0.106822\pi$$
−0.757314 + 0.653051i $$0.773489\pi$$
$$48$$ 1.98612 3.44007i 0.286672 0.496531i
$$49$$ 6.58807 2.36587i 0.941153 0.337982i
$$50$$ −0.148248 0.256773i −0.0209654 0.0363132i
$$51$$ −1.76434 3.05592i −0.247057 0.427914i
$$52$$ 3.60369 6.22680i 0.499742 0.863501i
$$53$$ 2.65681 4.60173i 0.364941 0.632097i −0.623825 0.781564i $$-0.714422\pi$$
0.988767 + 0.149467i $$0.0477557\pi$$
$$54$$ 0.0340180 0.0589209i 0.00462926 0.00801811i
$$55$$ −6.66561 11.5452i −0.898791 1.55675i
$$56$$ 0.708532 0.123365i 0.0946816 0.0164854i
$$57$$ −6.90224 −0.914224
$$58$$ −0.674905 −0.0886194
$$59$$ −3.77852 6.54459i −0.491921 0.852033i 0.508035 0.861336i $$-0.330372\pi$$
−0.999957 + 0.00930353i $$0.997039\pi$$
$$60$$ 3.05199 5.28621i 0.394011 0.682446i
$$61$$ 4.87317 0.623945 0.311973 0.950091i $$-0.399010\pi$$
0.311973 + 0.950091i $$0.399010\pi$$
$$62$$ 0.314633 + 0.544960i 0.0399584 + 0.0692101i
$$63$$ −2.60654 + 0.453835i −0.328393 + 0.0571778i
$$64$$ −7.88912 −0.986140
$$65$$ 5.52476 9.54621i 0.685263 1.18406i
$$66$$ −0.148248 + 0.256773i −0.0182481 + 0.0316066i
$$67$$ 0.680435 0.0831284 0.0415642 0.999136i $$-0.486766\pi$$
0.0415642 + 0.999136i $$0.486766\pi$$
$$68$$ −3.52051 + 6.09770i −0.426924 + 0.739454i
$$69$$ 1.66762 2.88840i 0.200758 0.347722i
$$70$$ 0.542491 0.0944552i 0.0648400 0.0112896i
$$71$$ −2.61572 + 4.53055i −0.310428 + 0.537678i −0.978455 0.206460i $$-0.933806\pi$$
0.668027 + 0.744137i $$0.267139\pi$$
$$72$$ −0.271829 −0.0320353
$$73$$ 1.75956 3.04764i 0.205941 0.356699i −0.744491 0.667632i $$-0.767308\pi$$
0.950432 + 0.310933i $$0.100641\pi$$
$$74$$ 0.00370952 + 0.00642508i 0.000431223 + 0.000746901i
$$75$$ 2.17896 3.77408i 0.251605 0.435793i
$$76$$ 6.88626 + 11.9274i 0.789908 + 1.36816i
$$77$$ 11.3591 1.97778i 1.29449 0.225389i
$$78$$ −0.245307 0.000255364i −0.0277755 2.89143e-5i
$$79$$ 4.85408 + 8.40751i 0.546126 + 0.945919i 0.998535 + 0.0541080i $$0.0172315\pi$$
−0.452409 + 0.891811i $$0.649435\pi$$
$$80$$ −12.1514 −1.35857
$$81$$ 1.00000 0.111111
$$82$$ −0.240710 −0.0265820
$$83$$ 5.41662 0.594551 0.297275 0.954792i $$-0.403922\pi$$
0.297275 + 0.954792i $$0.403922\pi$$
$$84$$ 3.38475 + 4.05142i 0.369306 + 0.442046i
$$85$$ −5.39723 + 9.34828i −0.585412 + 1.01396i
$$86$$ −0.0574293 0.0994705i −0.00619276 0.0107262i
$$87$$ −4.95991 8.59082i −0.531759 0.921033i
$$88$$ 1.18461 0.126280
$$89$$ 3.85207 6.67198i 0.408319 0.707229i −0.586383 0.810034i $$-0.699449\pi$$
0.994702 + 0.102805i $$0.0327818\pi$$
$$90$$ −0.208127 −0.0219385
$$91$$ 6.10848 + 7.32711i 0.640342 + 0.768090i
$$92$$ −6.65503 −0.693835
$$93$$ −4.62451 + 8.00989i −0.479540 + 0.830587i
$$94$$ −0.174354 −0.0179832
$$95$$ 10.5572 + 18.2856i 1.08315 + 1.87607i
$$96$$ 0.406957 + 0.704870i 0.0415348 + 0.0719405i
$$97$$ −3.86359 + 6.69194i −0.392288 + 0.679463i −0.992751 0.120189i $$-0.961650\pi$$
0.600463 + 0.799653i $$0.294983\pi$$
$$98$$ −0.0847135 + 0.468657i −0.00855735 + 0.0473415i
$$99$$ −4.35793 −0.437988
$$100$$ −8.69568 −0.869568
$$101$$ −3.88031 −0.386105 −0.193053 0.981188i $$-0.561839\pi$$
−0.193053 + 0.981188i $$0.561839\pi$$
$$102$$ 0.240077 0.0237711
$$103$$ −4.29088 7.43202i −0.422793 0.732299i 0.573419 0.819263i $$-0.305617\pi$$
−0.996211 + 0.0869638i $$0.972284\pi$$
$$104$$ 0.489163 + 0.849295i 0.0479663 + 0.0832802i
$$105$$ 5.18911 + 6.21117i 0.506405 + 0.606148i
$$106$$ 0.180759 + 0.313083i 0.0175568 + 0.0304093i
$$107$$ 5.60158 9.70222i 0.541525 0.937949i −0.457291 0.889317i $$-0.651180\pi$$
0.998817 0.0486324i $$-0.0154863\pi$$
$$108$$ −0.997686 1.72804i −0.0960023 0.166281i
$$109$$ 6.98282 12.0946i 0.668833 1.15845i −0.309398 0.950933i $$-0.600128\pi$$
0.978231 0.207520i $$-0.0665391\pi$$
$$110$$ 0.907002 0.0864793
$$111$$ −0.0545230 + 0.0944366i −0.00517509 + 0.00896352i
$$112$$ 3.61568 9.86804i 0.341650 0.932442i
$$113$$ −3.38888 + 5.86972i −0.318799 + 0.552176i −0.980238 0.197823i $$-0.936613\pi$$
0.661439 + 0.749999i $$0.269946\pi$$
$$114$$ 0.234800 0.406686i 0.0219910 0.0380896i
$$115$$ −10.2027 −0.951410
$$116$$ −9.89687 + 17.1419i −0.918901 + 1.59158i
$$117$$ −1.79952 3.12437i −0.166366 0.288848i
$$118$$ 0.514150 0.0473314
$$119$$ −5.98569 7.16465i −0.548707 0.656783i
$$120$$ 0.415772 + 0.720139i 0.0379546 + 0.0657394i
$$121$$ 7.99154 0.726503
$$122$$ −0.165775 + 0.287131i −0.0150086 + 0.0259956i
$$123$$ −1.76899 3.06399i −0.159505 0.276270i
$$124$$ 18.4552 1.65733
$$125$$ 1.96415 0.175679
$$126$$ 0.0619288 0.169018i 0.00551705 0.0150573i
$$127$$ −6.68899 11.5857i −0.593552 1.02806i −0.993750 0.111633i $$-0.964392\pi$$
0.400198 0.916429i $$-0.368941\pi$$
$$128$$ 1.08229 1.87457i 0.0956614 0.165690i
$$129$$ 0.844102 1.46203i 0.0743191 0.128724i
$$130$$ 0.374529 + 0.650266i 0.0328484 + 0.0570321i
$$131$$ 9.06148 + 15.6949i 0.791705 + 1.37127i 0.924910 + 0.380185i $$0.124140\pi$$
−0.133205 + 0.991089i $$0.542527\pi$$
$$132$$ 4.34784 + 7.53068i 0.378431 + 0.655462i
$$133$$ −17.9909 + 3.13247i −1.56001 + 0.271620i
$$134$$ −0.0231470 + 0.0400918i −0.00199960 + 0.00346341i
$$135$$ −1.52954 2.64923i −0.131642 0.228010i
$$136$$ −0.479598 0.830688i −0.0411252 0.0712309i
$$137$$ −10.6703 18.4814i −0.911622 1.57898i −0.811773 0.583973i $$-0.801497\pi$$
−0.0998490 0.995003i $$-0.531836\pi$$
$$138$$ 0.113458 + 0.196515i 0.00965818 + 0.0167285i
$$139$$ −0.0705287 + 0.122159i −0.00598217 + 0.0103614i −0.869001 0.494810i $$-0.835238\pi$$
0.863019 + 0.505172i $$0.168571\pi$$
$$140$$ 5.55607 15.1638i 0.469573 1.28157i
$$141$$ −1.28133 2.21933i −0.107908 0.186902i
$$142$$ −0.177963 0.308240i −0.0149343 0.0258670i
$$143$$ 7.84220 + 13.6158i 0.655797 + 1.13861i
$$144$$ −1.98612 + 3.44007i −0.165510 + 0.286672i
$$145$$ −15.1727 + 26.2800i −1.26003 + 2.18243i
$$146$$ 0.119713 + 0.207349i 0.00990753 + 0.0171603i
$$147$$ −6.58807 + 2.36587i −0.543375 + 0.195134i
$$148$$ 0.217587 0.0178856
$$149$$ −14.3559 −1.17609 −0.588043 0.808830i $$-0.700101\pi$$
−0.588043 + 0.808830i $$0.700101\pi$$
$$150$$ 0.148248 + 0.256773i 0.0121044 + 0.0209654i
$$151$$ −7.83172 + 13.5649i −0.637336 + 1.10390i 0.348679 + 0.937242i $$0.386631\pi$$
−0.986015 + 0.166657i $$0.946703\pi$$
$$152$$ −1.87623 −0.152182
$$153$$ 1.76434 + 3.05592i 0.142638 + 0.247057i
$$154$$ −0.269881 + 0.736568i −0.0217476 + 0.0593543i
$$155$$ 28.2934 2.27258
$$156$$ −3.60369 + 6.22680i −0.288526 + 0.498543i
$$157$$ −6.75022 + 11.6917i −0.538726 + 0.933101i 0.460247 + 0.887791i $$0.347761\pi$$
−0.998973 + 0.0453098i $$0.985572\pi$$
$$158$$ −0.660504 −0.0525469
$$159$$ −2.65681 + 4.60173i −0.210699 + 0.364941i
$$160$$ 1.24491 2.15625i 0.0984188 0.170466i
$$161$$ 3.03585 8.28554i 0.239259 0.652992i
$$162$$ −0.0340180 + 0.0589209i −0.00267270 + 0.00462926i
$$163$$ −2.65724 −0.208131 −0.104066 0.994570i $$-0.533185\pi$$
−0.104066 + 0.994570i $$0.533185\pi$$
$$164$$ −3.52980 + 6.11379i −0.275631 + 0.477407i
$$165$$ 6.66561 + 11.5452i 0.518917 + 0.898791i
$$166$$ −0.184262 + 0.319152i −0.0143015 + 0.0247710i
$$167$$ −10.9142 18.9040i −0.844567 1.46283i −0.885997 0.463692i $$-0.846525\pi$$
0.0414294 0.999141i $$-0.486809\pi$$
$$168$$ −0.708532 + 0.123365i −0.0546644 + 0.00951784i
$$169$$ −6.52343 + 11.2448i −0.501802 + 0.864983i
$$170$$ −0.367206 0.636019i −0.0281634 0.0487805i
$$171$$ 6.90224 0.527827
$$172$$ −3.36860 −0.256853
$$173$$ 17.6824 1.34437 0.672184 0.740384i $$-0.265356\pi$$
0.672184 + 0.740384i $$0.265356\pi$$
$$174$$ 0.674905 0.0511644
$$175$$ 3.96674 10.8262i 0.299858 0.818381i
$$176$$ 8.65539 14.9916i 0.652424 1.13003i
$$177$$ 3.77852 + 6.54459i 0.284011 + 0.491921i
$$178$$ 0.262079 + 0.453935i 0.0196437 + 0.0340239i
$$179$$ 9.72998 0.727253 0.363626 0.931545i $$-0.381538\pi$$
0.363626 + 0.931545i $$0.381538\pi$$
$$180$$ −3.05199 + 5.28621i −0.227482 + 0.394011i
$$181$$ 4.01332 0.298308 0.149154 0.988814i $$-0.452345\pi$$
0.149154 + 0.988814i $$0.452345\pi$$
$$182$$ −0.639518 + 0.110663i −0.0474042 + 0.00820290i
$$183$$ −4.87317 −0.360235
$$184$$ 0.453307 0.785150i 0.0334182 0.0578820i
$$185$$ 0.333580 0.0245253
$$186$$ −0.314633 0.544960i −0.0230700 0.0399584i
$$187$$ −7.68885 13.3175i −0.562265 0.973871i
$$188$$ −2.55674 + 4.42840i −0.186469 + 0.322974i
$$189$$ 2.60654 0.453835i 0.189598 0.0330116i
$$190$$ −1.43654 −0.104218
$$191$$ −14.7904 −1.07019 −0.535097 0.844790i $$-0.679725\pi$$
−0.535097 + 0.844790i $$0.679725\pi$$
$$192$$ 7.88912 0.569348
$$193$$ 22.3431 1.60829 0.804146 0.594432i $$-0.202623\pi$$
0.804146 + 0.594432i $$0.202623\pi$$
$$194$$ −0.262863 0.455292i −0.0188725 0.0326881i
$$195$$ −5.52476 + 9.54621i −0.395636 + 0.683618i
$$196$$ 10.6611 + 9.02406i 0.761511 + 0.644576i
$$197$$ −3.16282 5.47816i −0.225342 0.390303i 0.731080 0.682291i $$-0.239016\pi$$
−0.956422 + 0.291988i $$0.905683\pi$$
$$198$$ 0.148248 0.256773i 0.0105355 0.0182481i
$$199$$ 3.01808 + 5.22748i 0.213946 + 0.370566i 0.952946 0.303140i $$-0.0980349\pi$$
−0.739000 + 0.673706i $$0.764702\pi$$
$$200$$ 0.592305 1.02590i 0.0418823 0.0725423i
$$201$$ −0.680435 −0.0479942
$$202$$ 0.132000 0.228631i 0.00928751 0.0160864i
$$203$$ −16.8270 20.1413i −1.18102 1.41364i
$$204$$ 3.52051 6.09770i 0.246485 0.426924i
$$205$$ −5.41148 + 9.37295i −0.377954 + 0.654636i
$$206$$ 0.583868 0.0406800
$$207$$ −1.66762 + 2.88840i −0.115907 + 0.200758i
$$208$$ 14.3221 + 0.0149093i 0.993061 + 0.00103378i
$$209$$ −30.0795 −2.08064
$$210$$ −0.542491 + 0.0944552i −0.0374354 + 0.00651803i
$$211$$ 0.646092 + 1.11906i 0.0444788 + 0.0770395i 0.887408 0.460985i $$-0.152504\pi$$
−0.842929 + 0.538025i $$0.819171\pi$$
$$212$$ 10.6027 0.728193
$$213$$ 2.61572 4.53055i 0.179226 0.310428i
$$214$$ 0.381109 + 0.660100i 0.0260521 + 0.0451235i
$$215$$ −5.16434 −0.352205
$$216$$ 0.271829 0.0184956
$$217$$ −8.41880 + 22.9768i −0.571505 + 1.55977i
$$218$$ 0.475083 + 0.822868i 0.0321767 + 0.0557316i
$$219$$ −1.75956 + 3.04764i −0.118900 + 0.205941i
$$220$$ 13.3004 23.0369i 0.896710 1.55315i
$$221$$ 6.37287 11.0117i 0.428686 0.740724i
$$222$$ −0.00370952 0.00642508i −0.000248967 0.000431223i
$$223$$ 5.79892 + 10.0440i 0.388324 + 0.672597i 0.992224 0.124463i $$-0.0397207\pi$$
−0.603900 + 0.797060i $$0.706387\pi$$
$$224$$ 1.38064 + 1.65258i 0.0922480 + 0.110418i
$$225$$ −2.17896 + 3.77408i −0.145264 + 0.251605i
$$226$$ −0.230566 0.399352i −0.0153370 0.0265645i
$$227$$ 0.399249 + 0.691520i 0.0264991 + 0.0458978i 0.878971 0.476876i $$-0.158231\pi$$
−0.852472 + 0.522773i $$0.824897\pi$$
$$228$$ −6.88626 11.9274i −0.456054 0.789908i
$$229$$ −11.6073 20.1044i −0.767030 1.32854i −0.939166 0.343463i $$-0.888400\pi$$
0.172136 0.985073i $$-0.444933\pi$$
$$230$$ 0.347076 0.601154i 0.0228855 0.0396389i
$$231$$ −11.3591 + 1.97778i −0.747374 + 0.130128i
$$232$$ −1.34825 2.33523i −0.0885168 0.153316i
$$233$$ 6.09388 + 10.5549i 0.399223 + 0.691475i 0.993630 0.112689i $$-0.0359465\pi$$
−0.594407 + 0.804164i $$0.702613\pi$$
$$234$$ 0.245307 0.000255364i 0.0160362 1.66937e-5i
$$235$$ −3.91969 + 6.78911i −0.255693 + 0.442873i
$$236$$ 7.53955 13.0589i 0.490783 0.850061i
$$237$$ −4.85408 8.40751i −0.315306 0.546126i
$$238$$ 0.625769 0.108955i 0.0405626 0.00706251i
$$239$$ −0.484332 −0.0313289 −0.0156644 0.999877i $$-0.504986\pi$$
−0.0156644 + 0.999877i $$0.504986\pi$$
$$240$$ 12.1514 0.784369
$$241$$ 1.16006 + 2.00929i 0.0747261 + 0.129429i 0.900967 0.433887i $$-0.142858\pi$$
−0.826241 + 0.563317i $$0.809525\pi$$
$$242$$ −0.271856 + 0.470868i −0.0174756 + 0.0302686i
$$243$$ −1.00000 −0.0641500
$$244$$ 4.86189 + 8.42104i 0.311251 + 0.539102i
$$245$$ 16.3444 + 13.8347i 1.04421 + 0.883863i
$$246$$ 0.240710 0.0153471
$$247$$ −12.4207 21.5652i −0.790313 1.37216i
$$248$$ −1.25708 + 2.17732i −0.0798244 + 0.138260i
$$249$$ −5.41662 −0.343264
$$250$$ −0.0668163 + 0.115729i −0.00422583 + 0.00731935i
$$251$$ 13.7950 23.8936i 0.870732 1.50815i 0.00949135 0.999955i $$-0.496979\pi$$
0.861241 0.508197i $$-0.169688\pi$$
$$252$$ −3.38475 4.05142i −0.213219 0.255216i
$$253$$ 7.26736 12.5874i 0.456895 0.791365i
$$254$$ 0.910183 0.0571100
$$255$$ 5.39723 9.34828i 0.337988 0.585412i
$$256$$ −7.81549 13.5368i −0.488468 0.846051i
$$257$$ −4.56503 + 7.90686i −0.284758 + 0.493216i −0.972551 0.232692i $$-0.925247\pi$$
0.687792 + 0.725908i $$0.258580\pi$$
$$258$$ 0.0574293 + 0.0994705i 0.00357539 + 0.00619276i
$$259$$ −0.0992576 + 0.270897i −0.00616757 + 0.0168327i
$$260$$ 22.0082 + 0.0229105i 1.36489 + 0.00142085i
$$261$$ 4.95991 + 8.59082i 0.307011 + 0.531759i
$$262$$ −1.23301 −0.0761758
$$263$$ −5.58969 −0.344675 −0.172338 0.985038i $$-0.555132\pi$$
−0.172338 + 0.985038i $$0.555132\pi$$
$$264$$ −1.18461 −0.0729077
$$265$$ 16.2548 0.998522
$$266$$ 0.427447 1.16660i 0.0262085 0.0715290i
$$267$$ −3.85207 + 6.67198i −0.235743 + 0.408319i
$$268$$ 0.678860 + 1.17582i 0.0414680 + 0.0718247i
$$269$$ −10.6461 18.4395i −0.649102 1.12428i −0.983338 0.181789i $$-0.941811\pi$$
0.334235 0.942490i $$-0.391522\pi$$
$$270$$ 0.208127 0.0126662
$$271$$ −5.66348 + 9.80944i −0.344032 + 0.595881i −0.985177 0.171539i $$-0.945126\pi$$
0.641145 + 0.767419i $$0.278460\pi$$
$$272$$ −14.0168 −0.849891
$$273$$ −6.10848 7.32711i −0.369702 0.443457i
$$274$$ 1.45192 0.0877139
$$275$$ 9.49577 16.4472i 0.572616 0.991801i
$$276$$ 6.65503 0.400586
$$277$$ 5.68116 + 9.84006i 0.341348 + 0.591232i 0.984683 0.174353i $$-0.0557832\pi$$
−0.643335 + 0.765584i $$0.722450\pi$$
$$278$$ −0.00479849 0.00831123i −0.000287794 0.000498474i
$$279$$ 4.62451 8.00989i 0.276862 0.479540i
$$280$$ 1.41055 + 1.68838i 0.0842965 + 0.100900i
$$281$$ 7.98667 0.476445 0.238222 0.971211i $$-0.423435\pi$$
0.238222 + 0.971211i $$0.423435\pi$$
$$282$$ 0.174354 0.0103826
$$283$$ 4.13874 0.246022 0.123011 0.992405i $$-0.460745\pi$$
0.123011 + 0.992405i $$0.460745\pi$$
$$284$$ −10.4386 −0.619420
$$285$$ −10.5572 18.2856i −0.625356 1.08315i
$$286$$ −1.06903 0.00111286i −0.0632131 6.58048e-5i
$$287$$ −6.00149 7.18356i −0.354257 0.424032i
$$288$$ −0.406957 0.704870i −0.0239802 0.0415348i
$$289$$ 2.27423 3.93909i 0.133778 0.231711i
$$290$$ −1.03229 1.78798i −0.0606183 0.104994i
$$291$$ 3.86359 6.69194i 0.226488 0.392288i
$$292$$ 7.02194 0.410928
$$293$$ −14.1626 + 24.5303i −0.827385 + 1.43307i 0.0726976 + 0.997354i $$0.476839\pi$$
−0.900083 + 0.435719i $$0.856494\pi$$
$$294$$ 0.0847135 0.468657i 0.00494059 0.0273326i
$$295$$ 11.5588 20.0204i 0.672977 1.16563i
$$296$$ −0.0148209 + 0.0256706i −0.000861449 + 0.00149207i
$$297$$ 4.35793 0.252873
$$298$$ 0.488360 0.845865i 0.0282900 0.0489996i
$$299$$ 12.0254 + 0.0125184i 0.695444 + 0.000723957i
$$300$$ 8.69568 0.502046
$$301$$ 1.53666 4.19391i 0.0885719 0.241733i
$$302$$ −0.532839 0.922904i −0.0306614 0.0531071i
$$303$$ 3.88031 0.222918
$$304$$ −13.7087 + 23.7442i −0.786248 + 1.36182i
$$305$$ 7.45369 + 12.9102i 0.426797 + 0.739234i
$$306$$ −0.240077 −0.0137243
$$307$$ 18.0617 1.03083 0.515417 0.856939i $$-0.327637\pi$$
0.515417 + 0.856939i $$0.327637\pi$$
$$308$$ 14.7505 + 17.6558i 0.840487 + 1.00603i
$$309$$ 4.29088 + 7.43202i 0.244100 + 0.422793i
$$310$$ −0.962486 + 1.66707i −0.0546655 + 0.0946834i
$$311$$ −6.03959 + 10.4609i −0.342474 + 0.593182i −0.984891 0.173173i $$-0.944598\pi$$
0.642418 + 0.766355i $$0.277931\pi$$
$$312$$ −0.489163 0.849295i −0.0276934 0.0480819i
$$313$$ −10.3790 17.9769i −0.586654 1.01611i −0.994667 0.103138i $$-0.967112\pi$$
0.408013 0.912976i $$-0.366222\pi$$
$$314$$ −0.459257 0.795457i −0.0259174 0.0448902i
$$315$$ −5.18911 6.21117i −0.292373 0.349960i
$$316$$ −9.68569 + 16.7761i −0.544862 + 0.943729i
$$317$$ −8.73476 15.1290i −0.490593 0.849732i 0.509348 0.860560i $$-0.329886\pi$$
−0.999941 + 0.0108284i $$0.996553\pi$$
$$318$$ −0.180759 0.313083i −0.0101364 0.0175568i
$$319$$ −21.6150 37.4382i −1.21020 2.09614i
$$320$$ −12.0667 20.9001i −0.674549 1.16835i
$$321$$ −5.60158 + 9.70222i −0.312650 + 0.541525i
$$322$$ 0.384918 + 0.460732i 0.0214506 + 0.0256756i
$$323$$ 12.1779 + 21.0927i 0.677595 + 1.17363i
$$324$$ 0.997686 + 1.72804i 0.0554270 + 0.0960023i
$$325$$ 15.7127 + 0.0163569i 0.871585 + 0.000907319i
$$326$$ 0.0903939 0.156567i 0.00500646 0.00867144i
$$327$$ −6.98282 + 12.0946i −0.386151 + 0.668833i
$$328$$ −0.480863 0.832880i −0.0265512 0.0459881i
$$329$$ −4.34705 5.20326i −0.239661 0.286865i
$$330$$ −0.907002 −0.0499288
$$331$$ 7.12617 0.391690 0.195845 0.980635i $$-0.437255\pi$$
0.195845 + 0.980635i $$0.437255\pi$$
$$332$$ 5.40408 + 9.36014i 0.296587 + 0.513705i
$$333$$ 0.0545230 0.0944366i 0.00298784 0.00517509i
$$334$$ 1.48512 0.0812620
$$335$$ 1.04075 + 1.80263i 0.0568623 + 0.0984883i
$$336$$ −3.61568 + 9.86804i −0.197252 + 0.538345i
$$337$$ −22.8396 −1.24415 −0.622077 0.782956i $$-0.713711\pi$$
−0.622077 + 0.782956i $$0.713711\pi$$
$$338$$ −0.440638 0.766890i −0.0239675 0.0417133i
$$339$$ 3.38888 5.86972i 0.184059 0.318799i
$$340$$ −21.5390 −1.16811
$$341$$ −20.1533 + 34.9065i −1.09136 + 1.89029i
$$342$$ −0.234800 + 0.406686i −0.0126965 + 0.0219910i
$$343$$ −16.0983 + 9.15663i −0.869228 + 0.494412i
$$344$$ 0.229451 0.397422i 0.0123712 0.0214275i
$$345$$ 10.2027 0.549297
$$346$$ −0.601520 + 1.04186i −0.0323379 + 0.0560109i
$$347$$ 8.62904 + 14.9459i 0.463231 + 0.802340i 0.999120 0.0419489i $$-0.0133567\pi$$
−0.535889 + 0.844289i $$0.680023\pi$$
$$348$$ 9.89687 17.1419i 0.530528 0.918901i
$$349$$ −15.3687 26.6193i −0.822665 1.42490i −0.903691 0.428186i $$-0.859153\pi$$
0.0810257 0.996712i $$-0.474180\pi$$
$$350$$ 0.502946 + 0.602008i 0.0268836 + 0.0321787i
$$351$$ 1.79952 + 3.12437i 0.0960515 + 0.166767i
$$352$$ 1.77349 + 3.07177i 0.0945272 + 0.163726i
$$353$$ −0.960641 −0.0511298 −0.0255649 0.999673i $$-0.508138\pi$$
−0.0255649 + 0.999673i $$0.508138\pi$$
$$354$$ −0.514150 −0.0273268
$$355$$ −16.0033 −0.849369
$$356$$ 15.3726 0.814748
$$357$$ 5.98569 + 7.16465i 0.316796 + 0.379194i
$$358$$ −0.330994 + 0.573299i −0.0174936 + 0.0302998i
$$359$$ 16.4526 + 28.4967i 0.868334 + 1.50400i 0.863698 + 0.504009i $$0.168142\pi$$
0.00463555 + 0.999989i $$0.498524\pi$$
$$360$$ −0.415772 0.720139i −0.0219131 0.0379546i
$$361$$ 28.6409 1.50741
$$362$$ −0.136525 + 0.236468i −0.00717559 + 0.0124285i
$$363$$ −7.99154 −0.419447
$$364$$ −6.56722 + 17.8659i −0.344216 + 0.936425i
$$365$$ 10.7652 0.563478
$$366$$ 0.165775 0.287131i 0.00866521 0.0150086i
$$367$$ 22.0554 1.15129 0.575643 0.817701i $$-0.304752\pi$$
0.575643 + 0.817701i $$0.304752\pi$$
$$368$$ −6.62419 11.4734i −0.345310 0.598094i
$$369$$ 1.76899 + 3.06399i 0.0920901 + 0.159505i
$$370$$ −0.0113477 + 0.0196548i −0.000589939 + 0.00102180i
$$371$$ −4.83665 + 13.2003i −0.251107 + 0.685328i
$$372$$ −18.4552 −0.956859
$$373$$ 25.9119 1.34167 0.670835 0.741607i $$-0.265936\pi$$
0.670835 + 0.741607i $$0.265936\pi$$
$$374$$ 1.04624 0.0540996
$$375$$ −1.96415 −0.101428
$$376$$ −0.348303 0.603279i −0.0179624 0.0311118i
$$377$$ 17.9155 30.9560i 0.922693 1.59432i
$$378$$ −0.0619288 + 0.169018i −0.00318527 + 0.00869334i
$$379$$ −1.77121 3.06783i −0.0909811 0.157584i 0.816943 0.576718i $$-0.195667\pi$$
−0.907924 + 0.419134i $$0.862334\pi$$
$$380$$ −21.0656 + 36.4867i −1.08064 + 1.87173i
$$381$$ 6.68899 + 11.5857i 0.342687 + 0.593552i
$$382$$ 0.503139 0.871462i 0.0257428 0.0445879i
$$383$$ −29.3950 −1.50202 −0.751008 0.660293i $$-0.770432\pi$$
−0.751008 + 0.660293i $$0.770432\pi$$
$$384$$ −1.08229 + 1.87457i −0.0552301 + 0.0956614i
$$385$$ 22.6138 + 27.0678i 1.15250 + 1.37950i
$$386$$ −0.760067 + 1.31648i −0.0386864 + 0.0670068i
$$387$$ −0.844102 + 1.46203i −0.0429081 + 0.0743191i
$$388$$ −15.4186 −0.782761
$$389$$ 1.32057 2.28730i 0.0669556 0.115971i −0.830604 0.556863i $$-0.812005\pi$$
0.897560 + 0.440893i $$0.145338\pi$$
$$390$$ −0.374529 0.650266i −0.0189650 0.0329275i
$$391$$ −11.7690 −0.595182
$$392$$ −1.79083 + 0.643113i −0.0904504 + 0.0324821i
$$393$$ −9.06148 15.6949i −0.457091 0.791705i
$$394$$ 0.430371 0.0216818
$$395$$ −14.8490 + 25.7192i −0.747133 + 1.29407i
$$396$$ −4.34784 7.53068i −0.218487 0.378431i
$$397$$ 0.575977 0.0289075 0.0144537 0.999896i $$-0.495399\pi$$
0.0144537 + 0.999896i $$0.495399\pi$$
$$398$$ −0.410677 −0.0205854
$$399$$ 17.9909 3.13247i 0.900673 0.156820i
$$400$$ −8.65539 14.9916i −0.432769 0.749578i
$$401$$ 4.75598 8.23761i 0.237503 0.411366i −0.722494 0.691377i $$-0.757005\pi$$
0.959997 + 0.280010i $$0.0903379\pi$$
$$402$$ 0.0231470 0.0400918i 0.00115447 0.00199960i
$$403$$ −33.3478 0.0347150i −1.66117 0.00172928i
$$404$$ −3.87133 6.70534i −0.192606 0.333603i
$$405$$ 1.52954 + 2.64923i 0.0760033 + 0.131642i
$$406$$ 1.75916 0.306295i 0.0873059 0.0152012i
$$407$$ −0.237607 + 0.411548i −0.0117778 + 0.0203997i
$$408$$ 0.479598 + 0.830688i 0.0237436 + 0.0411252i
$$409$$ 0.0931606 + 0.161359i 0.00460649 + 0.00797868i 0.868319 0.496005i $$-0.165200\pi$$
−0.863713 + 0.503984i $$0.831867\pi$$
$$410$$ −0.368175 0.637698i −0.0181829 0.0314937i
$$411$$ 10.6703 + 18.4814i 0.526325 + 0.911622i
$$412$$ 8.56190 14.8296i 0.421814 0.730604i
$$413$$ 12.8190 + 15.3439i 0.630782 + 0.755023i
$$414$$ −0.113458 0.196515i −0.00557616 0.00965818i
$$415$$ 8.28491 + 14.3499i 0.406690 + 0.704408i
$$416$$ −1.46995 + 2.53992i −0.0720701 + 0.124530i
$$417$$ 0.0705287 0.122159i 0.00345381 0.00598217i
$$418$$ 1.02324 1.77231i 0.0500484 0.0866864i
$$419$$ −0.448814 0.777369i −0.0219260 0.0379769i 0.854854 0.518868i $$-0.173646\pi$$
−0.876780 + 0.480891i $$0.840313\pi$$
$$420$$ −5.55607 + 15.1638i −0.271108 + 0.739917i
$$421$$ −4.34862 −0.211939 −0.105969 0.994369i $$-0.533795\pi$$
−0.105969 + 0.994369i $$0.533795\pi$$
$$422$$ −0.0879150 −0.00427963
$$423$$ 1.28133 + 2.21933i 0.0623006 + 0.107908i
$$424$$ −0.722198 + 1.25088i −0.0350731 + 0.0607483i
$$425$$ −15.3777 −0.745928
$$426$$ 0.177963 + 0.308240i 0.00862232 + 0.0149343i
$$427$$ −12.7021 + 2.21161i −0.614697 + 0.107027i
$$428$$ 22.3545 1.08054
$$429$$ −7.84220 13.6158i −0.378625 0.657377i
$$430$$ 0.175680 0.304287i 0.00847206 0.0146740i
$$431$$ −10.7267 −0.516685 −0.258342 0.966053i $$-0.583176\pi$$
−0.258342 + 0.966053i $$0.583176\pi$$
$$432$$ 1.98612 3.44007i 0.0955574 0.165510i
$$433$$ 3.46111 5.99482i 0.166330 0.288093i −0.770797 0.637081i $$-0.780142\pi$$
0.937127 + 0.348989i $$0.113475\pi$$
$$434$$ −1.06742 1.27767i −0.0512380 0.0613300i
$$435$$ 15.1727 26.2800i 0.727477 1.26003i
$$436$$ 27.8666 1.33457
$$437$$ −11.5103 + 19.9364i −0.550612 + 0.953688i
$$438$$ −0.119713 0.207349i −0.00572011 0.00990753i
$$439$$ −12.6090 + 21.8394i −0.601794 + 1.04234i 0.390756 + 0.920494i $$0.372214\pi$$
−0.992549 + 0.121843i $$0.961120\pi$$
$$440$$ 1.81191 + 3.13831i 0.0863792 + 0.149613i
$$441$$ 6.58807 2.36587i 0.313718 0.112661i
$$442$$ 0.432024 + 0.750089i 0.0205493 + 0.0356781i
$$443$$ −8.71266 15.0908i −0.413951 0.716984i 0.581367 0.813642i $$-0.302518\pi$$
−0.995318 + 0.0966574i $$0.969185\pi$$
$$444$$ −0.217587 −0.0103262
$$445$$ 23.5675 1.11721
$$446$$ −0.789070 −0.0373635
$$447$$ 14.3559 0.679013
$$448$$ 20.5633 3.58036i 0.971524 0.169156i
$$449$$ −5.91239 + 10.2406i −0.279023 + 0.483282i −0.971142 0.238501i $$-0.923344\pi$$
0.692119 + 0.721783i $$0.256677\pi$$
$$450$$ −0.148248 0.256773i −0.00698847 0.0121044i
$$451$$ −7.70914 13.3526i −0.363009 0.628751i
$$452$$ −13.5242 −0.636123
$$453$$ 7.83172 13.5649i 0.367966 0.637336i
$$454$$ −0.0543266 −0.00254967
$$455$$ −10.0681 + 27.3899i −0.472000 + 1.28406i
$$456$$ 1.87623 0.0878624
$$457$$ 4.16626 7.21617i 0.194889 0.337558i −0.751975 0.659192i $$-0.770899\pi$$
0.946864 + 0.321634i $$0.104232\pi$$
$$458$$ 1.57942 0.0738017
$$459$$ −1.76434 3.05592i −0.0823522 0.142638i
$$460$$ −10.1791 17.6307i −0.474604 0.822038i
$$461$$ 2.20305 3.81579i 0.102606 0.177719i −0.810152 0.586221i $$-0.800615\pi$$
0.912758 + 0.408502i $$0.133949\pi$$
$$462$$ 0.269881 0.736568i 0.0125560 0.0342682i
$$463$$ 20.2243 0.939904 0.469952 0.882692i $$-0.344271\pi$$
0.469952 + 0.882692i $$0.344271\pi$$
$$464$$ −39.4040 −1.82929
$$465$$ −28.2934 −1.31208
$$466$$ −0.829206 −0.0384122
$$467$$ −3.27010 5.66398i −0.151322 0.262098i 0.780392 0.625291i $$-0.215020\pi$$
−0.931714 + 0.363193i $$0.881686\pi$$
$$468$$ 3.60369 6.22680i 0.166581 0.287834i
$$469$$ −1.77358 + 0.308805i −0.0818963 + 0.0142593i
$$470$$ −0.266680 0.461903i −0.0123010 0.0213060i
$$471$$ 6.75022 11.6917i 0.311034 0.538726i
$$472$$ 1.02711 + 1.77901i 0.0472766 + 0.0818855i
$$473$$ 3.67854 6.37141i 0.169139 0.292958i
$$474$$ 0.660504 0.0303379
$$475$$ −15.0397 + 26.0496i −0.690070 + 1.19524i
$$476$$ 6.40898 17.4916i 0.293755 0.801726i
$$477$$ 2.65681 4.60173i 0.121647 0.210699i
$$478$$ 0.0164760 0.0285373i 0.000753595 0.00130527i
$$479$$ −7.81335 −0.357001 −0.178500 0.983940i $$-0.557125\pi$$
−0.178500 + 0.983940i $$0.557125\pi$$
$$480$$ −1.24491 + 2.15625i −0.0568221 + 0.0984188i
$$481$$ −0.393171 0.000409290i −0.0179270 1.86620e-5i
$$482$$ −0.157852 −0.00718995
$$483$$ −3.03585 + 8.28554i −0.138136 + 0.377005i
$$484$$ 7.97304 + 13.8097i 0.362411 + 0.627714i
$$485$$ −23.6380 −1.07335
$$486$$ 0.0340180 0.0589209i 0.00154309 0.00267270i
$$487$$ 10.5370 + 18.2507i 0.477479 + 0.827018i 0.999667 0.0258123i $$-0.00821724\pi$$
−0.522188 + 0.852831i $$0.674884\pi$$
$$488$$ −1.32467 −0.0599649
$$489$$ 2.65724 0.120165
$$490$$ −1.37115 + 0.492402i −0.0619425 + 0.0222445i
$$491$$ −4.36913 7.56755i −0.197176 0.341519i 0.750436 0.660943i $$-0.229844\pi$$
−0.947612 + 0.319425i $$0.896510\pi$$
$$492$$ 3.52980 6.11379i 0.159136 0.275631i
$$493$$ −17.5019 + 30.3142i −0.788247 + 1.36528i
$$494$$ 1.69317 + 0.00176259i 0.0761792 + 7.93025e-5i
$$495$$ −6.66561 11.5452i −0.299597 0.518917i
$$496$$ 18.3697 + 31.8173i 0.824824 + 1.42864i
$$497$$ 4.76184 12.9962i 0.213598 0.582957i
$$498$$ 0.184262 0.319152i 0.00825699 0.0143015i
$$499$$ −10.6426 18.4336i −0.476430 0.825200i 0.523206 0.852206i $$-0.324736\pi$$
−0.999635 + 0.0270062i $$0.991403\pi$$
$$500$$ 1.95960 + 3.39413i 0.0876360 + 0.151790i
$$501$$ 10.9142 + 18.9040i 0.487611 + 0.844567i
$$502$$ 0.938555 + 1.62563i 0.0418898 + 0.0725552i
$$503$$ −2.29846 + 3.98105i −0.102483 + 0.177506i −0.912707 0.408614i $$-0.866012\pi$$
0.810224 + 0.586120i $$0.199345\pi$$
$$504$$ 0.708532 0.123365i 0.0315605 0.00549513i
$$505$$ −5.93508 10.2799i −0.264107 0.457448i
$$506$$ 0.494442 + 0.856398i 0.0219806 + 0.0380715i
$$507$$ 6.52343 11.2448i 0.289716 0.499398i
$$508$$ 13.3470 23.1177i 0.592178 1.02568i
$$509$$ 6.85316 11.8700i 0.303761 0.526129i −0.673224 0.739439i $$-0.735091\pi$$
0.976985 + 0.213309i $$0.0684242\pi$$
$$510$$ 0.367206 + 0.636019i 0.0162602 + 0.0281634i
$$511$$ −3.20322 + 8.74234i −0.141702 + 0.386738i
$$512$$ 5.39261 0.238322
$$513$$ −6.90224 −0.304741
$$514$$ −0.310586 0.537950i −0.0136994 0.0237280i
$$515$$ 13.1261 22.7351i 0.578406 1.00183i
$$516$$ 3.36860 0.148294
$$517$$ −5.58396 9.67170i −0.245582 0.425361i
$$518$$ −0.0125849 0.0150637i −0.000552950 0.000661861i
$$519$$ −17.6824 −0.776171
$$520$$ −1.50179 + 2.59493i −0.0658579 + 0.113795i
$$521$$ −2.13457 + 3.69718i −0.0935172 + 0.161977i −0.908989 0.416821i $$-0.863144\pi$$
0.815472 + 0.578797i $$0.196478\pi$$
$$522$$ −0.674905 −0.0295398
$$523$$ 14.0853 24.3964i 0.615907 1.06678i −0.374318 0.927300i $$-0.622123\pi$$
0.990225 0.139481i $$-0.0445436\pi$$
$$524$$ −18.0810 + 31.3172i −0.789873 + 1.36810i
$$525$$ −3.96674 + 10.8262i −0.173123 + 0.472492i
$$526$$ 0.190150 0.329350i 0.00829094 0.0143603i
$$527$$ 32.6368 1.42168
$$528$$ −8.65539 + 14.9916i −0.376677 + 0.652424i
$$529$$ 5.93810 + 10.2851i 0.258178 + 0.447178i
$$530$$ −0.552954 + 0.957745i −0.0240188 + 0.0416018i
$$531$$ −3.77852 6.54459i −0.163974 0.284011i
$$532$$ −23.3623 27.9639i −1.01289 1.21239i
$$533$$ 6.38969 11.0407i 0.276768 0.478226i
$$534$$ −0.262079 0.453935i −0.0113413 0.0196437i
$$535$$ 34.2713 1.48168
$$536$$ −0.184962 −0.00798914
$$537$$ −9.72998 −0.419880
$$538$$ 1.44863 0.0624549
$$539$$ −28.7103 + 10.3103i −1.23664 + 0.444096i
$$540$$ 3.05199 5.28621i 0.131337 0.227482i
$$541$$ 9.24717 + 16.0166i 0.397567 + 0.688606i 0.993425 0.114484i $$-0.0365214\pi$$
−0.595858 + 0.803089i $$0.703188\pi$$
$$542$$ −0.385320 0.667394i −0.0165509 0.0286670i
$$543$$ −4.01332 −0.172228
$$544$$ 1.43602 2.48726i 0.0615687 0.106640i
$$545$$ 42.7219 1.83001
$$546$$ 0.639518 0.110663i 0.0273688 0.00473595i
$$547$$ 24.6951 1.05589 0.527943 0.849280i $$-0.322963\pi$$
0.527943 + 0.849280i $$0.322963\pi$$
$$548$$ 21.2911 36.8773i 0.909512 1.57532i
$$549$$ 4.87317 0.207982
$$550$$ 0.646054 + 1.11900i 0.0275478 + 0.0477142i
$$551$$ 34.2345 + 59.2959i 1.45844 + 2.52609i
$$552$$ −0.453307 + 0.785150i −0.0192940 + 0.0334182i
$$553$$ −16.4680 19.7115i −0.700289 0.838220i
$$554$$ −0.773046 −0.0328436
$$555$$ −0.333580 −0.0141597
$$556$$ −0.281462 −0.0119366
$$557$$ −2.97174 −0.125917 −0.0629584 0.998016i $$-0.520054\pi$$
−0.0629584 + 0.998016i $$0.520054\pi$$
$$558$$ 0.314633 + 0.544960i 0.0133195 + 0.0230700i
$$559$$ 6.08691 + 0.00633646i 0.257449 + 0.000268004i
$$560$$ 31.6731 5.51472i 1.33843 0.233040i
$$561$$ 7.68885 + 13.3175i 0.324624 + 0.562265i
$$562$$ −0.271690 + 0.470581i −0.0114606 + 0.0198503i
$$563$$ 1.60029 + 2.77179i 0.0674443 + 0.116817i 0.897776 0.440453i $$-0.145182\pi$$
−0.830331 + 0.557270i $$0.811849\pi$$
$$564$$ 2.55674 4.42840i 0.107658 0.186469i
$$565$$ −20.7337 −0.872272
$$566$$ −0.140791 + 0.243858i −0.00591791 + 0.0102501i
$$567$$ −2.60654 + 0.453835i −0.109464 + 0.0190593i
$$568$$ 0.711027 1.23154i 0.0298340 0.0516741i
$$569$$ 6.29189 10.8979i 0.263770 0.456862i −0.703471 0.710724i $$-0.748367\pi$$
0.967241 + 0.253862i $$0.0817008\pi$$
$$570$$ 1.43654 0.0601701
$$571$$ 11.8472 20.5200i 0.495792 0.858736i −0.504197 0.863589i $$-0.668211\pi$$
0.999988 + 0.00485262i $$0.00154464\pi$$
$$572$$ −15.7046 + 27.1359i −0.656643 + 1.13461i
$$573$$ 14.7904 0.617877
$$574$$ 0.627420 0.109243i 0.0261880 0.00455970i
$$575$$ −7.26736 12.5874i −0.303070 0.524932i
$$576$$ −7.88912 −0.328713
$$577$$ −1.67873 + 2.90764i −0.0698863 + 0.121047i −0.898851 0.438254i $$-0.855597\pi$$
0.828965 + 0.559301i $$0.188930\pi$$
$$578$$ 0.154730 + 0.267999i 0.00643590 + 0.0111473i
$$579$$ −22.3431 −0.928548
$$580$$ −60.5505 −2.51422
$$581$$ −14.1186 + 2.45825i −0.585739 + 0.101985i
$$582$$ 0.262863 + 0.455292i 0.0108960 + 0.0188725i
$$583$$ −11.5782 + 20.0540i −0.479520 + 0.830553i
$$584$$ −0.478298 + 0.828437i −0.0197921 + 0.0342810i
$$585$$ 5.52476 9.54621i 0.228421 0.394687i
$$586$$ −0.963563 1.66894i −0.0398044 0.0689433i
$$587$$ −4.99547 8.65242i −0.206185 0.357123i 0.744324 0.667818i $$-0.232772\pi$$
−0.950510 + 0.310695i $$0.899438\pi$$
$$588$$ −10.6611 9.02406i −0.439658 0.372146i
$$589$$ 31.9195 55.2862i 1.31522 2.27803i
$$590$$ 0.786412 + 1.36210i 0.0323761 + 0.0560770i
$$591$$ 3.16282 + 5.47816i 0.130101 + 0.225342i
$$592$$ 0.216579 + 0.375126i 0.00890133 + 0.0154176i
$$593$$ −16.4331 28.4629i −0.674825 1.16883i −0.976520 0.215426i $$-0.930886\pi$$
0.301695 0.953404i $$-0.402447\pi$$
$$594$$ −0.148248 + 0.256773i −0.00608268 + 0.0105355i
$$595$$ 9.82552 26.8161i 0.402807 1.09935i
$$596$$ −14.3227 24.8077i −0.586682 1.01616i
$$597$$ −3.01808 5.22748i −0.123522 0.213946i
$$598$$ −0.409816 + 0.708119i −0.0167586 + 0.0289571i
$$599$$ 10.6138 18.3836i 0.433667 0.751133i −0.563519 0.826103i $$-0.690553\pi$$
0.997186 + 0.0749700i $$0.0238861\pi$$
$$600$$ −0.592305 + 1.02590i −0.0241808 + 0.0418823i
$$601$$ 0.776508 + 1.34495i 0.0316744 + 0.0548617i 0.881428 0.472318i $$-0.156583\pi$$
−0.849754 + 0.527180i $$0.823249\pi$$
$$602$$ 0.194835 + 0.233210i 0.00794087 + 0.00950493i
$$603$$ 0.680435 0.0277095
$$604$$ −31.2544 −1.27172
$$605$$ 12.2233 + 21.1715i 0.496950 + 0.860742i
$$606$$ −0.132000 + 0.228631i −0.00536215 + 0.00928751i
$$607$$ 6.61104 0.268334 0.134167 0.990959i $$-0.457164\pi$$
0.134167 + 0.990959i $$0.457164\pi$$
$$608$$ −2.80891 4.86518i −0.113916 0.197309i
$$609$$ 16.8270 + 20.1413i 0.681865 + 0.816167i
$$610$$ −1.01424 −0.0410653
$$611$$ 4.62824 7.99711i 0.187239 0.323529i
$$612$$ −3.52051 + 6.09770i −0.142308 + 0.246485i
$$613$$ −12.0584 −0.487034 −0.243517 0.969897i $$-0.578301\pi$$
−0.243517 + 0.969897i $$0.578301\pi$$
$$614$$ −0.614422 + 1.06421i −0.0247960 + 0.0429480i
$$615$$ 5.41148 9.37295i 0.218212 0.377954i
$$616$$ −3.08773 + 0.537617i −0.124408 + 0.0216612i
$$617$$ −16.5723 + 28.7040i −0.667175 + 1.15558i 0.311515 + 0.950241i $$0.399163\pi$$
−0.978691 + 0.205340i $$0.934170\pi$$
$$618$$ −0.583868 −0.0234866
$$619$$ 23.8269 41.2695i 0.957686 1.65876i 0.229587 0.973288i $$-0.426263\pi$$
0.728099 0.685472i $$-0.240404\pi$$
$$620$$ 28.2280 + 48.8923i 1.13366 + 1.96356i
$$621$$ 1.66762 2.88840i 0.0669192 0.115907i
$$622$$ −0.410909 0.711716i −0.0164760 0.0285372i
$$623$$ −7.01259 + 19.1390i −0.280953 + 0.766787i
$$624$$ −14.3221 0.0149093i −0.573344 0.000596851i
$$625$$ 13.8991 + 24.0739i 0.555962 + 0.962955i
$$626$$ 1.41229 0.0564463
$$627$$ 30.0795 1.20126
$$628$$ −26.9384 −1.07496
$$629$$ 0.384788 0.0153425
$$630$$ 0.542491 0.0944552i 0.0216133 0.00376319i
$$631$$ 1.28825 2.23132i 0.0512846 0.0888276i −0.839243 0.543756i $$-0.817002\pi$$
0.890528 + 0.454928i $$0.150335\pi$$
$$632$$ −1.31948 2.28540i −0.0524860 0.0909085i
$$633$$ −0.646092 1.11906i −0.0256798 0.0444788i
$$634$$ 1.18856 0.0472036
$$635$$ 20.4621 35.4414i 0.812014 1.40645i
$$636$$ −10.6027 −0.420423
$$637$$ −19.2473 16.3261i −0.762604 0.646865i
$$638$$ 2.94119 0.116443
$$639$$ −2.61572 + 4.53055i −0.103476 + 0.179226i
$$640$$ 6.62158 0.261741
$$641$$ −20.3763 35.2928i −0.804815 1.39398i −0.916416 0.400227i $$-0.868931\pi$$
0.111601 0.993753i $$-0.464402\pi$$
$$642$$ −0.381109 0.660100i −0.0150412 0.0260521i
$$643$$ −4.68006 + 8.10610i −0.184564 + 0.319674i −0.943429 0.331574i $$-0.892420\pi$$
0.758866 + 0.651247i $$0.225754\pi$$
$$644$$ 17.3466 3.02028i 0.683551 0.119016i
$$645$$ 5.16434 0.203346
$$646$$ −1.65707 −0.0651964
$$647$$ 25.0197 0.983625 0.491812 0.870701i $$-0.336335\pi$$
0.491812 + 0.870701i $$0.336335\pi$$
$$648$$ −0.271829 −0.0106784
$$649$$ 16.4665 + 28.5208i 0.646367 + 1.11954i
$$650$$ −0.535479 + 0.925251i −0.0210032 + 0.0362913i
$$651$$ 8.41880 22.9768i 0.329959 0.900533i
$$652$$ −2.65109 4.59182i −0.103825 0.179830i
$$653$$ 9.28070 16.0746i 0.363182 0.629049i −0.625301 0.780384i $$-0.715024\pi$$
0.988483 + 0.151334i $$0.0483570\pi$$
$$654$$ −0.475083 0.822868i −0.0185772 0.0321767i
$$655$$ −27.7197 + 48.0120i −1.08310 + 1.87598i
$$656$$ −14.0538 −0.548707
$$657$$ 1.75956 3.04764i 0.0686468 0.118900i
$$658$$ 0.454459 0.0791277i 0.0177167 0.00308472i
$$659$$ 18.4907 32.0268i 0.720295 1.24759i −0.240587 0.970628i $$-0.577340\pi$$
0.960882 0.276960i $$-0.0893268\pi$$
$$660$$ −13.3004 + 23.0369i −0.517716 + 0.896710i
$$661$$ 15.9233 0.619344 0.309672 0.950843i $$-0.399781\pi$$
0.309672 + 0.950843i $$0.399781\pi$$
$$662$$ −0.242418 + 0.419880i −0.00942184 + 0.0163191i
$$663$$ −6.37287 + 11.0117i −0.247502 + 0.427657i
$$664$$ −1.47239 −0.0571399
$$665$$ −35.8165 42.8710i −1.38890 1.66247i
$$666$$ 0.00370952 + 0.00642508i 0.000143741 + 0.000248967i
$$667$$ −33.0850 −1.28106
$$668$$ 21.7779 37.7204i 0.842612 1.45945i
$$669$$ −5.79892 10.0440i −0.224199 0.388324i
$$670$$ −0.141617 −0.00547114
$$671$$ −21.2369 −0.819842
$$672$$ −1.38064 1.65258i −0.0532594 0.0637496i
$$673$$ 10.9624 + 18.9874i 0.422569 + 0.731910i 0.996190 0.0872103i $$-0.0277952\pi$$
−0.573621 + 0.819121i $$0.694462\pi$$
$$674$$ 0.776958 1.34573i 0.0299273 0.0518356i
$$675$$ 2.17896 3.77408i 0.0838684 0.145264i
$$676$$ −25.9398 0.0540066i −0.997683 0.00207718i
$$677$$ −16.0122 27.7339i −0.615398 1.06590i −0.990315 0.138842i $$-0.955662\pi$$
0.374917 0.927059i $$-0.377671\pi$$
$$678$$ 0.230566 + 0.399352i 0.00885483 + 0.0153370i
$$679$$ 7.03356 19.1962i 0.269923 0.736683i
$$680$$ 1.46712 2.54113i 0.0562617 0.0974480i
$$681$$ −0.399249 0.691520i −0.0152993 0.0264991i
$$682$$ −1.37115 2.37490i −0.0525040 0.0909396i
$$683$$ 1.51134 + 2.61772i 0.0578300 + 0.100164i 0.893491 0.449081i $$-0.148249\pi$$
−0.835661 + 0.549245i $$0.814915\pi$$
$$684$$ 6.88626 + 11.9274i 0.263303 + 0.456054i
$$685$$ 32.6411 56.5361i 1.24715 2.16013i
$$686$$ 0.00811601 1.26002i 0.000309871 0.0481077i
$$687$$ 11.6073 + 20.1044i 0.442845 + 0.767030i
$$688$$ −3.35298 5.80754i −0.127831 0.221410i
$$689$$ −19.1585 0.0199440i −0.729882 0.000759807i
$$690$$ −0.347076 + 0.601154i −0.0132130 + 0.0228855i
$$691$$ 5.94954 10.3049i 0.226331 0.392017i −0.730387 0.683034i $$-0.760660\pi$$
0.956718 + 0.291017i $$0.0939936\pi$$
$$692$$ 17.6415 + 30.5559i 0.670628 + 1.16156i
$$693$$ 11.3591 1.97778i 0.431497 0.0751296i
$$694$$ −1.17417 −0.0445709
$$695$$ −0.431505 −0.0163679
$$696$$ 1.34825 + 2.33523i 0.0511052 + 0.0885168i
$$697$$ −6.24220 + 10.8118i −0.236440 + 0.409526i
$$698$$ 2.09124 0.0791547
$$699$$ −6.09388 10.5549i −0.230492 0.399223i
$$700$$ 22.6656 3.94640i 0.856680 0.149160i
$$701$$ 2.07215 0.0782642 0.0391321 0.999234i $$-0.487541\pi$$
0.0391321 + 0.999234i $$0.487541\pi$$
$$702$$ −0.245307 0.000255364i −0.00925852 9.63811e-6i
$$703$$ 0.376331 0.651824i 0.0141936 0.0245840i
$$704$$ 34.3802 1.29575
$$705$$ 3.91969 6.78911i 0.147624 0.255693i
$$706$$ 0.0326791 0.0566018i 0.00122989 0.00213024i
$$707$$ 10.1142 1.76102i 0.380383 0.0662300i
$$708$$ −7.53955 + 13.0589i −0.283354 + 0.490783i
$$709$$ 7.23998 0.271903 0.135952 0.990715i $$-0.456591\pi$$
0.135952 + 0.990715i $$0.456591\pi$$
$$710$$ 0.544401 0.942930i 0.0204310 0.0353875i
$$711$$ 4.85408 + 8.40751i 0.182042 + 0.315306i
$$712$$ −1.04710 + 1.81364i −0.0392419 + 0.0679690i
$$713$$ 15.4238 + 26.7149i 0.577627 + 1.00048i
$$714$$ −0.625769 + 0.108955i −0.0234188 + 0.00407754i
$$715$$ −24.0765 + 41.6017i −0.900411 + 1.55581i
$$716$$ 9.70746 + 16.8138i 0.362785 + 0.628362i
$$717$$ 0.484332 0.0180877
$$718$$ −2.23873 −0.0835488
$$719$$ 50.9305 1.89939 0.949694 0.313179i $$-0.101394\pi$$
0.949694 + 0.313179i $$0.101394\pi$$
$$720$$ −12.1514 −0.452856
$$721$$ 14.5572 + 17.4245i 0.542140 + 0.648922i
$$722$$ −0.974305 + 1.68755i −0.0362599 + 0.0628039i
$$723$$ −1.16006 2.00929i −0.0431432 0.0747261i
$$724$$ 4.00403 + 6.93518i 0.148809 + 0.257744i
$$725$$ −43.2299 −1.60552
$$726$$ 0.271856 0.470868i 0.0100895 0.0174756i
$$727$$ −21.6848 −0.804244 −0.402122 0.915586i $$-0.631727\pi$$
−0.402122 + 0.915586i $$0.631727\pi$$
$$728$$ −1.66046 1.99172i −0.0615407 0.0738181i
$$729$$ 1.00000 0.0370370
$$730$$ −0.366211 + 0.634296i −0.0135541 + 0.0234764i
$$731$$ −5.95712 −0.220332
$$732$$ −4.86189 8.42104i −0.179701 0.311251i
$$733$$ 10.8930 + 18.8673i 0.402343 + 0.696879i 0.994008 0.109305i $$-0.0348625\pi$$
−0.591665 + 0.806184i $$0.701529\pi$$
$$734$$ −0.750282 + 1.29953i −0.0276934 + 0.0479664i
$$735$$ −16.3444 13.8347i −0.602874 0.510299i
$$736$$ 2.71459 0.100061
$$737$$ −2.96529 −0.109228
$$738$$ −0.240710 −0.00886066
$$739$$ 35.9065 1.32084 0.660421 0.750895i $$-0.270378\pi$$
0.660421 + 0.750895i $$0.270378\pi$$
$$740$$ 0.332808 + 0.576440i 0.0122342 + 0.0211903i
$$741$$ 12.4207 + 21.5652i 0.456287 + 0.792216i
$$742$$ −0.613242 0.734029i −0.0225128 0.0269470i
$$743$$ 25.6310 + 44.3942i 0.940310 + 1.62867i 0.764879 + 0.644174i $$0.222799\pi$$
0.175431 + 0.984492i $$0.443868\pi$$
$$744$$ 1.25708 2.17732i 0.0460866 0.0798244i
$$745$$ −21.9579 38.0323i −0.804477 1.39339i
$$746$$ −0.881472 + 1.52675i −0.0322730 + 0.0558984i
$$747$$ 5.41662 0.198184
$$748$$ 15.3421 26.5733i 0.560963 0.971617i
$$749$$ −10.1975 + 27.8314i −0.372609 + 1.01694i
$$750$$ 0.0668163 0.115729i 0.00243978 0.00422583i
$$751$$ −24.3770 + 42.2222i −0.889530 + 1.54071i −0.0490976 + 0.998794i $$0.515635\pi$$
−0.840432 + 0.541917i $$0.817699\pi$$
$$752$$ −10.1795 −0.371210
$$753$$ −13.7950 + 23.8936i −0.502717 + 0.870732i
$$754$$ 1.21451 + 2.10866i 0.0442298 + 0.0767927i
$$755$$ −47.9156 −1.74383
$$756$$ 3.38475 + 4.05142i 0.123102 + 0.147349i
$$757$$ 7.41023 + 12.8349i 0.269329 + 0.466492i 0.968689 0.248278i $$-0.0798647\pi$$
−0.699360 + 0.714770i $$0.746531\pi$$
$$758$$ 0.241012 0.00875396
$$759$$ −7.26736 + 12.5874i −0.263788 + 0.456895i
$$760$$ −2.86976 4.97057i −0.104097 0.180301i
$$761$$ 11.3103 0.409998 0.204999 0.978762i $$-0.434281\pi$$
0.204999 + 0.978762i $$0.434281\pi$$
$$762$$ −0.910183 −0.0329725
$$763$$ −12.7120 + 34.6941i −0.460206 + 1.25601i
$$764$$ −14.7562 25.5584i −0.533859 0.924671i
$$765$$ −5.39723 + 9.34828i −0.195137 + 0.337988i
$$766$$ 0.999960 1.73198i 0.0361300 0.0625790i
$$767$$ −13.6482 + 23.5826i −0.492808 + 0.851520i
$$768$$ 7.81549 + 13.5368i 0.282017 + 0.488468i
$$769$$ 8.92963 + 15.4666i 0.322011 + 0.557739i 0.980903 0.194498i $$-0.0623079\pi$$
−0.658892 + 0.752238i $$0.728975\pi$$
$$770$$ −2.36413 + 0.411629i −0.0851975 + 0.0148341i
$$771$$ 4.56503 7.90686i 0.164405 0.284758i
$$772$$ 22.2914 + 38.6098i 0.802285 + 1.38960i
$$773$$ −1.43276 2.48162i −0.0515329 0.0892575i 0.839108 0.543964i $$-0.183077\pi$$
−0.890641 + 0.454707i $$0.849744\pi$$
$$774$$ −0.0574293 0.0994705i −0.00206425 0.00357539i
$$775$$ 20.1533 + 34.9065i 0.723