Properties

Label 273.2.j.b.100.4
Level $273$
Weight $2$
Character 273.100
Analytic conductor $2.180$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Defining polynomial: \(x^{16} + 11 x^{14} - 4 x^{13} + 87 x^{12} - 35 x^{11} + 326 x^{10} - 205 x^{9} + 895 x^{8} - 481 x^{7} + 1005 x^{6} - 544 x^{5} + 811 x^{4} - 312 x^{3} + 195 x^{2} + 13 x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.4
Root \(-0.0340180 - 0.0589209i\) of defining polynomial
Character \(\chi\) \(=\) 273.100
Dual form 273.2.j.b.172.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.0340180 - 0.0589209i) q^{2} -1.00000 q^{3} +(0.997686 - 1.72804i) q^{4} +(1.52954 - 2.64923i) q^{5} +(0.0340180 + 0.0589209i) q^{6} +(-2.60654 - 0.453835i) q^{7} -0.271829 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(-0.0340180 - 0.0589209i) q^{2} -1.00000 q^{3} +(0.997686 - 1.72804i) q^{4} +(1.52954 - 2.64923i) q^{5} +(0.0340180 + 0.0589209i) q^{6} +(-2.60654 - 0.453835i) q^{7} -0.271829 q^{8} +1.00000 q^{9} -0.208127 q^{10} -4.35793 q^{11} +(-0.997686 + 1.72804i) q^{12} +(-1.79952 + 3.12437i) q^{13} +(0.0619288 + 0.169018i) q^{14} +(-1.52954 + 2.64923i) q^{15} +(-1.98612 - 3.44007i) q^{16} +(1.76434 - 3.05592i) q^{17} +(-0.0340180 - 0.0589209i) q^{18} +6.90224 q^{19} +(-3.05199 - 5.28621i) q^{20} +(2.60654 + 0.453835i) q^{21} +(0.148248 + 0.256773i) q^{22} +(-1.66762 - 2.88840i) q^{23} +0.271829 q^{24} +(-2.17896 - 3.77408i) q^{25} +(0.245307 - 0.000255364i) q^{26} -1.00000 q^{27} +(-3.38475 + 4.05142i) q^{28} +(4.95991 - 8.59082i) q^{29} +0.208127 q^{30} +(4.62451 + 8.00989i) q^{31} +(-0.406957 + 0.704870i) q^{32} +4.35793 q^{33} -0.240077 q^{34} +(-5.18911 + 6.21117i) q^{35} +(0.997686 - 1.72804i) q^{36} +(0.0545230 + 0.0944366i) q^{37} +(-0.234800 - 0.406686i) q^{38} +(1.79952 - 3.12437i) q^{39} +(-0.415772 + 0.720139i) q^{40} +(1.76899 - 3.06399i) q^{41} +(-0.0619288 - 0.169018i) q^{42} +(-0.844102 - 1.46203i) q^{43} +(-4.34784 + 7.53068i) q^{44} +(1.52954 - 2.64923i) q^{45} +(-0.113458 + 0.196515i) q^{46} +(1.28133 - 2.21933i) q^{47} +(1.98612 + 3.44007i) q^{48} +(6.58807 + 2.36587i) q^{49} +(-0.148248 + 0.256773i) q^{50} +(-1.76434 + 3.05592i) q^{51} +(3.60369 + 6.22680i) q^{52} +(2.65681 + 4.60173i) q^{53} +(0.0340180 + 0.0589209i) q^{54} +(-6.66561 + 11.5452i) q^{55} +(0.708532 + 0.123365i) q^{56} -6.90224 q^{57} -0.674905 q^{58} +(-3.77852 + 6.54459i) q^{59} +(3.05199 + 5.28621i) q^{60} +4.87317 q^{61} +(0.314633 - 0.544960i) q^{62} +(-2.60654 - 0.453835i) q^{63} -7.88912 q^{64} +(5.52476 + 9.54621i) q^{65} +(-0.148248 - 0.256773i) q^{66} +0.680435 q^{67} +(-3.52051 - 6.09770i) q^{68} +(1.66762 + 2.88840i) q^{69} +(0.542491 + 0.0944552i) q^{70} +(-2.61572 - 4.53055i) q^{71} -0.271829 q^{72} +(1.75956 + 3.04764i) q^{73} +(0.00370952 - 0.00642508i) q^{74} +(2.17896 + 3.77408i) q^{75} +(6.88626 - 11.9274i) q^{76} +(11.3591 + 1.97778i) q^{77} +(-0.245307 + 0.000255364i) q^{78} +(4.85408 - 8.40751i) q^{79} -12.1514 q^{80} +1.00000 q^{81} -0.240710 q^{82} +5.41662 q^{83} +(3.38475 - 4.05142i) q^{84} +(-5.39723 - 9.34828i) q^{85} +(-0.0574293 + 0.0994705i) q^{86} +(-4.95991 + 8.59082i) q^{87} +1.18461 q^{88} +(3.85207 + 6.67198i) q^{89} -0.208127 q^{90} +(6.10848 - 7.32711i) q^{91} -6.65503 q^{92} +(-4.62451 - 8.00989i) q^{93} -0.174354 q^{94} +(10.5572 - 18.2856i) q^{95} +(0.406957 - 0.704870i) q^{96} +(-3.86359 - 6.69194i) q^{97} +(-0.0847135 - 0.468657i) q^{98} -4.35793 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 16q^{3} - 6q^{4} + q^{7} + 12q^{8} + 16q^{9} + O(q^{10}) \) \( 16q - 16q^{3} - 6q^{4} + q^{7} + 12q^{8} + 16q^{9} + 8q^{10} + 4q^{11} + 6q^{12} + 5q^{13} - 7q^{14} - 6q^{16} - 2q^{17} + 22q^{19} - 20q^{20} - q^{21} + 7q^{22} + 4q^{23} - 12q^{24} + 2q^{25} - 6q^{26} - 16q^{27} - 7q^{28} + 15q^{29} - 8q^{30} + 3q^{31} + 3q^{32} - 4q^{33} - 68q^{34} - 12q^{35} - 6q^{36} + 4q^{37} + 2q^{38} - 5q^{39} - 25q^{40} + 19q^{41} + 7q^{42} + 11q^{43} - 16q^{44} + 2q^{46} + 5q^{47} + 6q^{48} + 13q^{49} - 7q^{50} + 2q^{51} + 36q^{52} + 36q^{53} - 15q^{55} + 39q^{56} - 22q^{57} - 40q^{58} - 17q^{59} + 20q^{60} + 44q^{61} - 6q^{62} + q^{63} - 20q^{64} - 21q^{65} - 7q^{66} - 52q^{67} + 5q^{68} - 4q^{69} + 46q^{70} + 9q^{71} + 12q^{72} - 6q^{73} + 15q^{74} - 2q^{75} - 16q^{76} - 36q^{77} + 6q^{78} + 16q^{79} + 56q^{80} + 16q^{81} + 2q^{82} + 36q^{83} + 7q^{84} - 4q^{85} + 16q^{86} - 15q^{87} - 48q^{88} + 20q^{89} + 8q^{90} - 7q^{91} - 94q^{92} - 3q^{93} + 40q^{94} - 3q^{96} + 7q^{97} - 3q^{98} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0340180 0.0589209i −0.0240543 0.0416633i 0.853748 0.520687i \(-0.174324\pi\)
−0.877802 + 0.479024i \(0.840991\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.997686 1.72804i 0.498843 0.864021i
\(5\) 1.52954 2.64923i 0.684030 1.18477i −0.289711 0.957114i \(-0.593559\pi\)
0.973741 0.227660i \(-0.0731074\pi\)
\(6\) 0.0340180 + 0.0589209i 0.0138878 + 0.0240543i
\(7\) −2.60654 0.453835i −0.985178 0.171533i
\(8\) −0.271829 −0.0961060
\(9\) 1.00000 0.333333
\(10\) −0.208127 −0.0658155
\(11\) −4.35793 −1.31396 −0.656982 0.753906i \(-0.728167\pi\)
−0.656982 + 0.753906i \(0.728167\pi\)
\(12\) −0.997686 + 1.72804i −0.288007 + 0.498843i
\(13\) −1.79952 + 3.12437i −0.499098 + 0.866545i
\(14\) 0.0619288 + 0.169018i 0.0165512 + 0.0451719i
\(15\) −1.52954 + 2.64923i −0.394925 + 0.684030i
\(16\) −1.98612 3.44007i −0.496531 0.860017i
\(17\) 1.76434 3.05592i 0.427914 0.741170i −0.568773 0.822494i \(-0.692582\pi\)
0.996688 + 0.0813248i \(0.0259151\pi\)
\(18\) −0.0340180 0.0589209i −0.00801811 0.0138878i
\(19\) 6.90224 1.58348 0.791741 0.610857i \(-0.209175\pi\)
0.791741 + 0.610857i \(0.209175\pi\)
\(20\) −3.05199 5.28621i −0.682446 1.18203i
\(21\) 2.60654 + 0.453835i 0.568793 + 0.0990348i
\(22\) 0.148248 + 0.256773i 0.0316066 + 0.0547442i
\(23\) −1.66762 2.88840i −0.347722 0.602273i 0.638122 0.769935i \(-0.279711\pi\)
−0.985844 + 0.167662i \(0.946378\pi\)
\(24\) 0.271829 0.0554868
\(25\) −2.17896 3.77408i −0.435793 0.754815i
\(26\) 0.245307 0.000255364i 0.0481087 5.00811e-5i
\(27\) −1.00000 −0.192450
\(28\) −3.38475 + 4.05142i −0.639658 + 0.765647i
\(29\) 4.95991 8.59082i 0.921033 1.59528i 0.123213 0.992380i \(-0.460680\pi\)
0.797820 0.602896i \(-0.205987\pi\)
\(30\) 0.208127 0.0379986
\(31\) 4.62451 + 8.00989i 0.830587 + 1.43862i 0.897574 + 0.440865i \(0.145328\pi\)
−0.0669867 + 0.997754i \(0.521339\pi\)
\(32\) −0.406957 + 0.704870i −0.0719405 + 0.124605i
\(33\) 4.35793 0.758618
\(34\) −0.240077 −0.0411728
\(35\) −5.18911 + 6.21117i −0.877119 + 1.04988i
\(36\) 0.997686 1.72804i 0.166281 0.288007i
\(37\) 0.0545230 + 0.0944366i 0.00896352 + 0.0155253i 0.870472 0.492217i \(-0.163813\pi\)
−0.861509 + 0.507743i \(0.830480\pi\)
\(38\) −0.234800 0.406686i −0.0380896 0.0659731i
\(39\) 1.79952 3.12437i 0.288154 0.500300i
\(40\) −0.415772 + 0.720139i −0.0657394 + 0.113864i
\(41\) 1.76899 3.06399i 0.276270 0.478514i −0.694185 0.719797i \(-0.744235\pi\)
0.970455 + 0.241283i \(0.0775682\pi\)
\(42\) −0.0619288 0.169018i −0.00955582 0.0260800i
\(43\) −0.844102 1.46203i −0.128724 0.222957i 0.794458 0.607319i \(-0.207755\pi\)
−0.923183 + 0.384362i \(0.874422\pi\)
\(44\) −4.34784 + 7.53068i −0.655462 + 1.13529i
\(45\) 1.52954 2.64923i 0.228010 0.394925i
\(46\) −0.113458 + 0.196515i −0.0167285 + 0.0289746i
\(47\) 1.28133 2.21933i 0.186902 0.323723i −0.757314 0.653051i \(-0.773489\pi\)
0.944216 + 0.329328i \(0.106822\pi\)
\(48\) 1.98612 + 3.44007i 0.286672 + 0.496531i
\(49\) 6.58807 + 2.36587i 0.941153 + 0.337982i
\(50\) −0.148248 + 0.256773i −0.0209654 + 0.0363132i
\(51\) −1.76434 + 3.05592i −0.247057 + 0.427914i
\(52\) 3.60369 + 6.22680i 0.499742 + 0.863501i
\(53\) 2.65681 + 4.60173i 0.364941 + 0.632097i 0.988767 0.149467i \(-0.0477557\pi\)
−0.623825 + 0.781564i \(0.714422\pi\)
\(54\) 0.0340180 + 0.0589209i 0.00462926 + 0.00801811i
\(55\) −6.66561 + 11.5452i −0.898791 + 1.55675i
\(56\) 0.708532 + 0.123365i 0.0946816 + 0.0164854i
\(57\) −6.90224 −0.914224
\(58\) −0.674905 −0.0886194
\(59\) −3.77852 + 6.54459i −0.491921 + 0.852033i −0.999957 0.00930353i \(-0.997039\pi\)
0.508035 + 0.861336i \(0.330372\pi\)
\(60\) 3.05199 + 5.28621i 0.394011 + 0.682446i
\(61\) 4.87317 0.623945 0.311973 0.950091i \(-0.399010\pi\)
0.311973 + 0.950091i \(0.399010\pi\)
\(62\) 0.314633 0.544960i 0.0399584 0.0692101i
\(63\) −2.60654 0.453835i −0.328393 0.0571778i
\(64\) −7.88912 −0.986140
\(65\) 5.52476 + 9.54621i 0.685263 + 1.18406i
\(66\) −0.148248 0.256773i −0.0182481 0.0316066i
\(67\) 0.680435 0.0831284 0.0415642 0.999136i \(-0.486766\pi\)
0.0415642 + 0.999136i \(0.486766\pi\)
\(68\) −3.52051 6.09770i −0.426924 0.739454i
\(69\) 1.66762 + 2.88840i 0.200758 + 0.347722i
\(70\) 0.542491 + 0.0944552i 0.0648400 + 0.0112896i
\(71\) −2.61572 4.53055i −0.310428 0.537678i 0.668027 0.744137i \(-0.267139\pi\)
−0.978455 + 0.206460i \(0.933806\pi\)
\(72\) −0.271829 −0.0320353
\(73\) 1.75956 + 3.04764i 0.205941 + 0.356699i 0.950432 0.310933i \(-0.100641\pi\)
−0.744491 + 0.667632i \(0.767308\pi\)
\(74\) 0.00370952 0.00642508i 0.000431223 0.000746901i
\(75\) 2.17896 + 3.77408i 0.251605 + 0.435793i
\(76\) 6.88626 11.9274i 0.789908 1.36816i
\(77\) 11.3591 + 1.97778i 1.29449 + 0.225389i
\(78\) −0.245307 0.000255364i −0.0277755 2.89143e-5i
\(79\) 4.85408 8.40751i 0.546126 0.945919i −0.452409 0.891811i \(-0.649435\pi\)
0.998535 0.0541080i \(-0.0172315\pi\)
\(80\) −12.1514 −1.35857
\(81\) 1.00000 0.111111
\(82\) −0.240710 −0.0265820
\(83\) 5.41662 0.594551 0.297275 0.954792i \(-0.403922\pi\)
0.297275 + 0.954792i \(0.403922\pi\)
\(84\) 3.38475 4.05142i 0.369306 0.442046i
\(85\) −5.39723 9.34828i −0.585412 1.01396i
\(86\) −0.0574293 + 0.0994705i −0.00619276 + 0.0107262i
\(87\) −4.95991 + 8.59082i −0.531759 + 0.921033i
\(88\) 1.18461 0.126280
\(89\) 3.85207 + 6.67198i 0.408319 + 0.707229i 0.994702 0.102805i \(-0.0327818\pi\)
−0.586383 + 0.810034i \(0.699449\pi\)
\(90\) −0.208127 −0.0219385
\(91\) 6.10848 7.32711i 0.640342 0.768090i
\(92\) −6.65503 −0.693835
\(93\) −4.62451 8.00989i −0.479540 0.830587i
\(94\) −0.174354 −0.0179832
\(95\) 10.5572 18.2856i 1.08315 1.87607i
\(96\) 0.406957 0.704870i 0.0415348 0.0719405i
\(97\) −3.86359 6.69194i −0.392288 0.679463i 0.600463 0.799653i \(-0.294983\pi\)
−0.992751 + 0.120189i \(0.961650\pi\)
\(98\) −0.0847135 0.468657i −0.00855735 0.0473415i
\(99\) −4.35793 −0.437988
\(100\) −8.69568 −0.869568
\(101\) −3.88031 −0.386105 −0.193053 0.981188i \(-0.561839\pi\)
−0.193053 + 0.981188i \(0.561839\pi\)
\(102\) 0.240077 0.0237711
\(103\) −4.29088 + 7.43202i −0.422793 + 0.732299i −0.996211 0.0869638i \(-0.972284\pi\)
0.573419 + 0.819263i \(0.305617\pi\)
\(104\) 0.489163 0.849295i 0.0479663 0.0832802i
\(105\) 5.18911 6.21117i 0.506405 0.606148i
\(106\) 0.180759 0.313083i 0.0175568 0.0304093i
\(107\) 5.60158 + 9.70222i 0.541525 + 0.937949i 0.998817 + 0.0486324i \(0.0154863\pi\)
−0.457291 + 0.889317i \(0.651180\pi\)
\(108\) −0.997686 + 1.72804i −0.0960023 + 0.166281i
\(109\) 6.98282 + 12.0946i 0.668833 + 1.15845i 0.978231 + 0.207520i \(0.0665391\pi\)
−0.309398 + 0.950933i \(0.600128\pi\)
\(110\) 0.907002 0.0864793
\(111\) −0.0545230 0.0944366i −0.00517509 0.00896352i
\(112\) 3.61568 + 9.86804i 0.341650 + 0.932442i
\(113\) −3.38888 5.86972i −0.318799 0.552176i 0.661439 0.749999i \(-0.269946\pi\)
−0.980238 + 0.197823i \(0.936613\pi\)
\(114\) 0.234800 + 0.406686i 0.0219910 + 0.0380896i
\(115\) −10.2027 −0.951410
\(116\) −9.89687 17.1419i −0.918901 1.59158i
\(117\) −1.79952 + 3.12437i −0.166366 + 0.288848i
\(118\) 0.514150 0.0473314
\(119\) −5.98569 + 7.16465i −0.548707 + 0.656783i
\(120\) 0.415772 0.720139i 0.0379546 0.0657394i
\(121\) 7.99154 0.726503
\(122\) −0.165775 0.287131i −0.0150086 0.0259956i
\(123\) −1.76899 + 3.06399i −0.159505 + 0.276270i
\(124\) 18.4552 1.65733
\(125\) 1.96415 0.175679
\(126\) 0.0619288 + 0.169018i 0.00551705 + 0.0150573i
\(127\) −6.68899 + 11.5857i −0.593552 + 1.02806i 0.400198 + 0.916429i \(0.368941\pi\)
−0.993750 + 0.111633i \(0.964392\pi\)
\(128\) 1.08229 + 1.87457i 0.0956614 + 0.165690i
\(129\) 0.844102 + 1.46203i 0.0743191 + 0.128724i
\(130\) 0.374529 0.650266i 0.0328484 0.0570321i
\(131\) 9.06148 15.6949i 0.791705 1.37127i −0.133205 0.991089i \(-0.542527\pi\)
0.924910 0.380185i \(-0.124140\pi\)
\(132\) 4.34784 7.53068i 0.378431 0.655462i
\(133\) −17.9909 3.13247i −1.56001 0.271620i
\(134\) −0.0231470 0.0400918i −0.00199960 0.00346341i
\(135\) −1.52954 + 2.64923i −0.131642 + 0.228010i
\(136\) −0.479598 + 0.830688i −0.0411252 + 0.0712309i
\(137\) −10.6703 + 18.4814i −0.911622 + 1.57898i −0.0998490 + 0.995003i \(0.531836\pi\)
−0.811773 + 0.583973i \(0.801497\pi\)
\(138\) 0.113458 0.196515i 0.00965818 0.0167285i
\(139\) −0.0705287 0.122159i −0.00598217 0.0103614i 0.863019 0.505172i \(-0.168571\pi\)
−0.869001 + 0.494810i \(0.835238\pi\)
\(140\) 5.55607 + 15.1638i 0.469573 + 1.28157i
\(141\) −1.28133 + 2.21933i −0.107908 + 0.186902i
\(142\) −0.177963 + 0.308240i −0.0149343 + 0.0258670i
\(143\) 7.84220 13.6158i 0.655797 1.13861i
\(144\) −1.98612 3.44007i −0.165510 0.286672i
\(145\) −15.1727 26.2800i −1.26003 2.18243i
\(146\) 0.119713 0.207349i 0.00990753 0.0171603i
\(147\) −6.58807 2.36587i −0.543375 0.195134i
\(148\) 0.217587 0.0178856
\(149\) −14.3559 −1.17609 −0.588043 0.808830i \(-0.700101\pi\)
−0.588043 + 0.808830i \(0.700101\pi\)
\(150\) 0.148248 0.256773i 0.0121044 0.0209654i
\(151\) −7.83172 13.5649i −0.637336 1.10390i −0.986015 0.166657i \(-0.946703\pi\)
0.348679 0.937242i \(-0.386631\pi\)
\(152\) −1.87623 −0.152182
\(153\) 1.76434 3.05592i 0.142638 0.247057i
\(154\) −0.269881 0.736568i −0.0217476 0.0593543i
\(155\) 28.2934 2.27258
\(156\) −3.60369 6.22680i −0.288526 0.498543i
\(157\) −6.75022 11.6917i −0.538726 0.933101i −0.998973 0.0453098i \(-0.985572\pi\)
0.460247 0.887791i \(-0.347761\pi\)
\(158\) −0.660504 −0.0525469
\(159\) −2.65681 4.60173i −0.210699 0.364941i
\(160\) 1.24491 + 2.15625i 0.0984188 + 0.170466i
\(161\) 3.03585 + 8.28554i 0.239259 + 0.652992i
\(162\) −0.0340180 0.0589209i −0.00267270 0.00462926i
\(163\) −2.65724 −0.208131 −0.104066 0.994570i \(-0.533185\pi\)
−0.104066 + 0.994570i \(0.533185\pi\)
\(164\) −3.52980 6.11379i −0.275631 0.477407i
\(165\) 6.66561 11.5452i 0.518917 0.898791i
\(166\) −0.184262 0.319152i −0.0143015 0.0247710i
\(167\) −10.9142 + 18.9040i −0.844567 + 1.46283i 0.0414294 + 0.999141i \(0.486809\pi\)
−0.885997 + 0.463692i \(0.846525\pi\)
\(168\) −0.708532 0.123365i −0.0546644 0.00951784i
\(169\) −6.52343 11.2448i −0.501802 0.864983i
\(170\) −0.367206 + 0.636019i −0.0281634 + 0.0487805i
\(171\) 6.90224 0.527827
\(172\) −3.36860 −0.256853
\(173\) 17.6824 1.34437 0.672184 0.740384i \(-0.265356\pi\)
0.672184 + 0.740384i \(0.265356\pi\)
\(174\) 0.674905 0.0511644
\(175\) 3.96674 + 10.8262i 0.299858 + 0.818381i
\(176\) 8.65539 + 14.9916i 0.652424 + 1.13003i
\(177\) 3.77852 6.54459i 0.284011 0.491921i
\(178\) 0.262079 0.453935i 0.0196437 0.0340239i
\(179\) 9.72998 0.727253 0.363626 0.931545i \(-0.381538\pi\)
0.363626 + 0.931545i \(0.381538\pi\)
\(180\) −3.05199 5.28621i −0.227482 0.394011i
\(181\) 4.01332 0.298308 0.149154 0.988814i \(-0.452345\pi\)
0.149154 + 0.988814i \(0.452345\pi\)
\(182\) −0.639518 0.110663i −0.0474042 0.00820290i
\(183\) −4.87317 −0.360235
\(184\) 0.453307 + 0.785150i 0.0334182 + 0.0578820i
\(185\) 0.333580 0.0245253
\(186\) −0.314633 + 0.544960i −0.0230700 + 0.0399584i
\(187\) −7.68885 + 13.3175i −0.562265 + 0.973871i
\(188\) −2.55674 4.42840i −0.186469 0.322974i
\(189\) 2.60654 + 0.453835i 0.189598 + 0.0330116i
\(190\) −1.43654 −0.104218
\(191\) −14.7904 −1.07019 −0.535097 0.844790i \(-0.679725\pi\)
−0.535097 + 0.844790i \(0.679725\pi\)
\(192\) 7.88912 0.569348
\(193\) 22.3431 1.60829 0.804146 0.594432i \(-0.202623\pi\)
0.804146 + 0.594432i \(0.202623\pi\)
\(194\) −0.262863 + 0.455292i −0.0188725 + 0.0326881i
\(195\) −5.52476 9.54621i −0.395636 0.683618i
\(196\) 10.6611 9.02406i 0.761511 0.644576i
\(197\) −3.16282 + 5.47816i −0.225342 + 0.390303i −0.956422 0.291988i \(-0.905683\pi\)
0.731080 + 0.682291i \(0.239016\pi\)
\(198\) 0.148248 + 0.256773i 0.0105355 + 0.0182481i
\(199\) 3.01808 5.22748i 0.213946 0.370566i −0.739000 0.673706i \(-0.764702\pi\)
0.952946 + 0.303140i \(0.0980349\pi\)
\(200\) 0.592305 + 1.02590i 0.0418823 + 0.0725423i
\(201\) −0.680435 −0.0479942
\(202\) 0.132000 + 0.228631i 0.00928751 + 0.0160864i
\(203\) −16.8270 + 20.1413i −1.18102 + 1.41364i
\(204\) 3.52051 + 6.09770i 0.246485 + 0.426924i
\(205\) −5.41148 9.37295i −0.377954 0.654636i
\(206\) 0.583868 0.0406800
\(207\) −1.66762 2.88840i −0.115907 0.200758i
\(208\) 14.3221 0.0149093i 0.993061 0.00103378i
\(209\) −30.0795 −2.08064
\(210\) −0.542491 0.0944552i −0.0374354 0.00651803i
\(211\) 0.646092 1.11906i 0.0444788 0.0770395i −0.842929 0.538025i \(-0.819171\pi\)
0.887408 + 0.460985i \(0.152504\pi\)
\(212\) 10.6027 0.728193
\(213\) 2.61572 + 4.53055i 0.179226 + 0.310428i
\(214\) 0.381109 0.660100i 0.0260521 0.0451235i
\(215\) −5.16434 −0.352205
\(216\) 0.271829 0.0184956
\(217\) −8.41880 22.9768i −0.571505 1.55977i
\(218\) 0.475083 0.822868i 0.0321767 0.0557316i
\(219\) −1.75956 3.04764i −0.118900 0.205941i
\(220\) 13.3004 + 23.0369i 0.896710 + 1.55315i
\(221\) 6.37287 + 11.0117i 0.428686 + 0.740724i
\(222\) −0.00370952 + 0.00642508i −0.000248967 + 0.000431223i
\(223\) 5.79892 10.0440i 0.388324 0.672597i −0.603900 0.797060i \(-0.706387\pi\)
0.992224 + 0.124463i \(0.0397207\pi\)
\(224\) 1.38064 1.65258i 0.0922480 0.110418i
\(225\) −2.17896 3.77408i −0.145264 0.251605i
\(226\) −0.230566 + 0.399352i −0.0153370 + 0.0265645i
\(227\) 0.399249 0.691520i 0.0264991 0.0458978i −0.852472 0.522773i \(-0.824897\pi\)
0.878971 + 0.476876i \(0.158231\pi\)
\(228\) −6.88626 + 11.9274i −0.456054 + 0.789908i
\(229\) −11.6073 + 20.1044i −0.767030 + 1.32854i 0.172136 + 0.985073i \(0.444933\pi\)
−0.939166 + 0.343463i \(0.888400\pi\)
\(230\) 0.347076 + 0.601154i 0.0228855 + 0.0396389i
\(231\) −11.3591 1.97778i −0.747374 0.130128i
\(232\) −1.34825 + 2.33523i −0.0885168 + 0.153316i
\(233\) 6.09388 10.5549i 0.399223 0.691475i −0.594407 0.804164i \(-0.702613\pi\)
0.993630 + 0.112689i \(0.0359465\pi\)
\(234\) 0.245307 0.000255364i 0.0160362 1.66937e-5i
\(235\) −3.91969 6.78911i −0.255693 0.442873i
\(236\) 7.53955 + 13.0589i 0.490783 + 0.850061i
\(237\) −4.85408 + 8.40751i −0.315306 + 0.546126i
\(238\) 0.625769 + 0.108955i 0.0405626 + 0.00706251i
\(239\) −0.484332 −0.0313289 −0.0156644 0.999877i \(-0.504986\pi\)
−0.0156644 + 0.999877i \(0.504986\pi\)
\(240\) 12.1514 0.784369
\(241\) 1.16006 2.00929i 0.0747261 0.129429i −0.826241 0.563317i \(-0.809525\pi\)
0.900967 + 0.433887i \(0.142858\pi\)
\(242\) −0.271856 0.470868i −0.0174756 0.0302686i
\(243\) −1.00000 −0.0641500
\(244\) 4.86189 8.42104i 0.311251 0.539102i
\(245\) 16.3444 13.8347i 1.04421 0.883863i
\(246\) 0.240710 0.0153471
\(247\) −12.4207 + 21.5652i −0.790313 + 1.37216i
\(248\) −1.25708 2.17732i −0.0798244 0.138260i
\(249\) −5.41662 −0.343264
\(250\) −0.0668163 0.115729i −0.00422583 0.00731935i
\(251\) 13.7950 + 23.8936i 0.870732 + 1.50815i 0.861241 + 0.508197i \(0.169688\pi\)
0.00949135 + 0.999955i \(0.496979\pi\)
\(252\) −3.38475 + 4.05142i −0.213219 + 0.255216i
\(253\) 7.26736 + 12.5874i 0.456895 + 0.791365i
\(254\) 0.910183 0.0571100
\(255\) 5.39723 + 9.34828i 0.337988 + 0.585412i
\(256\) −7.81549 + 13.5368i −0.488468 + 0.846051i
\(257\) −4.56503 7.90686i −0.284758 0.493216i 0.687792 0.725908i \(-0.258580\pi\)
−0.972551 + 0.232692i \(0.925247\pi\)
\(258\) 0.0574293 0.0994705i 0.00357539 0.00619276i
\(259\) −0.0992576 0.270897i −0.00616757 0.0168327i
\(260\) 22.0082 0.0229105i 1.36489 0.00142085i
\(261\) 4.95991 8.59082i 0.307011 0.531759i
\(262\) −1.23301 −0.0761758
\(263\) −5.58969 −0.344675 −0.172338 0.985038i \(-0.555132\pi\)
−0.172338 + 0.985038i \(0.555132\pi\)
\(264\) −1.18461 −0.0729077
\(265\) 16.2548 0.998522
\(266\) 0.427447 + 1.16660i 0.0262085 + 0.0715290i
\(267\) −3.85207 6.67198i −0.235743 0.408319i
\(268\) 0.678860 1.17582i 0.0414680 0.0718247i
\(269\) −10.6461 + 18.4395i −0.649102 + 1.12428i 0.334235 + 0.942490i \(0.391522\pi\)
−0.983338 + 0.181789i \(0.941811\pi\)
\(270\) 0.208127 0.0126662
\(271\) −5.66348 9.80944i −0.344032 0.595881i 0.641145 0.767419i \(-0.278460\pi\)
−0.985177 + 0.171539i \(0.945126\pi\)
\(272\) −14.0168 −0.849891
\(273\) −6.10848 + 7.32711i −0.369702 + 0.443457i
\(274\) 1.45192 0.0877139
\(275\) 9.49577 + 16.4472i 0.572616 + 0.991801i
\(276\) 6.65503 0.400586
\(277\) 5.68116 9.84006i 0.341348 0.591232i −0.643335 0.765584i \(-0.722450\pi\)
0.984683 + 0.174353i \(0.0557832\pi\)
\(278\) −0.00479849 + 0.00831123i −0.000287794 + 0.000498474i
\(279\) 4.62451 + 8.00989i 0.276862 + 0.479540i
\(280\) 1.41055 1.68838i 0.0842965 0.100900i
\(281\) 7.98667 0.476445 0.238222 0.971211i \(-0.423435\pi\)
0.238222 + 0.971211i \(0.423435\pi\)
\(282\) 0.174354 0.0103826
\(283\) 4.13874 0.246022 0.123011 0.992405i \(-0.460745\pi\)
0.123011 + 0.992405i \(0.460745\pi\)
\(284\) −10.4386 −0.619420
\(285\) −10.5572 + 18.2856i −0.625356 + 1.08315i
\(286\) −1.06903 + 0.00111286i −0.0632131 + 6.58048e-5i
\(287\) −6.00149 + 7.18356i −0.354257 + 0.424032i
\(288\) −0.406957 + 0.704870i −0.0239802 + 0.0415348i
\(289\) 2.27423 + 3.93909i 0.133778 + 0.231711i
\(290\) −1.03229 + 1.78798i −0.0606183 + 0.104994i
\(291\) 3.86359 + 6.69194i 0.226488 + 0.392288i
\(292\) 7.02194 0.410928
\(293\) −14.1626 24.5303i −0.827385 1.43307i −0.900083 0.435719i \(-0.856494\pi\)
0.0726976 0.997354i \(-0.476839\pi\)
\(294\) 0.0847135 + 0.468657i 0.00494059 + 0.0273326i
\(295\) 11.5588 + 20.0204i 0.672977 + 1.16563i
\(296\) −0.0148209 0.0256706i −0.000861449 0.00149207i
\(297\) 4.35793 0.252873
\(298\) 0.488360 + 0.845865i 0.0282900 + 0.0489996i
\(299\) 12.0254 0.0125184i 0.695444 0.000723957i
\(300\) 8.69568 0.502046
\(301\) 1.53666 + 4.19391i 0.0885719 + 0.241733i
\(302\) −0.532839 + 0.922904i −0.0306614 + 0.0531071i
\(303\) 3.88031 0.222918
\(304\) −13.7087 23.7442i −0.786248 1.36182i
\(305\) 7.45369 12.9102i 0.426797 0.739234i
\(306\) −0.240077 −0.0137243
\(307\) 18.0617 1.03083 0.515417 0.856939i \(-0.327637\pi\)
0.515417 + 0.856939i \(0.327637\pi\)
\(308\) 14.7505 17.6558i 0.840487 1.00603i
\(309\) 4.29088 7.43202i 0.244100 0.422793i
\(310\) −0.962486 1.66707i −0.0546655 0.0946834i
\(311\) −6.03959 10.4609i −0.342474 0.593182i 0.642418 0.766355i \(-0.277931\pi\)
−0.984891 + 0.173173i \(0.944598\pi\)
\(312\) −0.489163 + 0.849295i −0.0276934 + 0.0480819i
\(313\) −10.3790 + 17.9769i −0.586654 + 1.01611i 0.408013 + 0.912976i \(0.366222\pi\)
−0.994667 + 0.103138i \(0.967112\pi\)
\(314\) −0.459257 + 0.795457i −0.0259174 + 0.0448902i
\(315\) −5.18911 + 6.21117i −0.292373 + 0.349960i
\(316\) −9.68569 16.7761i −0.544862 0.943729i
\(317\) −8.73476 + 15.1290i −0.490593 + 0.849732i −0.999941 0.0108284i \(-0.996553\pi\)
0.509348 + 0.860560i \(0.329886\pi\)
\(318\) −0.180759 + 0.313083i −0.0101364 + 0.0175568i
\(319\) −21.6150 + 37.4382i −1.21020 + 2.09614i
\(320\) −12.0667 + 20.9001i −0.674549 + 1.16835i
\(321\) −5.60158 9.70222i −0.312650 0.541525i
\(322\) 0.384918 0.460732i 0.0214506 0.0256756i
\(323\) 12.1779 21.0927i 0.677595 1.17363i
\(324\) 0.997686 1.72804i 0.0554270 0.0960023i
\(325\) 15.7127 0.0163569i 0.871585 0.000907319i
\(326\) 0.0903939 + 0.156567i 0.00500646 + 0.00867144i
\(327\) −6.98282 12.0946i −0.386151 0.668833i
\(328\) −0.480863 + 0.832880i −0.0265512 + 0.0459881i
\(329\) −4.34705 + 5.20326i −0.239661 + 0.286865i
\(330\) −0.907002 −0.0499288
\(331\) 7.12617 0.391690 0.195845 0.980635i \(-0.437255\pi\)
0.195845 + 0.980635i \(0.437255\pi\)
\(332\) 5.40408 9.36014i 0.296587 0.513705i
\(333\) 0.0545230 + 0.0944366i 0.00298784 + 0.00517509i
\(334\) 1.48512 0.0812620
\(335\) 1.04075 1.80263i 0.0568623 0.0984883i
\(336\) −3.61568 9.86804i −0.197252 0.538345i
\(337\) −22.8396 −1.24415 −0.622077 0.782956i \(-0.713711\pi\)
−0.622077 + 0.782956i \(0.713711\pi\)
\(338\) −0.440638 + 0.766890i −0.0239675 + 0.0417133i
\(339\) 3.38888 + 5.86972i 0.184059 + 0.318799i
\(340\) −21.5390 −1.16811
\(341\) −20.1533 34.9065i −1.09136 1.89029i
\(342\) −0.234800 0.406686i −0.0126965 0.0219910i
\(343\) −16.0983 9.15663i −0.869228 0.494412i
\(344\) 0.229451 + 0.397422i 0.0123712 + 0.0214275i
\(345\) 10.2027 0.549297
\(346\) −0.601520 1.04186i −0.0323379 0.0560109i
\(347\) 8.62904 14.9459i 0.463231 0.802340i −0.535889 0.844289i \(-0.680023\pi\)
0.999120 + 0.0419489i \(0.0133567\pi\)
\(348\) 9.89687 + 17.1419i 0.530528 + 0.918901i
\(349\) −15.3687 + 26.6193i −0.822665 + 1.42490i 0.0810257 + 0.996712i \(0.474180\pi\)
−0.903691 + 0.428186i \(0.859153\pi\)
\(350\) 0.502946 0.602008i 0.0268836 0.0321787i
\(351\) 1.79952 3.12437i 0.0960515 0.166767i
\(352\) 1.77349 3.07177i 0.0945272 0.163726i
\(353\) −0.960641 −0.0511298 −0.0255649 0.999673i \(-0.508138\pi\)
−0.0255649 + 0.999673i \(0.508138\pi\)
\(354\) −0.514150 −0.0273268
\(355\) −16.0033 −0.849369
\(356\) 15.3726 0.814748
\(357\) 5.98569 7.16465i 0.316796 0.379194i
\(358\) −0.330994 0.573299i −0.0174936 0.0302998i
\(359\) 16.4526 28.4967i 0.868334 1.50400i 0.00463555 0.999989i \(-0.498524\pi\)
0.863698 0.504009i \(-0.168142\pi\)
\(360\) −0.415772 + 0.720139i −0.0219131 + 0.0379546i
\(361\) 28.6409 1.50741
\(362\) −0.136525 0.236468i −0.00717559 0.0124285i
\(363\) −7.99154 −0.419447
\(364\) −6.56722 17.8659i −0.344216 0.936425i
\(365\) 10.7652 0.563478
\(366\) 0.165775 + 0.287131i 0.00866521 + 0.0150086i
\(367\) 22.0554 1.15129 0.575643 0.817701i \(-0.304752\pi\)
0.575643 + 0.817701i \(0.304752\pi\)
\(368\) −6.62419 + 11.4734i −0.345310 + 0.598094i
\(369\) 1.76899 3.06399i 0.0920901 0.159505i
\(370\) −0.0113477 0.0196548i −0.000589939 0.00102180i
\(371\) −4.83665 13.2003i −0.251107 0.685328i
\(372\) −18.4552 −0.956859
\(373\) 25.9119 1.34167 0.670835 0.741607i \(-0.265936\pi\)
0.670835 + 0.741607i \(0.265936\pi\)
\(374\) 1.04624 0.0540996
\(375\) −1.96415 −0.101428
\(376\) −0.348303 + 0.603279i −0.0179624 + 0.0311118i
\(377\) 17.9155 + 30.9560i 0.922693 + 1.59432i
\(378\) −0.0619288 0.169018i −0.00318527 0.00869334i
\(379\) −1.77121 + 3.06783i −0.0909811 + 0.157584i −0.907924 0.419134i \(-0.862334\pi\)
0.816943 + 0.576718i \(0.195667\pi\)
\(380\) −21.0656 36.4867i −1.08064 1.87173i
\(381\) 6.68899 11.5857i 0.342687 0.593552i
\(382\) 0.503139 + 0.871462i 0.0257428 + 0.0445879i
\(383\) −29.3950 −1.50202 −0.751008 0.660293i \(-0.770432\pi\)
−0.751008 + 0.660293i \(0.770432\pi\)
\(384\) −1.08229 1.87457i −0.0552301 0.0956614i
\(385\) 22.6138 27.0678i 1.15250 1.37950i
\(386\) −0.760067 1.31648i −0.0386864 0.0670068i
\(387\) −0.844102 1.46203i −0.0429081 0.0743191i
\(388\) −15.4186 −0.782761
\(389\) 1.32057 + 2.28730i 0.0669556 + 0.115971i 0.897560 0.440893i \(-0.145338\pi\)
−0.830604 + 0.556863i \(0.812005\pi\)
\(390\) −0.374529 + 0.650266i −0.0189650 + 0.0329275i
\(391\) −11.7690 −0.595182
\(392\) −1.79083 0.643113i −0.0904504 0.0324821i
\(393\) −9.06148 + 15.6949i −0.457091 + 0.791705i
\(394\) 0.430371 0.0216818
\(395\) −14.8490 25.7192i −0.747133 1.29407i
\(396\) −4.34784 + 7.53068i −0.218487 + 0.378431i
\(397\) 0.575977 0.0289075 0.0144537 0.999896i \(-0.495399\pi\)
0.0144537 + 0.999896i \(0.495399\pi\)
\(398\) −0.410677 −0.0205854
\(399\) 17.9909 + 3.13247i 0.900673 + 0.156820i
\(400\) −8.65539 + 14.9916i −0.432769 + 0.749578i
\(401\) 4.75598 + 8.23761i 0.237503 + 0.411366i 0.959997 0.280010i \(-0.0903379\pi\)
−0.722494 + 0.691377i \(0.757005\pi\)
\(402\) 0.0231470 + 0.0400918i 0.00115447 + 0.00199960i
\(403\) −33.3478 + 0.0347150i −1.66117 + 0.00172928i
\(404\) −3.87133 + 6.70534i −0.192606 + 0.333603i
\(405\) 1.52954 2.64923i 0.0760033 0.131642i
\(406\) 1.75916 + 0.306295i 0.0873059 + 0.0152012i
\(407\) −0.237607 0.411548i −0.0117778 0.0203997i
\(408\) 0.479598 0.830688i 0.0237436 0.0411252i
\(409\) 0.0931606 0.161359i 0.00460649 0.00797868i −0.863713 0.503984i \(-0.831867\pi\)
0.868319 + 0.496005i \(0.165200\pi\)
\(410\) −0.368175 + 0.637698i −0.0181829 + 0.0314937i
\(411\) 10.6703 18.4814i 0.526325 0.911622i
\(412\) 8.56190 + 14.8296i 0.421814 + 0.730604i
\(413\) 12.8190 15.3439i 0.630782 0.755023i
\(414\) −0.113458 + 0.196515i −0.00557616 + 0.00965818i
\(415\) 8.28491 14.3499i 0.406690 0.704408i
\(416\) −1.46995 2.53992i −0.0720701 0.124530i
\(417\) 0.0705287 + 0.122159i 0.00345381 + 0.00598217i
\(418\) 1.02324 + 1.77231i 0.0500484 + 0.0866864i
\(419\) −0.448814 + 0.777369i −0.0219260 + 0.0379769i −0.876780 0.480891i \(-0.840313\pi\)
0.854854 + 0.518868i \(0.173646\pi\)
\(420\) −5.55607 15.1638i −0.271108 0.739917i
\(421\) −4.34862 −0.211939 −0.105969 0.994369i \(-0.533795\pi\)
−0.105969 + 0.994369i \(0.533795\pi\)
\(422\) −0.0879150 −0.00427963
\(423\) 1.28133 2.21933i 0.0623006 0.107908i
\(424\) −0.722198 1.25088i −0.0350731 0.0607483i
\(425\) −15.3777 −0.745928
\(426\) 0.177963 0.308240i 0.00862232 0.0149343i
\(427\) −12.7021 2.21161i −0.614697 0.107027i
\(428\) 22.3545 1.08054
\(429\) −7.84220 + 13.6158i −0.378625 + 0.657377i
\(430\) 0.175680 + 0.304287i 0.00847206 + 0.0146740i
\(431\) −10.7267 −0.516685 −0.258342 0.966053i \(-0.583176\pi\)
−0.258342 + 0.966053i \(0.583176\pi\)
\(432\) 1.98612 + 3.44007i 0.0955574 + 0.165510i
\(433\) 3.46111 + 5.99482i 0.166330 + 0.288093i 0.937127 0.348989i \(-0.113475\pi\)
−0.770797 + 0.637081i \(0.780142\pi\)
\(434\) −1.06742 + 1.27767i −0.0512380 + 0.0613300i
\(435\) 15.1727 + 26.2800i 0.727477 + 1.26003i
\(436\) 27.8666 1.33457
\(437\) −11.5103 19.9364i −0.550612 0.953688i
\(438\) −0.119713 + 0.207349i −0.00572011 + 0.00990753i
\(439\) −12.6090 21.8394i −0.601794 1.04234i −0.992549 0.121843i \(-0.961120\pi\)
0.390756 0.920494i \(-0.372214\pi\)
\(440\) 1.81191 3.13831i 0.0863792 0.149613i
\(441\) 6.58807 + 2.36587i 0.313718 + 0.112661i
\(442\) 0.432024 0.750089i 0.0205493 0.0356781i
\(443\) −8.71266 + 15.0908i −0.413951 + 0.716984i −0.995318 0.0966574i \(-0.969185\pi\)
0.581367 + 0.813642i \(0.302518\pi\)
\(444\) −0.217587 −0.0103262
\(445\) 23.5675 1.11721
\(446\) −0.789070 −0.0373635
\(447\) 14.3559 0.679013
\(448\) 20.5633 + 3.58036i 0.971524 + 0.169156i
\(449\) −5.91239 10.2406i −0.279023 0.483282i 0.692119 0.721783i \(-0.256677\pi\)
−0.971142 + 0.238501i \(0.923344\pi\)
\(450\) −0.148248 + 0.256773i −0.00698847 + 0.0121044i
\(451\) −7.70914 + 13.3526i −0.363009 + 0.628751i
\(452\) −13.5242 −0.636123
\(453\) 7.83172 + 13.5649i 0.367966 + 0.637336i
\(454\) −0.0543266 −0.00254967
\(455\) −10.0681 27.3899i −0.472000 1.28406i
\(456\) 1.87623 0.0878624
\(457\) 4.16626 + 7.21617i 0.194889 + 0.337558i 0.946864 0.321634i \(-0.104232\pi\)
−0.751975 + 0.659192i \(0.770899\pi\)
\(458\) 1.57942 0.0738017
\(459\) −1.76434 + 3.05592i −0.0823522 + 0.142638i
\(460\) −10.1791 + 17.6307i −0.474604 + 0.822038i
\(461\) 2.20305 + 3.81579i 0.102606 + 0.177719i 0.912758 0.408502i \(-0.133949\pi\)
−0.810152 + 0.586221i \(0.800615\pi\)
\(462\) 0.269881 + 0.736568i 0.0125560 + 0.0342682i
\(463\) 20.2243 0.939904 0.469952 0.882692i \(-0.344271\pi\)
0.469952 + 0.882692i \(0.344271\pi\)
\(464\) −39.4040 −1.82929
\(465\) −28.2934 −1.31208
\(466\) −0.829206 −0.0384122
\(467\) −3.27010 + 5.66398i −0.151322 + 0.262098i −0.931714 0.363193i \(-0.881686\pi\)
0.780392 + 0.625291i \(0.215020\pi\)
\(468\) 3.60369 + 6.22680i 0.166581 + 0.287834i
\(469\) −1.77358 0.308805i −0.0818963 0.0142593i
\(470\) −0.266680 + 0.461903i −0.0123010 + 0.0213060i
\(471\) 6.75022 + 11.6917i 0.311034 + 0.538726i
\(472\) 1.02711 1.77901i 0.0472766 0.0818855i
\(473\) 3.67854 + 6.37141i 0.169139 + 0.292958i
\(474\) 0.660504 0.0303379
\(475\) −15.0397 26.0496i −0.690070 1.19524i
\(476\) 6.40898 + 17.4916i 0.293755 + 0.801726i
\(477\) 2.65681 + 4.60173i 0.121647 + 0.210699i
\(478\) 0.0164760 + 0.0285373i 0.000753595 + 0.00130527i
\(479\) −7.81335 −0.357001 −0.178500 0.983940i \(-0.557125\pi\)
−0.178500 + 0.983940i \(0.557125\pi\)
\(480\) −1.24491 2.15625i −0.0568221 0.0984188i
\(481\) −0.393171 0.000409290i −0.0179270 1.86620e-5i
\(482\) −0.157852 −0.00718995
\(483\) −3.03585 8.28554i −0.138136 0.377005i
\(484\) 7.97304 13.8097i 0.362411 0.627714i
\(485\) −23.6380 −1.07335
\(486\) 0.0340180 + 0.0589209i 0.00154309 + 0.00267270i
\(487\) 10.5370 18.2507i 0.477479 0.827018i −0.522188 0.852831i \(-0.674884\pi\)
0.999667 + 0.0258123i \(0.00821724\pi\)
\(488\) −1.32467 −0.0599649
\(489\) 2.65724 0.120165
\(490\) −1.37115 0.492402i −0.0619425 0.0222445i
\(491\) −4.36913 + 7.56755i −0.197176 + 0.341519i −0.947612 0.319425i \(-0.896510\pi\)
0.750436 + 0.660943i \(0.229844\pi\)
\(492\) 3.52980 + 6.11379i 0.159136 + 0.275631i
\(493\) −17.5019 30.3142i −0.788247 1.36528i
\(494\) 1.69317 0.00176259i 0.0761792 7.93025e-5i
\(495\) −6.66561 + 11.5452i −0.299597 + 0.518917i
\(496\) 18.3697 31.8173i 0.824824 1.42864i
\(497\) 4.76184 + 12.9962i 0.213598 + 0.582957i
\(498\) 0.184262 + 0.319152i 0.00825699 + 0.0143015i
\(499\) −10.6426 + 18.4336i −0.476430 + 0.825200i −0.999635 0.0270062i \(-0.991403\pi\)
0.523206 + 0.852206i \(0.324736\pi\)
\(500\) 1.95960 3.39413i 0.0876360 0.151790i
\(501\) 10.9142 18.9040i 0.487611 0.844567i
\(502\) 0.938555 1.62563i 0.0418898 0.0725552i
\(503\) −2.29846 3.98105i −0.102483 0.177506i 0.810224 0.586120i \(-0.199345\pi\)
−0.912707 + 0.408614i \(0.866012\pi\)
\(504\) 0.708532 + 0.123365i 0.0315605 + 0.00549513i
\(505\) −5.93508 + 10.2799i −0.264107 + 0.457448i
\(506\) 0.494442 0.856398i 0.0219806 0.0380715i
\(507\) 6.52343 + 11.2448i 0.289716 + 0.499398i
\(508\) 13.3470 + 23.1177i 0.592178 + 1.02568i
\(509\) 6.85316 + 11.8700i 0.303761 + 0.526129i 0.976985 0.213309i \(-0.0684242\pi\)
−0.673224 + 0.739439i \(0.735091\pi\)
\(510\) 0.367206 0.636019i 0.0162602 0.0281634i
\(511\) −3.20322 8.74234i −0.141702 0.386738i
\(512\) 5.39261 0.238322
\(513\) −6.90224 −0.304741
\(514\) −0.310586 + 0.537950i −0.0136994 + 0.0237280i
\(515\) 13.1261 + 22.7351i 0.578406 + 1.00183i
\(516\) 3.36860 0.148294
\(517\) −5.58396 + 9.67170i −0.245582 + 0.425361i
\(518\) −0.0125849 + 0.0150637i −0.000552950 + 0.000661861i
\(519\) −17.6824 −0.776171
\(520\) −1.50179 2.59493i −0.0658579 0.113795i
\(521\) −2.13457 3.69718i −0.0935172 0.161977i 0.815472 0.578797i \(-0.196478\pi\)
−0.908989 + 0.416821i \(0.863144\pi\)
\(522\) −0.674905 −0.0295398
\(523\) 14.0853 + 24.3964i 0.615907 + 1.06678i 0.990225 + 0.139481i \(0.0445436\pi\)
−0.374318 + 0.927300i \(0.622123\pi\)
\(524\) −18.0810 31.3172i −0.789873 1.36810i
\(525\) −3.96674 10.8262i −0.173123 0.472492i
\(526\) 0.190150 + 0.329350i 0.00829094 + 0.0143603i
\(527\) 32.6368 1.42168
\(528\) −8.65539 14.9916i −0.376677 0.652424i
\(529\) 5.93810 10.2851i 0.258178 0.447178i
\(530\) −0.552954 0.957745i −0.0240188 0.0416018i
\(531\) −3.77852 + 6.54459i −0.163974 + 0.284011i
\(532\) −23.3623 + 27.9639i −1.01289 + 1.21239i
\(533\) 6.38969 + 11.0407i 0.276768 + 0.478226i
\(534\) −0.262079 + 0.453935i −0.0113413 + 0.0196437i
\(535\) 34.2713 1.48168
\(536\) −0.184962 −0.00798914
\(537\) −9.72998 −0.419880
\(538\) 1.44863 0.0624549
\(539\) −28.7103 10.3103i −1.23664 0.444096i
\(540\) 3.05199 + 5.28621i 0.131337 + 0.227482i
\(541\) 9.24717 16.0166i 0.397567 0.688606i −0.595858 0.803089i \(-0.703188\pi\)
0.993425 + 0.114484i \(0.0365214\pi\)
\(542\) −0.385320 + 0.667394i −0.0165509 + 0.0286670i
\(543\) −4.01332 −0.172228
\(544\) 1.43602 + 2.48726i 0.0615687 + 0.106640i
\(545\) 42.7219 1.83001
\(546\) 0.639518 + 0.110663i 0.0273688 + 0.00473595i
\(547\) 24.6951 1.05589 0.527943 0.849280i \(-0.322963\pi\)
0.527943 + 0.849280i \(0.322963\pi\)
\(548\) 21.2911 + 36.8773i 0.909512 + 1.57532i
\(549\) 4.87317 0.207982
\(550\) 0.646054 1.11900i 0.0275478 0.0477142i
\(551\) 34.2345 59.2959i 1.45844 2.52609i
\(552\) −0.453307 0.785150i −0.0192940 0.0334182i
\(553\) −16.4680 + 19.7115i −0.700289 + 0.838220i
\(554\) −0.773046 −0.0328436
\(555\) −0.333580 −0.0141597
\(556\) −0.281462 −0.0119366
\(557\) −2.97174 −0.125917 −0.0629584 0.998016i \(-0.520054\pi\)
−0.0629584 + 0.998016i \(0.520054\pi\)
\(558\) 0.314633 0.544960i 0.0133195 0.0230700i
\(559\) 6.08691 0.00633646i 0.257449 0.000268004i
\(560\) 31.6731 + 5.51472i 1.33843 + 0.233040i
\(561\) 7.68885 13.3175i 0.324624 0.562265i
\(562\) −0.271690 0.470581i −0.0114606 0.0198503i
\(563\) 1.60029 2.77179i 0.0674443 0.116817i −0.830331 0.557270i \(-0.811849\pi\)
0.897776 + 0.440453i \(0.145182\pi\)
\(564\) 2.55674 + 4.42840i 0.107658 + 0.186469i
\(565\) −20.7337 −0.872272
\(566\) −0.140791 0.243858i −0.00591791 0.0102501i
\(567\) −2.60654 0.453835i −0.109464 0.0190593i
\(568\) 0.711027 + 1.23154i 0.0298340 + 0.0516741i
\(569\) 6.29189 + 10.8979i 0.263770 + 0.456862i 0.967241 0.253862i \(-0.0817008\pi\)
−0.703471 + 0.710724i \(0.748367\pi\)
\(570\) 1.43654 0.0601701
\(571\) 11.8472 + 20.5200i 0.495792 + 0.858736i 0.999988 0.00485262i \(-0.00154464\pi\)
−0.504197 + 0.863589i \(0.668211\pi\)
\(572\) −15.7046 27.1359i −0.656643 1.13461i
\(573\) 14.7904 0.617877
\(574\) 0.627420 + 0.109243i 0.0261880 + 0.00455970i
\(575\) −7.26736 + 12.5874i −0.303070 + 0.524932i
\(576\) −7.88912 −0.328713
\(577\) −1.67873 2.90764i −0.0698863 0.121047i 0.828965 0.559301i \(-0.188930\pi\)
−0.898851 + 0.438254i \(0.855597\pi\)
\(578\) 0.154730 0.267999i 0.00643590 0.0111473i
\(579\) −22.3431 −0.928548
\(580\) −60.5505 −2.51422
\(581\) −14.1186 2.45825i −0.585739 0.101985i
\(582\) 0.262863 0.455292i 0.0108960 0.0188725i
\(583\) −11.5782 20.0540i −0.479520 0.830553i
\(584\) −0.478298 0.828437i −0.0197921 0.0342810i
\(585\) 5.52476 + 9.54621i 0.228421 + 0.394687i
\(586\) −0.963563 + 1.66894i −0.0398044 + 0.0689433i
\(587\) −4.99547 + 8.65242i −0.206185 + 0.357123i −0.950510 0.310695i \(-0.899438\pi\)
0.744324 + 0.667818i \(0.232772\pi\)
\(588\) −10.6611 + 9.02406i −0.439658 + 0.372146i
\(589\) 31.9195 + 55.2862i 1.31522 + 2.27803i
\(590\) 0.786412 1.36210i 0.0323761 0.0560770i
\(591\) 3.16282 5.47816i 0.130101 0.225342i
\(592\) 0.216579 0.375126i 0.00890133 0.0154176i
\(593\) −16.4331 + 28.4629i −0.674825 + 1.16883i 0.301695 + 0.953404i \(0.402447\pi\)
−0.976520 + 0.215426i \(0.930886\pi\)
\(594\) −0.148248 0.256773i −0.00608268 0.0105355i
\(595\) 9.82552 + 26.8161i 0.402807 + 1.09935i
\(596\) −14.3227 + 24.8077i −0.586682 + 1.01616i
\(597\) −3.01808 + 5.22748i −0.123522 + 0.213946i
\(598\) −0.409816 0.708119i −0.0167586 0.0289571i
\(599\) 10.6138 + 18.3836i 0.433667 + 0.751133i 0.997186 0.0749700i \(-0.0238861\pi\)
−0.563519 + 0.826103i \(0.690553\pi\)
\(600\) −0.592305 1.02590i −0.0241808 0.0418823i
\(601\) 0.776508 1.34495i 0.0316744 0.0548617i −0.849754 0.527180i \(-0.823249\pi\)
0.881428 + 0.472318i \(0.156583\pi\)
\(602\) 0.194835 0.233210i 0.00794087 0.00950493i
\(603\) 0.680435 0.0277095
\(604\) −31.2544 −1.27172
\(605\) 12.2233 21.1715i 0.496950 0.860742i
\(606\) −0.132000 0.228631i −0.00536215 0.00928751i
\(607\) 6.61104 0.268334 0.134167 0.990959i \(-0.457164\pi\)
0.134167 + 0.990959i \(0.457164\pi\)
\(608\) −2.80891 + 4.86518i −0.113916 + 0.197309i
\(609\) 16.8270 20.1413i 0.681865 0.816167i
\(610\) −1.01424 −0.0410653
\(611\) 4.62824 + 7.99711i 0.187239 + 0.323529i
\(612\) −3.52051 6.09770i −0.142308 0.246485i
\(613\) −12.0584 −0.487034 −0.243517 0.969897i \(-0.578301\pi\)
−0.243517 + 0.969897i \(0.578301\pi\)
\(614\) −0.614422 1.06421i −0.0247960 0.0429480i
\(615\) 5.41148 + 9.37295i 0.218212 + 0.377954i
\(616\) −3.08773 0.537617i −0.124408 0.0216612i
\(617\) −16.5723 28.7040i −0.667175 1.15558i −0.978691 0.205340i \(-0.934170\pi\)
0.311515 0.950241i \(-0.399163\pi\)
\(618\) −0.583868 −0.0234866
\(619\) 23.8269 + 41.2695i 0.957686 + 1.65876i 0.728099 + 0.685472i \(0.240404\pi\)
0.229587 + 0.973288i \(0.426263\pi\)
\(620\) 28.2280 48.8923i 1.13366 1.96356i
\(621\) 1.66762 + 2.88840i 0.0669192 + 0.115907i
\(622\) −0.410909 + 0.711716i −0.0164760 + 0.0285372i
\(623\) −7.01259 19.1390i −0.280953 0.766787i
\(624\) −14.3221 + 0.0149093i −0.573344 + 0.000596851i
\(625\) 13.8991 24.0739i 0.555962 0.962955i
\(626\) 1.41229 0.0564463
\(627\) 30.0795 1.20126
\(628\) −26.9384 −1.07496
\(629\) 0.384788 0.0153425
\(630\) 0.542491 + 0.0944552i 0.0216133 + 0.00376319i
\(631\) 1.28825 + 2.23132i 0.0512846 + 0.0888276i 0.890528 0.454928i \(-0.150335\pi\)
−0.839243 + 0.543756i \(0.817002\pi\)
\(632\) −1.31948 + 2.28540i −0.0524860 + 0.0909085i
\(633\) −0.646092 + 1.11906i −0.0256798 + 0.0444788i
\(634\) 1.18856 0.0472036
\(635\) 20.4621 + 35.4414i 0.812014 + 1.40645i
\(636\) −10.6027 −0.420423
\(637\) −19.2473 + 16.3261i −0.762604 + 0.646865i
\(638\) 2.94119 0.116443
\(639\) −2.61572 4.53055i −0.103476 0.179226i
\(640\) 6.62158 0.261741
\(641\) −20.3763 + 35.2928i −0.804815 + 1.39398i 0.111601 + 0.993753i \(0.464402\pi\)
−0.916416 + 0.400227i \(0.868931\pi\)
\(642\) −0.381109 + 0.660100i −0.0150412 + 0.0260521i
\(643\) −4.68006 8.10610i −0.184564 0.319674i 0.758866 0.651247i \(-0.225754\pi\)
−0.943429 + 0.331574i \(0.892420\pi\)
\(644\) 17.3466 + 3.02028i 0.683551 + 0.119016i
\(645\) 5.16434 0.203346
\(646\) −1.65707 −0.0651964
\(647\) 25.0197 0.983625 0.491812 0.870701i \(-0.336335\pi\)
0.491812 + 0.870701i \(0.336335\pi\)
\(648\) −0.271829 −0.0106784
\(649\) 16.4665 28.5208i 0.646367 1.11954i
\(650\) −0.535479 0.925251i −0.0210032 0.0362913i
\(651\) 8.41880 + 22.9768i 0.329959 + 0.900533i
\(652\) −2.65109 + 4.59182i −0.103825 + 0.179830i
\(653\) 9.28070 + 16.0746i 0.363182 + 0.629049i 0.988483 0.151334i \(-0.0483570\pi\)
−0.625301 + 0.780384i \(0.715024\pi\)
\(654\) −0.475083 + 0.822868i −0.0185772 + 0.0321767i
\(655\) −27.7197 48.0120i −1.08310 1.87598i
\(656\) −14.0538 −0.548707
\(657\) 1.75956 + 3.04764i 0.0686468 + 0.118900i
\(658\) 0.454459 + 0.0791277i 0.0177167 + 0.00308472i
\(659\) 18.4907 + 32.0268i 0.720295 + 1.24759i 0.960882 + 0.276960i \(0.0893268\pi\)
−0.240587 + 0.970628i \(0.577340\pi\)
\(660\) −13.3004 23.0369i −0.517716 0.896710i
\(661\) 15.9233 0.619344 0.309672 0.950843i \(-0.399781\pi\)
0.309672 + 0.950843i \(0.399781\pi\)
\(662\) −0.242418 0.419880i −0.00942184 0.0163191i
\(663\) −6.37287 11.0117i −0.247502 0.427657i
\(664\) −1.47239 −0.0571399
\(665\) −35.8165 + 42.8710i −1.38890 + 1.66247i
\(666\) 0.00370952 0.00642508i 0.000143741 0.000248967i
\(667\) −33.0850 −1.28106
\(668\) 21.7779 + 37.7204i 0.842612 + 1.45945i
\(669\) −5.79892 + 10.0440i −0.224199 + 0.388324i
\(670\) −0.141617 −0.00547114
\(671\) −21.2369 −0.819842
\(672\) −1.38064 + 1.65258i −0.0532594 + 0.0637496i
\(673\) 10.9624 18.9874i 0.422569 0.731910i −0.573621 0.819121i \(-0.694462\pi\)
0.996190 + 0.0872103i \(0.0277952\pi\)
\(674\) 0.776958 + 1.34573i 0.0299273 + 0.0518356i
\(675\) 2.17896 + 3.77408i 0.0838684 + 0.145264i
\(676\) −25.9398 + 0.0540066i −0.997683 + 0.00207718i
\(677\) −16.0122 + 27.7339i −0.615398 + 1.06590i 0.374917 + 0.927059i \(0.377671\pi\)
−0.990315 + 0.138842i \(0.955662\pi\)
\(678\) 0.230566 0.399352i 0.00885483 0.0153370i
\(679\) 7.03356 + 19.1962i 0.269923 + 0.736683i
\(680\) 1.46712 + 2.54113i 0.0562617 + 0.0974480i
\(681\) −0.399249 + 0.691520i −0.0152993 + 0.0264991i
\(682\) −1.37115 + 2.37490i −0.0525040 + 0.0909396i
\(683\) 1.51134 2.61772i 0.0578300 0.100164i −0.835661 0.549245i \(-0.814915\pi\)
0.893491 + 0.449081i \(0.148249\pi\)
\(684\) 6.88626 11.9274i 0.263303 0.456054i
\(685\) 32.6411 + 56.5361i 1.24715 + 2.16013i
\(686\) 0.00811601 + 1.26002i 0.000309871 + 0.0481077i
\(687\) 11.6073 20.1044i 0.442845 0.767030i
\(688\) −3.35298 + 5.80754i −0.127831 + 0.221410i
\(689\) −19.1585 + 0.0199440i −0.729882 + 0.000759807i
\(690\) −0.347076 0.601154i −0.0132130 0.0228855i
\(691\) 5.94954 + 10.3049i 0.226331 + 0.392017i 0.956718 0.291017i \(-0.0939936\pi\)
−0.730387 + 0.683034i \(0.760660\pi\)
\(692\) 17.6415 30.5559i 0.670628 1.16156i
\(693\) 11.3591 + 1.97778i 0.431497 + 0.0751296i
\(694\) −1.17417 −0.0445709
\(695\) −0.431505 −0.0163679
\(696\) 1.34825 2.33523i 0.0511052 0.0885168i
\(697\) −6.24220 10.8118i −0.236440 0.409526i
\(698\) 2.09124 0.0791547
\(699\) −6.09388 + 10.5549i −0.230492 + 0.399223i
\(700\) 22.6656 + 3.94640i 0.856680 + 0.149160i
\(701\) 2.07215 0.0782642 0.0391321 0.999234i \(-0.487541\pi\)
0.0391321 + 0.999234i \(0.487541\pi\)
\(702\) −0.245307 0.000255364i −0.00925852 9.63811e-6i
\(703\) 0.376331 + 0.651824i 0.0141936 + 0.0245840i
\(704\) 34.3802 1.29575
\(705\) 3.91969 + 6.78911i 0.147624 + 0.255693i
\(706\) 0.0326791 + 0.0566018i 0.00122989 + 0.00213024i
\(707\) 10.1142 + 1.76102i 0.380383 + 0.0662300i
\(708\) −7.53955 13.0589i −0.283354 0.490783i
\(709\) 7.23998 0.271903 0.135952 0.990715i \(-0.456591\pi\)
0.135952 + 0.990715i \(0.456591\pi\)
\(710\) 0.544401 + 0.942930i 0.0204310 + 0.0353875i
\(711\) 4.85408 8.40751i 0.182042 0.315306i
\(712\) −1.04710 1.81364i −0.0392419 0.0679690i
\(713\) 15.4238 26.7149i 0.577627 1.00048i
\(714\) −0.625769 0.108955i −0.0234188 0.00407754i
\(715\) −24.0765 41.6017i −0.900411 1.55581i
\(716\) 9.70746 16.8138i 0.362785 0.628362i
\(717\) 0.484332 0.0180877
\(718\) −2.23873 −0.0835488
\(719\) 50.9305 1.89939 0.949694 0.313179i \(-0.101394\pi\)
0.949694 + 0.313179i \(0.101394\pi\)
\(720\) −12.1514 −0.452856
\(721\) 14.5572 17.4245i 0.542140 0.648922i
\(722\) −0.974305 1.68755i −0.0362599 0.0628039i
\(723\) −1.16006 + 2.00929i −0.0431432 + 0.0747261i
\(724\) 4.00403 6.93518i 0.148809 0.257744i
\(725\) −43.2299 −1.60552
\(726\) 0.271856 + 0.470868i 0.0100895 + 0.0174756i
\(727\) −21.6848 −0.804244 −0.402122 0.915586i \(-0.631727\pi\)
−0.402122 + 0.915586i \(0.631727\pi\)
\(728\) −1.66046 + 1.99172i −0.0615407 + 0.0738181i
\(729\) 1.00000 0.0370370
\(730\) −0.366211 0.634296i −0.0135541 0.0234764i
\(731\) −5.95712 −0.220332
\(732\) −4.86189 + 8.42104i −0.179701 + 0.311251i
\(733\) 10.8930 18.8673i 0.402343 0.696879i −0.591665 0.806184i \(-0.701529\pi\)
0.994008 + 0.109305i \(0.0348625\pi\)
\(734\) −0.750282 1.29953i −0.0276934 0.0479664i
\(735\) −16.3444 + 13.8347i −0.602874 + 0.510299i
\(736\) 2.71459 0.100061
\(737\) −2.96529 −0.109228
\(738\) −0.240710 −0.00886066
\(739\) 35.9065 1.32084 0.660421 0.750895i \(-0.270378\pi\)
0.660421 + 0.750895i \(0.270378\pi\)
\(740\) 0.332808 0.576440i 0.0122342 0.0211903i
\(741\) 12.4207 21.5652i 0.456287 0.792216i
\(742\) −0.613242 + 0.734029i −0.0225128 + 0.0269470i
\(743\) 25.6310 44.3942i 0.940310 1.62867i 0.175431 0.984492i \(-0.443868\pi\)
0.764879 0.644174i \(-0.222799\pi\)
\(744\) 1.25708 + 2.17732i 0.0460866 + 0.0798244i
\(745\) −21.9579 + 38.0323i −0.804477 + 1.39339i
\(746\) −0.881472 1.52675i −0.0322730 0.0558984i
\(747\) 5.41662 0.198184
\(748\) 15.3421 + 26.5733i 0.560963 + 0.971617i
\(749\) −10.1975 27.8314i −0.372609 1.01694i
\(750\) 0.0668163 + 0.115729i 0.00243978 + 0.00422583i
\(751\) −24.3770 42.2222i −0.889530 1.54071i −0.840432 0.541917i \(-0.817699\pi\)
−0.0490976 0.998794i \(-0.515635\pi\)
\(752\) −10.1795 −0.371210
\(753\) −13.7950 23.8936i −0.502717 0.870732i
\(754\) 1.21451 2.10866i 0.0442298 0.0767927i
\(755\) −47.9156 −1.74383
\(756\) 3.38475 4.05142i 0.123102 0.147349i
\(757\) 7.41023 12.8349i 0.269329 0.466492i −0.699360 0.714770i \(-0.746531\pi\)
0.968689 + 0.248278i \(0.0798647\pi\)
\(758\) 0.241012 0.00875396
\(759\) −7.26736 12.5874i −0.263788 0.456895i
\(760\) −2.86976 + 4.97057i −0.104097 + 0.180301i
\(761\) 11.3103 0.409998 0.204999 0.978762i \(-0.434281\pi\)
0.204999 + 0.978762i \(0.434281\pi\)
\(762\) −0.910183 −0.0329725
\(763\) −12.7120 34.6941i −0.460206 1.25601i
\(764\) −14.7562 + 25.5584i −0.533859 + 0.924671i
\(765\) −5.39723 9.34828i −0.195137 0.337988i
\(766\) 0.999960 + 1.73198i 0.0361300 + 0.0625790i
\(767\) −13.6482 23.5826i −0.492808 0.851520i
\(768\) 7.81549 13.5368i 0.282017 0.488468i
\(769\) 8.92963 15.4666i 0.322011 0.557739i −0.658892 0.752238i \(-0.728975\pi\)
0.980903 + 0.194498i \(0.0623079\pi\)
\(770\) −2.36413 0.411629i −0.0851975 0.0148341i
\(771\) 4.56503 + 7.90686i 0.164405 + 0.284758i
\(772\) 22.2914 38.6098i 0.802285 1.38960i
\(773\) −1.43276 + 2.48162i −0.0515329 + 0.0892575i −0.890641 0.454707i \(-0.849744\pi\)
0.839108 + 0.543964i \(0.183077\pi\)
\(774\) −0.0574293 + 0.0994705i −0.00206425 + 0.00357539i
\(775\) 20.1533 34.9065i 0.723928 1.25388i </