Properties

Label 273.2.i.b.79.3
Level $273$
Weight $2$
Character 273.79
Analytic conductor $2.180$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [273,2,Mod(79,273)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(273, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("273.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.3
Root \(-0.173648 + 0.984808i\) of defining polynomial
Character \(\chi\) \(=\) 273.79
Dual form 273.2.i.b.235.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.766044 - 1.32683i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.173648 - 0.300767i) q^{4} +(0.266044 - 0.460802i) q^{5} +1.53209 q^{6} +(-0.418748 - 2.61240i) q^{7} +2.53209 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.766044 - 1.32683i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.173648 - 0.300767i) q^{4} +(0.266044 - 0.460802i) q^{5} +1.53209 q^{6} +(-0.418748 - 2.61240i) q^{7} +2.53209 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.407604 - 0.705990i) q^{10} +(1.43969 + 2.49362i) q^{11} +(0.173648 - 0.300767i) q^{12} +1.00000 q^{13} +(-3.78699 - 1.44561i) q^{14} +0.532089 q^{15} +(2.28699 - 3.96118i) q^{16} +(-1.67365 - 2.89884i) q^{17} +(0.766044 + 1.32683i) q^{18} +(1.03209 - 1.78763i) q^{19} -0.184793 q^{20} +(2.05303 - 1.66885i) q^{21} +4.41147 q^{22} +(-3.93242 + 6.81115i) q^{23} +(1.26604 + 2.19285i) q^{24} +(2.35844 + 4.08494i) q^{25} +(0.766044 - 1.32683i) q^{26} -1.00000 q^{27} +(-0.713011 + 0.579585i) q^{28} -7.04963 q^{29} +(0.407604 - 0.705990i) q^{30} +(-3.11334 - 5.39246i) q^{31} +(-0.971782 - 1.68317i) q^{32} +(-1.43969 + 2.49362i) q^{33} -5.12836 q^{34} +(-1.31521 - 0.502055i) q^{35} +0.347296 q^{36} +(0.326352 - 0.565258i) q^{37} +(-1.58125 - 2.73881i) q^{38} +(0.500000 + 0.866025i) q^{39} +(0.673648 - 1.16679i) q^{40} -4.59627 q^{41} +(-0.641559 - 4.00243i) q^{42} -6.10607 q^{43} +(0.500000 - 0.866025i) q^{44} +(0.266044 + 0.460802i) q^{45} +(6.02481 + 10.4353i) q^{46} +(-4.75877 + 8.24243i) q^{47} +4.57398 q^{48} +(-6.64930 + 2.18788i) q^{49} +7.22668 q^{50} +(1.67365 - 2.89884i) q^{51} +(-0.173648 - 0.300767i) q^{52} +(-0.439693 - 0.761570i) q^{53} +(-0.766044 + 1.32683i) q^{54} +1.53209 q^{55} +(-1.06031 - 6.61484i) q^{56} +2.06418 q^{57} +(-5.40033 + 9.35365i) q^{58} +(1.12314 + 1.94534i) q^{59} +(-0.0923963 - 0.160035i) q^{60} +(4.14930 - 7.18680i) q^{61} -9.53983 q^{62} +(2.47178 + 0.943555i) q^{63} +6.17024 q^{64} +(0.266044 - 0.460802i) q^{65} +(2.20574 + 3.82045i) q^{66} +(6.19846 + 10.7361i) q^{67} +(-0.581252 + 1.00676i) q^{68} -7.86484 q^{69} +(-1.67365 + 1.36046i) q^{70} +10.6159 q^{71} +(-1.26604 + 2.19285i) q^{72} +(0.275845 + 0.477777i) q^{73} +(-0.500000 - 0.866025i) q^{74} +(-2.35844 + 4.08494i) q^{75} -0.716881 q^{76} +(5.91147 - 4.80526i) q^{77} +1.53209 q^{78} +(5.80793 - 10.0596i) q^{79} +(-1.21688 - 2.10770i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-3.52094 + 6.09845i) q^{82} -5.87939 q^{83} +(-0.858441 - 0.327693i) q^{84} -1.78106 q^{85} +(-4.67752 + 8.10170i) q^{86} +(-3.52481 - 6.10516i) q^{87} +(3.64543 + 6.31407i) q^{88} +(-2.74510 + 4.75465i) q^{89} +0.815207 q^{90} +(-0.418748 - 2.61240i) q^{91} +2.73143 q^{92} +(3.11334 - 5.39246i) q^{93} +(7.29086 + 12.6281i) q^{94} +(-0.549163 - 0.951178i) q^{95} +(0.971782 - 1.68317i) q^{96} +12.7811 q^{97} +(-2.19072 + 10.4985i) q^{98} -2.87939 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} - 3 q^{5} + 6 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{3} - 3 q^{5} + 6 q^{8} - 3 q^{9} - 6 q^{10} + 3 q^{11} + 6 q^{13} - 15 q^{14} - 6 q^{15} + 6 q^{16} - 9 q^{17} - 3 q^{19} + 6 q^{20} + 6 q^{22} + 3 q^{24} + 6 q^{25} - 6 q^{27} - 12 q^{28} + 12 q^{29} + 6 q^{30} - 12 q^{31} + 9 q^{32} - 3 q^{33} + 6 q^{34} - 15 q^{35} + 3 q^{37} - 12 q^{38} + 3 q^{39} + 3 q^{40} - 12 q^{42} - 12 q^{43} + 3 q^{44} - 3 q^{45} + 9 q^{46} - 6 q^{47} + 12 q^{48} + 30 q^{50} + 9 q^{51} + 3 q^{53} - 12 q^{56} - 6 q^{57} - 18 q^{58} + 3 q^{59} + 3 q^{60} - 15 q^{61} - 6 q^{64} - 3 q^{65} + 3 q^{66} + 9 q^{67} - 6 q^{68} - 9 q^{70} + 42 q^{71} - 3 q^{72} - 3 q^{74} - 6 q^{75} + 12 q^{76} + 15 q^{77} + 24 q^{79} + 9 q^{80} - 3 q^{81} - 18 q^{82} - 24 q^{83} + 3 q^{84} + 24 q^{85} - 3 q^{86} + 6 q^{87} + 6 q^{88} - 15 q^{89} + 12 q^{90} + 36 q^{92} + 12 q^{93} + 12 q^{94} - 15 q^{95} - 9 q^{96} + 42 q^{97} - 33 q^{98} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.766044 1.32683i 0.541675 0.938209i −0.457133 0.889398i \(-0.651124\pi\)
0.998808 0.0488106i \(-0.0155431\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −0.173648 0.300767i −0.0868241 0.150384i
\(5\) 0.266044 0.460802i 0.118979 0.206077i −0.800385 0.599487i \(-0.795371\pi\)
0.919363 + 0.393410i \(0.128705\pi\)
\(6\) 1.53209 0.625473
\(7\) −0.418748 2.61240i −0.158272 0.987396i
\(8\) 2.53209 0.895229
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −0.407604 0.705990i −0.128896 0.223254i
\(11\) 1.43969 + 2.49362i 0.434084 + 0.751855i 0.997220 0.0745088i \(-0.0237389\pi\)
−0.563137 + 0.826364i \(0.690406\pi\)
\(12\) 0.173648 0.300767i 0.0501279 0.0868241i
\(13\) 1.00000 0.277350
\(14\) −3.78699 1.44561i −1.01212 0.386356i
\(15\) 0.532089 0.137385
\(16\) 2.28699 3.96118i 0.571747 0.990295i
\(17\) −1.67365 2.89884i −0.405919 0.703073i 0.588509 0.808491i \(-0.299715\pi\)
−0.994428 + 0.105418i \(0.966382\pi\)
\(18\) 0.766044 + 1.32683i 0.180558 + 0.312736i
\(19\) 1.03209 1.78763i 0.236777 0.410111i −0.723010 0.690837i \(-0.757242\pi\)
0.959788 + 0.280727i \(0.0905754\pi\)
\(20\) −0.184793 −0.0413209
\(21\) 2.05303 1.66885i 0.448009 0.364172i
\(22\) 4.41147 0.940529
\(23\) −3.93242 + 6.81115i −0.819966 + 1.42022i 0.0857406 + 0.996317i \(0.472674\pi\)
−0.905707 + 0.423905i \(0.860659\pi\)
\(24\) 1.26604 + 2.19285i 0.258430 + 0.447614i
\(25\) 2.35844 + 4.08494i 0.471688 + 0.816988i
\(26\) 0.766044 1.32683i 0.150234 0.260212i
\(27\) −1.00000 −0.192450
\(28\) −0.713011 + 0.579585i −0.134746 + 0.109531i
\(29\) −7.04963 −1.30908 −0.654542 0.756026i \(-0.727138\pi\)
−0.654542 + 0.756026i \(0.727138\pi\)
\(30\) 0.407604 0.705990i 0.0744179 0.128896i
\(31\) −3.11334 5.39246i −0.559173 0.968515i −0.997566 0.0697319i \(-0.977786\pi\)
0.438393 0.898783i \(-0.355548\pi\)
\(32\) −0.971782 1.68317i −0.171788 0.297546i
\(33\) −1.43969 + 2.49362i −0.250618 + 0.434084i
\(34\) −5.12836 −0.879506
\(35\) −1.31521 0.502055i −0.222311 0.0848628i
\(36\) 0.347296 0.0578827
\(37\) 0.326352 0.565258i 0.0536519 0.0929278i −0.837952 0.545744i \(-0.816247\pi\)
0.891604 + 0.452816i \(0.149581\pi\)
\(38\) −1.58125 2.73881i −0.256513 0.444293i
\(39\) 0.500000 + 0.866025i 0.0800641 + 0.138675i
\(40\) 0.673648 1.16679i 0.106513 0.184486i
\(41\) −4.59627 −0.717816 −0.358908 0.933373i \(-0.616851\pi\)
−0.358908 + 0.933373i \(0.616851\pi\)
\(42\) −0.641559 4.00243i −0.0989947 0.617589i
\(43\) −6.10607 −0.931166 −0.465583 0.885004i \(-0.654155\pi\)
−0.465583 + 0.885004i \(0.654155\pi\)
\(44\) 0.500000 0.866025i 0.0753778 0.130558i
\(45\) 0.266044 + 0.460802i 0.0396596 + 0.0686924i
\(46\) 6.02481 + 10.4353i 0.888310 + 1.53860i
\(47\) −4.75877 + 8.24243i −0.694138 + 1.20228i 0.276332 + 0.961062i \(0.410881\pi\)
−0.970470 + 0.241220i \(0.922452\pi\)
\(48\) 4.57398 0.660197
\(49\) −6.64930 + 2.18788i −0.949900 + 0.312554i
\(50\) 7.22668 1.02201
\(51\) 1.67365 2.89884i 0.234358 0.405919i
\(52\) −0.173648 0.300767i −0.0240807 0.0417089i
\(53\) −0.439693 0.761570i −0.0603964 0.104610i 0.834246 0.551392i \(-0.185903\pi\)
−0.894643 + 0.446782i \(0.852570\pi\)
\(54\) −0.766044 + 1.32683i −0.104245 + 0.180558i
\(55\) 1.53209 0.206587
\(56\) −1.06031 6.61484i −0.141690 0.883945i
\(57\) 2.06418 0.273407
\(58\) −5.40033 + 9.35365i −0.709098 + 1.22819i
\(59\) 1.12314 + 1.94534i 0.146221 + 0.253261i 0.929828 0.367995i \(-0.119956\pi\)
−0.783607 + 0.621257i \(0.786622\pi\)
\(60\) −0.0923963 0.160035i −0.0119283 0.0206604i
\(61\) 4.14930 7.18680i 0.531263 0.920175i −0.468071 0.883691i \(-0.655051\pi\)
0.999334 0.0364843i \(-0.0116159\pi\)
\(62\) −9.53983 −1.21156
\(63\) 2.47178 + 0.943555i 0.311415 + 0.118877i
\(64\) 6.17024 0.771281
\(65\) 0.266044 0.460802i 0.0329988 0.0571555i
\(66\) 2.20574 + 3.82045i 0.271507 + 0.470265i
\(67\) 6.19846 + 10.7361i 0.757263 + 1.31162i 0.944242 + 0.329254i \(0.106797\pi\)
−0.186979 + 0.982364i \(0.559870\pi\)
\(68\) −0.581252 + 1.00676i −0.0704871 + 0.122087i
\(69\) −7.86484 −0.946815
\(70\) −1.67365 + 1.36046i −0.200039 + 0.162606i
\(71\) 10.6159 1.25987 0.629936 0.776647i \(-0.283081\pi\)
0.629936 + 0.776647i \(0.283081\pi\)
\(72\) −1.26604 + 2.19285i −0.149205 + 0.258430i
\(73\) 0.275845 + 0.477777i 0.0322852 + 0.0559196i 0.881717 0.471780i \(-0.156388\pi\)
−0.849431 + 0.527699i \(0.823055\pi\)
\(74\) −0.500000 0.866025i −0.0581238 0.100673i
\(75\) −2.35844 + 4.08494i −0.272329 + 0.471688i
\(76\) −0.716881 −0.0822319
\(77\) 5.91147 4.80526i 0.673675 0.547610i
\(78\) 1.53209 0.173475
\(79\) 5.80793 10.0596i 0.653444 1.13180i −0.328838 0.944386i \(-0.606657\pi\)
0.982282 0.187411i \(-0.0600097\pi\)
\(80\) −1.21688 2.10770i −0.136051 0.235648i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −3.52094 + 6.09845i −0.388823 + 0.673462i
\(83\) −5.87939 −0.645346 −0.322673 0.946510i \(-0.604581\pi\)
−0.322673 + 0.946510i \(0.604581\pi\)
\(84\) −0.858441 0.327693i −0.0936636 0.0357543i
\(85\) −1.78106 −0.193183
\(86\) −4.67752 + 8.10170i −0.504390 + 0.873629i
\(87\) −3.52481 6.10516i −0.377900 0.654542i
\(88\) 3.64543 + 6.31407i 0.388604 + 0.673082i
\(89\) −2.74510 + 4.75465i −0.290980 + 0.503992i −0.974042 0.226368i \(-0.927315\pi\)
0.683062 + 0.730361i \(0.260648\pi\)
\(90\) 0.815207 0.0859304
\(91\) −0.418748 2.61240i −0.0438967 0.273854i
\(92\) 2.73143 0.284771
\(93\) 3.11334 5.39246i 0.322838 0.559173i
\(94\) 7.29086 + 12.6281i 0.751995 + 1.30249i
\(95\) −0.549163 0.951178i −0.0563429 0.0975888i
\(96\) 0.971782 1.68317i 0.0991820 0.171788i
\(97\) 12.7811 1.29772 0.648860 0.760908i \(-0.275246\pi\)
0.648860 + 0.760908i \(0.275246\pi\)
\(98\) −2.19072 + 10.4985i −0.221296 + 1.06051i
\(99\) −2.87939 −0.289389
\(100\) 0.819078 1.41868i 0.0819078 0.141868i
\(101\) −7.26604 12.5852i −0.722998 1.25227i −0.959793 0.280710i \(-0.909430\pi\)
0.236794 0.971560i \(-0.423903\pi\)
\(102\) −2.56418 4.44129i −0.253891 0.439753i
\(103\) −5.84730 + 10.1278i −0.576151 + 0.997923i 0.419764 + 0.907633i \(0.362113\pi\)
−0.995916 + 0.0902900i \(0.971221\pi\)
\(104\) 2.53209 0.248292
\(105\) −0.222811 1.39003i −0.0217441 0.135653i
\(106\) −1.34730 −0.130861
\(107\) 1.29426 2.24173i 0.125121 0.216716i −0.796659 0.604429i \(-0.793401\pi\)
0.921780 + 0.387713i \(0.126735\pi\)
\(108\) 0.173648 + 0.300767i 0.0167093 + 0.0289414i
\(109\) −7.77244 13.4623i −0.744465 1.28945i −0.950444 0.310895i \(-0.899371\pi\)
0.205980 0.978556i \(-0.433962\pi\)
\(110\) 1.17365 2.03282i 0.111903 0.193822i
\(111\) 0.652704 0.0619519
\(112\) −11.3059 4.31580i −1.06830 0.407805i
\(113\) 20.9736 1.97303 0.986515 0.163672i \(-0.0523339\pi\)
0.986515 + 0.163672i \(0.0523339\pi\)
\(114\) 1.58125 2.73881i 0.148098 0.256513i
\(115\) 2.09240 + 3.62414i 0.195117 + 0.337952i
\(116\) 1.22416 + 2.12030i 0.113660 + 0.196865i
\(117\) −0.500000 + 0.866025i −0.0462250 + 0.0800641i
\(118\) 3.44150 0.316816
\(119\) −6.87211 + 5.58613i −0.629965 + 0.512080i
\(120\) 1.34730 0.122991
\(121\) 1.35457 2.34618i 0.123143 0.213290i
\(122\) −6.35710 11.0108i −0.575544 0.996872i
\(123\) −2.29813 3.98048i −0.207216 0.358908i
\(124\) −1.08125 + 1.87278i −0.0970993 + 0.168181i
\(125\) 5.17024 0.462441
\(126\) 3.14543 2.55682i 0.280217 0.227780i
\(127\) −14.0719 −1.24868 −0.624340 0.781152i \(-0.714632\pi\)
−0.624340 + 0.781152i \(0.714632\pi\)
\(128\) 6.67024 11.5532i 0.589572 1.02117i
\(129\) −3.05303 5.28801i −0.268805 0.465583i
\(130\) −0.407604 0.705990i −0.0357492 0.0619195i
\(131\) −2.34864 + 4.06796i −0.205202 + 0.355420i −0.950197 0.311650i \(-0.899118\pi\)
0.744995 + 0.667070i \(0.232452\pi\)
\(132\) 1.00000 0.0870388
\(133\) −5.10220 1.94767i −0.442417 0.168884i
\(134\) 18.9932 1.64076
\(135\) −0.266044 + 0.460802i −0.0228975 + 0.0396596i
\(136\) −4.23783 7.34013i −0.363391 0.629411i
\(137\) −5.17365 8.96102i −0.442015 0.765592i 0.555824 0.831300i \(-0.312403\pi\)
−0.997839 + 0.0657081i \(0.979069\pi\)
\(138\) −6.02481 + 10.4353i −0.512866 + 0.888310i
\(139\) 5.64496 0.478800 0.239400 0.970921i \(-0.423049\pi\)
0.239400 + 0.970921i \(0.423049\pi\)
\(140\) 0.0773815 + 0.482753i 0.00653993 + 0.0408000i
\(141\) −9.51754 −0.801522
\(142\) 8.13223 14.0854i 0.682441 1.18202i
\(143\) 1.43969 + 2.49362i 0.120393 + 0.208527i
\(144\) 2.28699 + 3.96118i 0.190582 + 0.330098i
\(145\) −1.87551 + 3.24849i −0.155753 + 0.269772i
\(146\) 0.845237 0.0699523
\(147\) −5.21941 4.66452i −0.430489 0.384723i
\(148\) −0.226682 −0.0186331
\(149\) −2.89393 + 5.01244i −0.237080 + 0.410635i −0.959875 0.280428i \(-0.909524\pi\)
0.722795 + 0.691063i \(0.242857\pi\)
\(150\) 3.61334 + 6.25849i 0.295028 + 0.511004i
\(151\) 0.369585 + 0.640140i 0.0300764 + 0.0520939i 0.880672 0.473727i \(-0.157092\pi\)
−0.850595 + 0.525821i \(0.823758\pi\)
\(152\) 2.61334 4.52644i 0.211970 0.367143i
\(153\) 3.34730 0.270613
\(154\) −1.84730 11.5245i −0.148859 0.928675i
\(155\) −3.31315 −0.266118
\(156\) 0.173648 0.300767i 0.0139030 0.0240807i
\(157\) −10.7836 18.6777i −0.860624 1.49064i −0.871328 0.490701i \(-0.836741\pi\)
0.0107040 0.999943i \(-0.496593\pi\)
\(158\) −8.89827 15.4123i −0.707908 1.22613i
\(159\) 0.439693 0.761570i 0.0348699 0.0603964i
\(160\) −1.03415 −0.0817566
\(161\) 19.4402 + 7.42091i 1.53210 + 0.584849i
\(162\) −1.53209 −0.120372
\(163\) 0.790393 1.36900i 0.0619083 0.107228i −0.833410 0.552655i \(-0.813615\pi\)
0.895318 + 0.445427i \(0.146948\pi\)
\(164\) 0.798133 + 1.38241i 0.0623237 + 0.107948i
\(165\) 0.766044 + 1.32683i 0.0596365 + 0.103293i
\(166\) −4.50387 + 7.80093i −0.349568 + 0.605470i
\(167\) 11.3405 0.877553 0.438777 0.898596i \(-0.355412\pi\)
0.438777 + 0.898596i \(0.355412\pi\)
\(168\) 5.19846 4.22567i 0.401070 0.326018i
\(169\) 1.00000 0.0769231
\(170\) −1.36437 + 2.36316i −0.104642 + 0.181246i
\(171\) 1.03209 + 1.78763i 0.0789258 + 0.136704i
\(172\) 1.06031 + 1.83651i 0.0808477 + 0.140032i
\(173\) −1.17499 + 2.03515i −0.0893330 + 0.154729i −0.907229 0.420636i \(-0.861807\pi\)
0.817896 + 0.575366i \(0.195140\pi\)
\(174\) −10.8007 −0.818796
\(175\) 9.68392 7.87176i 0.732035 0.595049i
\(176\) 13.1702 0.992745
\(177\) −1.12314 + 1.94534i −0.0844204 + 0.146221i
\(178\) 4.20574 + 7.28455i 0.315233 + 0.546000i
\(179\) 5.90286 + 10.2240i 0.441200 + 0.764181i 0.997779 0.0666138i \(-0.0212195\pi\)
−0.556579 + 0.830795i \(0.687886\pi\)
\(180\) 0.0923963 0.160035i 0.00688681 0.0119283i
\(181\) 19.8111 1.47255 0.736273 0.676684i \(-0.236584\pi\)
0.736273 + 0.676684i \(0.236584\pi\)
\(182\) −3.78699 1.44561i −0.280710 0.107156i
\(183\) 8.29860 0.613450
\(184\) −9.95723 + 17.2464i −0.734057 + 1.27142i
\(185\) −0.173648 0.300767i −0.0127669 0.0221129i
\(186\) −4.76991 8.26173i −0.349747 0.605780i
\(187\) 4.81908 8.34689i 0.352406 0.610385i
\(188\) 3.30541 0.241072
\(189\) 0.418748 + 2.61240i 0.0304594 + 0.190024i
\(190\) −1.68273 −0.122078
\(191\) −5.82042 + 10.0813i −0.421151 + 0.729455i −0.996052 0.0887679i \(-0.971707\pi\)
0.574901 + 0.818223i \(0.305040\pi\)
\(192\) 3.08512 + 5.34359i 0.222650 + 0.385640i
\(193\) 0.296789 + 0.514054i 0.0213634 + 0.0370024i 0.876509 0.481385i \(-0.159866\pi\)
−0.855146 + 0.518387i \(0.826533\pi\)
\(194\) 9.79086 16.9583i 0.702943 1.21753i
\(195\) 0.532089 0.0381037
\(196\) 1.81268 + 1.61997i 0.129477 + 0.115712i
\(197\) 7.07873 0.504338 0.252169 0.967683i \(-0.418856\pi\)
0.252169 + 0.967683i \(0.418856\pi\)
\(198\) −2.20574 + 3.82045i −0.156755 + 0.271507i
\(199\) 1.87551 + 3.24849i 0.132952 + 0.230279i 0.924813 0.380422i \(-0.124221\pi\)
−0.791861 + 0.610701i \(0.790888\pi\)
\(200\) 5.97178 + 10.3434i 0.422269 + 0.731391i
\(201\) −6.19846 + 10.7361i −0.437206 + 0.757263i
\(202\) −22.2645 −1.56652
\(203\) 2.95202 + 18.4165i 0.207191 + 1.29258i
\(204\) −1.16250 −0.0813915
\(205\) −1.22281 + 2.11797i −0.0854048 + 0.147926i
\(206\) 8.95858 + 15.5167i 0.624174 + 1.08110i
\(207\) −3.93242 6.81115i −0.273322 0.473408i
\(208\) 2.28699 3.96118i 0.158574 0.274658i
\(209\) 5.94356 0.411125
\(210\) −2.01501 0.769193i −0.139049 0.0530794i
\(211\) −10.3500 −0.712522 −0.356261 0.934386i \(-0.615949\pi\)
−0.356261 + 0.934386i \(0.615949\pi\)
\(212\) −0.152704 + 0.264490i −0.0104877 + 0.0181653i
\(213\) 5.30793 + 9.19361i 0.363694 + 0.629936i
\(214\) −1.98293 3.43453i −0.135550 0.234780i
\(215\) −1.62449 + 2.81369i −0.110789 + 0.191892i
\(216\) −2.53209 −0.172287
\(217\) −12.7836 + 10.3914i −0.867806 + 0.705413i
\(218\) −23.8161 −1.61303
\(219\) −0.275845 + 0.477777i −0.0186399 + 0.0322852i
\(220\) −0.266044 0.460802i −0.0179367 0.0310673i
\(221\) −1.67365 2.89884i −0.112582 0.194997i
\(222\) 0.500000 0.866025i 0.0335578 0.0581238i
\(223\) 20.6955 1.38587 0.692937 0.720998i \(-0.256316\pi\)
0.692937 + 0.720998i \(0.256316\pi\)
\(224\) −3.99020 + 3.24351i −0.266606 + 0.216716i
\(225\) −4.71688 −0.314459
\(226\) 16.0667 27.8283i 1.06874 1.85111i
\(227\) 8.70233 + 15.0729i 0.577594 + 1.00042i 0.995754 + 0.0920492i \(0.0293417\pi\)
−0.418160 + 0.908373i \(0.637325\pi\)
\(228\) −0.358441 0.620838i −0.0237383 0.0411160i
\(229\) −0.953363 + 1.65127i −0.0630000 + 0.109119i −0.895805 0.444447i \(-0.853400\pi\)
0.832805 + 0.553566i \(0.186733\pi\)
\(230\) 6.41147 0.422760
\(231\) 7.11721 + 2.71686i 0.468278 + 0.178756i
\(232\) −17.8503 −1.17193
\(233\) 5.49660 9.52038i 0.360094 0.623701i −0.627882 0.778309i \(-0.716078\pi\)
0.987976 + 0.154607i \(0.0494113\pi\)
\(234\) 0.766044 + 1.32683i 0.0500779 + 0.0867375i
\(235\) 2.53209 + 4.38571i 0.165175 + 0.286092i
\(236\) 0.390063 0.675609i 0.0253909 0.0439784i
\(237\) 11.6159 0.754532
\(238\) 2.14749 + 13.3973i 0.139201 + 0.868420i
\(239\) 11.9736 0.774507 0.387254 0.921973i \(-0.373424\pi\)
0.387254 + 0.921973i \(0.373424\pi\)
\(240\) 1.21688 2.10770i 0.0785494 0.136051i
\(241\) −12.0103 20.8024i −0.773649 1.34000i −0.935551 0.353193i \(-0.885096\pi\)
0.161901 0.986807i \(-0.448237\pi\)
\(242\) −2.07532 3.59456i −0.133407 0.231067i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) −2.88207 −0.184506
\(245\) −0.760830 + 3.64609i −0.0486076 + 0.232940i
\(246\) −7.04189 −0.448974
\(247\) 1.03209 1.78763i 0.0656702 0.113744i
\(248\) −7.88326 13.6542i −0.500587 0.867043i
\(249\) −2.93969 5.09170i −0.186295 0.322673i
\(250\) 3.96064 6.86002i 0.250493 0.433866i
\(251\) 10.8280 0.683457 0.341729 0.939799i \(-0.388988\pi\)
0.341729 + 0.939799i \(0.388988\pi\)
\(252\) −0.145430 0.907278i −0.00916121 0.0571531i
\(253\) −22.6459 −1.42374
\(254\) −10.7797 + 18.6710i −0.676379 + 1.17152i
\(255\) −0.890530 1.54244i −0.0557671 0.0965915i
\(256\) −4.04916 7.01336i −0.253073 0.438335i
\(257\) −13.6616 + 23.6626i −0.852189 + 1.47603i 0.0270398 + 0.999634i \(0.491392\pi\)
−0.879229 + 0.476400i \(0.841941\pi\)
\(258\) −9.35504 −0.582419
\(259\) −1.61334 0.615862i −0.100248 0.0382678i
\(260\) −0.184793 −0.0114603
\(261\) 3.52481 6.10516i 0.218181 0.377900i
\(262\) 3.59833 + 6.23248i 0.222305 + 0.385044i
\(263\) −7.08512 12.2718i −0.436887 0.756711i 0.560560 0.828114i \(-0.310586\pi\)
−0.997448 + 0.0714026i \(0.977253\pi\)
\(264\) −3.64543 + 6.31407i −0.224361 + 0.388604i
\(265\) −0.467911 −0.0287436
\(266\) −6.49273 + 5.27774i −0.398095 + 0.323599i
\(267\) −5.49020 −0.335995
\(268\) 2.15270 3.72859i 0.131497 0.227760i
\(269\) −14.7947 25.6252i −0.902051 1.56240i −0.824828 0.565384i \(-0.808728\pi\)
−0.0772225 0.997014i \(-0.524605\pi\)
\(270\) 0.407604 + 0.705990i 0.0248060 + 0.0429652i
\(271\) −2.65657 + 4.60132i −0.161375 + 0.279510i −0.935362 0.353691i \(-0.884926\pi\)
0.773987 + 0.633202i \(0.218260\pi\)
\(272\) −15.3105 −0.928333
\(273\) 2.05303 1.66885i 0.124255 0.101003i
\(274\) −15.8530 −0.957713
\(275\) −6.79086 + 11.7621i −0.409504 + 0.709282i
\(276\) 1.36571 + 2.36549i 0.0822064 + 0.142386i
\(277\) 2.68345 + 4.64787i 0.161233 + 0.279263i 0.935311 0.353827i \(-0.115120\pi\)
−0.774078 + 0.633090i \(0.781786\pi\)
\(278\) 4.32429 7.48989i 0.259354 0.449214i
\(279\) 6.22668 0.372782
\(280\) −3.33022 1.27125i −0.199019 0.0759716i
\(281\) 14.6432 0.873541 0.436770 0.899573i \(-0.356122\pi\)
0.436770 + 0.899573i \(0.356122\pi\)
\(282\) −7.29086 + 12.6281i −0.434164 + 0.751995i
\(283\) 15.1275 + 26.2016i 0.899235 + 1.55752i 0.828474 + 0.560028i \(0.189210\pi\)
0.0707615 + 0.997493i \(0.477457\pi\)
\(284\) −1.84343 3.19291i −0.109387 0.189464i
\(285\) 0.549163 0.951178i 0.0325296 0.0563429i
\(286\) 4.41147 0.260856
\(287\) 1.92468 + 12.0073i 0.113610 + 0.708769i
\(288\) 1.94356 0.114526
\(289\) 2.89780 5.01914i 0.170459 0.295244i
\(290\) 2.87346 + 4.97697i 0.168735 + 0.292258i
\(291\) 6.39053 + 11.0687i 0.374619 + 0.648860i
\(292\) 0.0957998 0.165930i 0.00560626 0.00971033i
\(293\) −8.32594 −0.486407 −0.243203 0.969975i \(-0.578198\pi\)
−0.243203 + 0.969975i \(0.578198\pi\)
\(294\) −10.1873 + 3.35202i −0.594136 + 0.195494i
\(295\) 1.19522 0.0695885
\(296\) 0.826352 1.43128i 0.0480307 0.0831917i
\(297\) −1.43969 2.49362i −0.0835394 0.144695i
\(298\) 4.43376 + 7.67950i 0.256841 + 0.444862i
\(299\) −3.93242 + 6.81115i −0.227418 + 0.393899i
\(300\) 1.63816 0.0945790
\(301\) 2.55690 + 15.9515i 0.147377 + 0.919430i
\(302\) 1.13247 0.0651666
\(303\) 7.26604 12.5852i 0.417423 0.722998i
\(304\) −4.72075 8.17658i −0.270754 0.468959i
\(305\) −2.20780 3.82402i −0.126418 0.218962i
\(306\) 2.56418 4.44129i 0.146584 0.253891i
\(307\) −22.9486 −1.30975 −0.654873 0.755739i \(-0.727278\pi\)
−0.654873 + 0.755739i \(0.727278\pi\)
\(308\) −2.47178 0.943555i −0.140843 0.0537640i
\(309\) −11.6946 −0.665282
\(310\) −2.53802 + 4.39598i −0.144150 + 0.249675i
\(311\) −0.592396 1.02606i −0.0335917 0.0581825i 0.848741 0.528809i \(-0.177361\pi\)
−0.882333 + 0.470627i \(0.844028\pi\)
\(312\) 1.26604 + 2.19285i 0.0716757 + 0.124146i
\(313\) 2.19325 3.79882i 0.123970 0.214722i −0.797360 0.603504i \(-0.793771\pi\)
0.921330 + 0.388782i \(0.127104\pi\)
\(314\) −33.0428 −1.86471
\(315\) 1.09240 0.887975i 0.0615496 0.0500318i
\(316\) −4.03415 −0.226939
\(317\) −0.900330 + 1.55942i −0.0505676 + 0.0875856i −0.890201 0.455568i \(-0.849436\pi\)
0.839634 + 0.543153i \(0.182770\pi\)
\(318\) −0.673648 1.16679i −0.0377763 0.0654305i
\(319\) −10.1493 17.5791i −0.568252 0.984241i
\(320\) 1.64156 2.84326i 0.0917660 0.158943i
\(321\) 2.58853 0.144477
\(322\) 24.7383 20.1090i 1.37861 1.12063i
\(323\) −6.90941 −0.384450
\(324\) −0.173648 + 0.300767i −0.00964712 + 0.0167093i
\(325\) 2.35844 + 4.08494i 0.130823 + 0.226592i
\(326\) −1.21095 2.09743i −0.0670684 0.116166i
\(327\) 7.77244 13.4623i 0.429817 0.744465i
\(328\) −11.6382 −0.642610
\(329\) 23.5253 + 8.98032i 1.29699 + 0.495101i
\(330\) 2.34730 0.129214
\(331\) −12.5903 + 21.8071i −0.692028 + 1.19863i 0.279145 + 0.960249i \(0.409949\pi\)
−0.971172 + 0.238378i \(0.923384\pi\)
\(332\) 1.02094 + 1.76833i 0.0560316 + 0.0970496i
\(333\) 0.326352 + 0.565258i 0.0178840 + 0.0309759i
\(334\) 8.68732 15.0469i 0.475349 0.823329i
\(335\) 6.59627 0.360393
\(336\) −1.91534 11.9491i −0.104491 0.651875i
\(337\) −19.5963 −1.06748 −0.533738 0.845650i \(-0.679213\pi\)
−0.533738 + 0.845650i \(0.679213\pi\)
\(338\) 0.766044 1.32683i 0.0416673 0.0721699i
\(339\) 10.4868 + 18.1637i 0.569565 + 0.986515i
\(340\) 0.309278 + 0.535685i 0.0167729 + 0.0290516i
\(341\) 8.96451 15.5270i 0.485455 0.840833i
\(342\) 3.16250 0.171009
\(343\) 8.50000 + 16.4545i 0.458957 + 0.888459i
\(344\) −15.4611 −0.833607
\(345\) −2.09240 + 3.62414i −0.112651 + 0.195117i
\(346\) 1.80019 + 3.11803i 0.0967790 + 0.167626i
\(347\) −5.64677 9.78050i −0.303135 0.525045i 0.673710 0.738996i \(-0.264700\pi\)
−0.976844 + 0.213952i \(0.931367\pi\)
\(348\) −1.22416 + 2.12030i −0.0656216 + 0.113660i
\(349\) 14.1848 0.759295 0.379647 0.925131i \(-0.376045\pi\)
0.379647 + 0.925131i \(0.376045\pi\)
\(350\) −3.02616 18.8790i −0.161755 1.00913i
\(351\) −1.00000 −0.0533761
\(352\) 2.79813 4.84651i 0.149141 0.258320i
\(353\) −11.2836 19.5437i −0.600565 1.04021i −0.992736 0.120316i \(-0.961609\pi\)
0.392171 0.919892i \(-0.371724\pi\)
\(354\) 1.72075 + 2.98043i 0.0914569 + 0.158408i
\(355\) 2.82429 4.89182i 0.149898 0.259631i
\(356\) 1.90673 0.101056
\(357\) −8.27379 3.15836i −0.437895 0.167158i
\(358\) 18.0874 0.955949
\(359\) 11.0556 19.1488i 0.583490 1.01063i −0.411572 0.911377i \(-0.635020\pi\)
0.995062 0.0992571i \(-0.0316466\pi\)
\(360\) 0.673648 + 1.16679i 0.0355044 + 0.0614954i
\(361\) 7.36959 + 12.7645i 0.387873 + 0.671816i
\(362\) 15.1762 26.2859i 0.797642 1.38156i
\(363\) 2.70914 0.142193
\(364\) −0.713011 + 0.579585i −0.0373719 + 0.0303785i
\(365\) 0.293548 0.0153650
\(366\) 6.35710 11.0108i 0.332291 0.575544i
\(367\) 15.4809 + 26.8136i 0.808095 + 1.39966i 0.914182 + 0.405304i \(0.132834\pi\)
−0.106087 + 0.994357i \(0.533832\pi\)
\(368\) 17.9868 + 31.1540i 0.937627 + 1.62402i
\(369\) 2.29813 3.98048i 0.119636 0.207216i
\(370\) −0.532089 −0.0276620
\(371\) −1.80541 + 1.46756i −0.0937321 + 0.0761919i
\(372\) −2.16250 −0.112121
\(373\) −14.6702 + 25.4096i −0.759596 + 1.31566i 0.183460 + 0.983027i \(0.441270\pi\)
−0.943057 + 0.332633i \(0.892063\pi\)
\(374\) −7.38326 12.7882i −0.381779 0.661261i
\(375\) 2.58512 + 4.47756i 0.133495 + 0.231220i
\(376\) −12.0496 + 20.8706i −0.621412 + 1.07632i
\(377\) −7.04963 −0.363074
\(378\) 3.78699 + 1.44561i 0.194782 + 0.0743542i
\(379\) 37.2208 1.91190 0.955952 0.293522i \(-0.0948275\pi\)
0.955952 + 0.293522i \(0.0948275\pi\)
\(380\) −0.190722 + 0.330341i −0.00978385 + 0.0169461i
\(381\) −7.03596 12.1866i −0.360463 0.624340i
\(382\) 8.91740 + 15.4454i 0.456254 + 0.790255i
\(383\) 7.42262 12.8564i 0.379278 0.656929i −0.611679 0.791106i \(-0.709506\pi\)
0.990957 + 0.134177i \(0.0428390\pi\)
\(384\) 13.3405 0.680779
\(385\) −0.641559 4.00243i −0.0326969 0.203983i
\(386\) 0.909415 0.0462880
\(387\) 3.05303 5.28801i 0.155194 0.268805i
\(388\) −2.21941 3.84413i −0.112673 0.195156i
\(389\) −4.35117 7.53644i −0.220613 0.382113i 0.734381 0.678737i \(-0.237472\pi\)
−0.954994 + 0.296624i \(0.904139\pi\)
\(390\) 0.407604 0.705990i 0.0206398 0.0357492i
\(391\) 26.3259 1.33136
\(392\) −16.8366 + 5.53990i −0.850378 + 0.279807i
\(393\) −4.69728 −0.236946
\(394\) 5.42262 9.39225i 0.273188 0.473175i
\(395\) −3.09034 5.35262i −0.155492 0.269320i
\(396\) 0.500000 + 0.866025i 0.0251259 + 0.0435194i
\(397\) 4.18227 7.24390i 0.209902 0.363561i −0.741782 0.670642i \(-0.766019\pi\)
0.951683 + 0.307081i \(0.0993522\pi\)
\(398\) 5.74691 0.288067
\(399\) −0.864370 5.39246i −0.0432726 0.269961i
\(400\) 21.5749 1.07875
\(401\) −1.88413 + 3.26341i −0.0940891 + 0.162967i −0.909228 0.416298i \(-0.863327\pi\)
0.815139 + 0.579265i \(0.196661\pi\)
\(402\) 9.49660 + 16.4486i 0.473647 + 0.820381i
\(403\) −3.11334 5.39246i −0.155087 0.268618i
\(404\) −2.52347 + 4.37078i −0.125547 + 0.217454i
\(405\) −0.532089 −0.0264397
\(406\) 26.6969 + 10.1910i 1.32494 + 0.505772i
\(407\) 1.87939 0.0931577
\(408\) 4.23783 7.34013i 0.209804 0.363391i
\(409\) 1.52094 + 2.63435i 0.0752059 + 0.130260i 0.901176 0.433454i \(-0.142705\pi\)
−0.825970 + 0.563714i \(0.809372\pi\)
\(410\) 1.87346 + 3.24492i 0.0925234 + 0.160255i
\(411\) 5.17365 8.96102i 0.255197 0.442015i
\(412\) 4.06149 0.200095
\(413\) 4.61169 3.74870i 0.226927 0.184462i
\(414\) −12.0496 −0.592207
\(415\) −1.56418 + 2.70924i −0.0767825 + 0.132991i
\(416\) −0.971782 1.68317i −0.0476455 0.0825244i
\(417\) 2.82248 + 4.88868i 0.138218 + 0.239400i
\(418\) 4.55303 7.88609i 0.222696 0.385721i
\(419\) −26.6168 −1.30032 −0.650158 0.759799i \(-0.725297\pi\)
−0.650158 + 0.759799i \(0.725297\pi\)
\(420\) −0.379385 + 0.308391i −0.0185121 + 0.0150479i
\(421\) 22.0506 1.07468 0.537339 0.843366i \(-0.319429\pi\)
0.537339 + 0.843366i \(0.319429\pi\)
\(422\) −7.92855 + 13.7326i −0.385956 + 0.668495i
\(423\) −4.75877 8.24243i −0.231379 0.400761i
\(424\) −1.11334 1.92836i −0.0540686 0.0936496i
\(425\) 7.89440 13.6735i 0.382935 0.663262i
\(426\) 16.2645 0.788015
\(427\) −20.5123 7.83019i −0.992661 0.378929i
\(428\) −0.898986 −0.0434541
\(429\) −1.43969 + 2.49362i −0.0695090 + 0.120393i
\(430\) 2.48886 + 4.31082i 0.120023 + 0.207886i
\(431\) −5.76604 9.98708i −0.277741 0.481061i 0.693082 0.720858i \(-0.256252\pi\)
−0.970823 + 0.239798i \(0.922919\pi\)
\(432\) −2.28699 + 3.96118i −0.110033 + 0.190582i
\(433\) −26.4911 −1.27308 −0.636541 0.771243i \(-0.719636\pi\)
−0.636541 + 0.771243i \(0.719636\pi\)
\(434\) 3.99479 + 24.9219i 0.191756 + 1.19629i
\(435\) −3.75103 −0.179848
\(436\) −2.69934 + 4.67539i −0.129275 + 0.223911i
\(437\) 8.11721 + 14.0594i 0.388299 + 0.672553i
\(438\) 0.422618 + 0.731997i 0.0201935 + 0.0349762i
\(439\) 15.7900 27.3491i 0.753615 1.30530i −0.192445 0.981308i \(-0.561642\pi\)
0.946060 0.323991i \(-0.105025\pi\)
\(440\) 3.87939 0.184942
\(441\) 1.42989 6.85240i 0.0680901 0.326305i
\(442\) −5.12836 −0.243931
\(443\) 7.96198 13.7906i 0.378285 0.655209i −0.612528 0.790449i \(-0.709847\pi\)
0.990813 + 0.135240i \(0.0431805\pi\)
\(444\) −0.113341 0.196312i −0.00537892 0.00931656i
\(445\) 1.46064 + 2.52990i 0.0692408 + 0.119929i
\(446\) 15.8537 27.4594i 0.750694 1.30024i
\(447\) −5.78787 −0.273757
\(448\) −2.58378 16.1192i −0.122072 0.761559i
\(449\) −34.1462 −1.61146 −0.805729 0.592284i \(-0.798226\pi\)
−0.805729 + 0.592284i \(0.798226\pi\)
\(450\) −3.61334 + 6.25849i −0.170335 + 0.295028i
\(451\) −6.61721 11.4613i −0.311592 0.539694i
\(452\) −3.64203 6.30817i −0.171306 0.296712i
\(453\) −0.369585 + 0.640140i −0.0173646 + 0.0300764i
\(454\) 26.6655 1.25147
\(455\) −1.31521 0.502055i −0.0616579 0.0235367i
\(456\) 5.22668 0.244762
\(457\) −1.83497 + 3.17826i −0.0858363 + 0.148673i −0.905747 0.423818i \(-0.860690\pi\)
0.819911 + 0.572491i \(0.194023\pi\)
\(458\) 1.46064 + 2.52990i 0.0682511 + 0.118214i
\(459\) 1.67365 + 2.89884i 0.0781192 + 0.135306i
\(460\) 0.726682 1.25865i 0.0338817 0.0586848i
\(461\) 18.0077 0.838704 0.419352 0.907824i \(-0.362257\pi\)
0.419352 + 0.907824i \(0.362257\pi\)
\(462\) 9.05690 7.36208i 0.421365 0.342515i
\(463\) −8.73648 −0.406019 −0.203009 0.979177i \(-0.565072\pi\)
−0.203009 + 0.979177i \(0.565072\pi\)
\(464\) −16.1224 + 27.9249i −0.748465 + 1.29638i
\(465\) −1.65657 2.86927i −0.0768218 0.133059i
\(466\) −8.42127 14.5861i −0.390108 0.675687i
\(467\) −5.19506 + 8.99811i −0.240399 + 0.416383i −0.960828 0.277146i \(-0.910612\pi\)
0.720429 + 0.693528i \(0.243945\pi\)
\(468\) 0.347296 0.0160538
\(469\) 25.4513 20.6886i 1.17523 0.955310i
\(470\) 7.75877 0.357885
\(471\) 10.7836 18.6777i 0.496881 0.860624i
\(472\) 2.84389 + 4.92577i 0.130901 + 0.226727i
\(473\) −8.79086 15.2262i −0.404204 0.700102i
\(474\) 8.89827 15.4123i 0.408711 0.707908i
\(475\) 9.73648 0.446740
\(476\) 2.87346 + 1.09689i 0.131705 + 0.0502757i
\(477\) 0.879385 0.0402643
\(478\) 9.17230 15.8869i 0.419531 0.726650i
\(479\) 8.30675 + 14.3877i 0.379545 + 0.657392i 0.990996 0.133891i \(-0.0427472\pi\)
−0.611451 + 0.791282i \(0.709414\pi\)
\(480\) −0.517074 0.895599i −0.0236011 0.0408783i
\(481\) 0.326352 0.565258i 0.0148804 0.0257735i
\(482\) −36.8016 −1.67627
\(483\) 3.29339 + 20.5461i 0.149854 + 0.934881i
\(484\) −0.940875 −0.0427670
\(485\) 3.40033 5.88954i 0.154401 0.267430i
\(486\) −0.766044 1.32683i −0.0347485 0.0601861i
\(487\) −9.52734 16.5018i −0.431725 0.747770i 0.565297 0.824887i \(-0.308762\pi\)
−0.997022 + 0.0771178i \(0.975428\pi\)
\(488\) 10.5064 18.1976i 0.475602 0.823767i
\(489\) 1.58079 0.0714856
\(490\) 4.25490 + 3.80255i 0.192217 + 0.171782i
\(491\) −21.0036 −0.947880 −0.473940 0.880557i \(-0.657169\pi\)
−0.473940 + 0.880557i \(0.657169\pi\)
\(492\) −0.798133 + 1.38241i −0.0359826 + 0.0623237i
\(493\) 11.7986 + 20.4358i 0.531382 + 0.920381i
\(494\) −1.58125 2.73881i −0.0711439 0.123225i
\(495\) −0.766044 + 1.32683i −0.0344311 + 0.0596365i
\(496\) −28.4807 −1.27882
\(497\) −4.44537 27.7329i −0.199402 1.24399i
\(498\) −9.00774 −0.403647
\(499\) −7.34049 + 12.7141i −0.328605 + 0.569161i −0.982235 0.187653i \(-0.939912\pi\)
0.653630 + 0.756814i \(0.273245\pi\)
\(500\) −0.897804 1.55504i −0.0401510 0.0695436i
\(501\) 5.67024 + 9.82115i 0.253328 + 0.438777i
\(502\) 8.29473 14.3669i 0.370212 0.641226i
\(503\) −34.1566 −1.52297 −0.761484 0.648183i \(-0.775529\pi\)
−0.761484 + 0.648183i \(0.775529\pi\)
\(504\) 6.25877 + 2.38917i 0.278788 + 0.106422i
\(505\) −7.73236 −0.344086
\(506\) −17.3478 + 30.0472i −0.771202 + 1.33576i
\(507\) 0.500000 + 0.866025i 0.0222058 + 0.0384615i
\(508\) 2.44356 + 4.23238i 0.108416 + 0.187781i
\(509\) 10.7935 18.6950i 0.478416 0.828640i −0.521278 0.853387i \(-0.674545\pi\)
0.999694 + 0.0247467i \(0.00787793\pi\)
\(510\) −2.72874 −0.120831
\(511\) 1.13264 0.920686i 0.0501049 0.0407287i
\(512\) 14.2736 0.630811
\(513\) −1.03209 + 1.78763i −0.0455678 + 0.0789258i
\(514\) 20.9308 + 36.2533i 0.923219 + 1.59906i
\(515\) 3.11128 + 5.38890i 0.137099 + 0.237463i
\(516\) −1.06031 + 1.83651i −0.0466774 + 0.0808477i
\(517\) −27.4047 −1.20526
\(518\) −2.05303 + 1.66885i −0.0902051 + 0.0733250i
\(519\) −2.34998 −0.103153
\(520\) 0.673648 1.16679i 0.0295414 0.0511673i
\(521\) 13.0783 + 22.6523i 0.572971 + 0.992416i 0.996259 + 0.0864201i \(0.0275427\pi\)
−0.423287 + 0.905995i \(0.639124\pi\)
\(522\) −5.40033 9.35365i −0.236366 0.409398i
\(523\) −17.3405 + 30.0346i −0.758247 + 1.31332i 0.185497 + 0.982645i \(0.440610\pi\)
−0.943744 + 0.330677i \(0.892723\pi\)
\(524\) 1.63135 0.0712658
\(525\) 11.6591 + 4.45064i 0.508845 + 0.194242i
\(526\) −21.7101 −0.946604
\(527\) −10.4213 + 18.0502i −0.453958 + 0.786278i
\(528\) 6.58512 + 11.4058i 0.286581 + 0.496372i
\(529\) −19.4278 33.6500i −0.844688 1.46304i
\(530\) −0.358441 + 0.620838i −0.0155697 + 0.0269675i
\(531\) −2.24628 −0.0974803
\(532\) 0.300193 + 1.87278i 0.0130150 + 0.0811955i
\(533\) −4.59627 −0.199086
\(534\) −4.20574 + 7.28455i −0.182000 + 0.315233i
\(535\) −0.688663 1.19280i −0.0297735 0.0515692i
\(536\) 15.6951 + 27.1846i 0.677923 + 1.17420i
\(537\) −5.90286 + 10.2240i −0.254727 + 0.441200i
\(538\) −45.3337 −1.95447
\(539\) −15.0287 13.4310i −0.647331 0.578512i
\(540\) 0.184793 0.00795220
\(541\) −18.7763 + 32.5215i −0.807257 + 1.39821i 0.107500 + 0.994205i \(0.465715\pi\)
−0.914757 + 0.404005i \(0.867618\pi\)
\(542\) 4.07011 + 7.04963i 0.174826 + 0.302808i
\(543\) 9.90554 + 17.1569i 0.425088 + 0.736273i
\(544\) −3.25284 + 5.63409i −0.139464 + 0.241559i
\(545\) −8.27126 −0.354302
\(546\) −0.641559 4.00243i −0.0274562 0.171288i
\(547\) −7.61856 −0.325746 −0.162873 0.986647i \(-0.552076\pi\)
−0.162873 + 0.986647i \(0.552076\pi\)
\(548\) −1.79679 + 3.11213i −0.0767550 + 0.132944i
\(549\) 4.14930 + 7.18680i 0.177088 + 0.306725i
\(550\) 10.4042 + 18.0206i 0.443637 + 0.768401i
\(551\) −7.27584 + 12.6021i −0.309961 + 0.536869i
\(552\) −19.9145 −0.847616
\(553\) −28.7119 10.9602i −1.22095 0.466076i
\(554\) 8.22256 0.349343
\(555\) 0.173648 0.300767i 0.00737095 0.0127669i
\(556\) −0.980238 1.69782i −0.0415713 0.0720037i
\(557\) 9.25196 + 16.0249i 0.392018 + 0.678996i 0.992716 0.120481i \(-0.0384437\pi\)
−0.600697 + 0.799476i \(0.705110\pi\)
\(558\) 4.76991 8.26173i 0.201927 0.349747i
\(559\) −6.10607 −0.258259
\(560\) −4.99660 + 4.06158i −0.211145 + 0.171633i
\(561\) 9.63816 0.406923
\(562\) 11.2173 19.4290i 0.473175 0.819564i
\(563\) −9.06805 15.7063i −0.382173 0.661942i 0.609200 0.793017i \(-0.291491\pi\)
−0.991373 + 0.131074i \(0.958157\pi\)
\(564\) 1.65270 + 2.86257i 0.0695914 + 0.120536i
\(565\) 5.57991 9.66468i 0.234748 0.406596i
\(566\) 46.3533 1.94837
\(567\) −2.05303 + 1.66885i −0.0862193 + 0.0700850i
\(568\) 26.8803 1.12787
\(569\) 12.9488 22.4279i 0.542841 0.940228i −0.455898 0.890032i \(-0.650682\pi\)
0.998739 0.0501963i \(-0.0159847\pi\)
\(570\) −0.841367 1.45729i −0.0352410 0.0610391i
\(571\) −13.0052 22.5257i −0.544251 0.942671i −0.998654 0.0518743i \(-0.983480\pi\)
0.454402 0.890797i \(-0.349853\pi\)
\(572\) 0.500000 0.866025i 0.0209061 0.0362103i
\(573\) −11.6408 −0.486303
\(574\) 17.4060 + 6.64441i 0.726513 + 0.277332i
\(575\) −37.0975 −1.54707
\(576\) −3.08512 + 5.34359i −0.128547 + 0.222650i
\(577\) −0.606944 1.05126i −0.0252674 0.0437645i 0.853115 0.521723i \(-0.174710\pi\)
−0.878383 + 0.477958i \(0.841377\pi\)
\(578\) −4.43969 7.68977i −0.184667 0.319852i
\(579\) −0.296789 + 0.514054i −0.0123341 + 0.0213634i
\(580\) 1.30272 0.0540925
\(581\) 2.46198 + 15.3593i 0.102140 + 0.637212i
\(582\) 19.5817 0.811688
\(583\) 1.26604 2.19285i 0.0524342 0.0908187i
\(584\) 0.698463 + 1.20977i 0.0289026 + 0.0500608i
\(585\) 0.266044 + 0.460802i 0.0109996 + 0.0190518i
\(586\) −6.37804 + 11.0471i −0.263474 + 0.456351i
\(587\) −27.9881 −1.15519 −0.577597 0.816322i \(-0.696010\pi\)
−0.577597 + 0.816322i \(0.696010\pi\)
\(588\) −0.496596 + 2.37981i −0.0204793 + 0.0981419i
\(589\) −12.8530 −0.529598
\(590\) 0.915593 1.58585i 0.0376944 0.0652886i
\(591\) 3.53936 + 6.13036i 0.145590 + 0.252169i
\(592\) −1.49273 2.58548i −0.0613507 0.106262i
\(593\) 9.93154 17.2019i 0.407840 0.706399i −0.586808 0.809726i \(-0.699616\pi\)
0.994647 + 0.103327i \(0.0329490\pi\)
\(594\) −4.41147 −0.181005
\(595\) 0.745815 + 4.65284i 0.0305754 + 0.190748i
\(596\) 2.01010 0.0823371
\(597\) −1.87551 + 3.24849i −0.0767597 + 0.132952i
\(598\) 6.02481 + 10.4353i 0.246373 + 0.426731i
\(599\) −4.59580 7.96016i −0.187779 0.325243i 0.756730 0.653727i \(-0.226796\pi\)
−0.944510 + 0.328484i \(0.893462\pi\)
\(600\) −5.97178 + 10.3434i −0.243797 + 0.422269i
\(601\) 19.2317 0.784479 0.392239 0.919863i \(-0.371700\pi\)
0.392239 + 0.919863i \(0.371700\pi\)
\(602\) 23.1236 + 8.82699i 0.942448 + 0.359761i
\(603\) −12.3969 −0.504842
\(604\) 0.128356 0.222318i 0.00522271 0.00904600i
\(605\) −0.720752 1.24838i −0.0293027 0.0507538i
\(606\) −11.1322 19.2816i −0.452216 0.783261i
\(607\) −9.32934 + 16.1589i −0.378666 + 0.655869i −0.990868 0.134832i \(-0.956951\pi\)
0.612202 + 0.790701i \(0.290284\pi\)
\(608\) −4.01186 −0.162702
\(609\) −14.4731 + 11.7648i −0.586481 + 0.476732i
\(610\) −6.76508 −0.273910
\(611\) −4.75877 + 8.24243i −0.192519 + 0.333453i
\(612\) −0.581252 1.00676i −0.0234957 0.0406958i
\(613\) −7.99660 13.8505i −0.322979 0.559417i 0.658122 0.752911i \(-0.271351\pi\)
−0.981101 + 0.193495i \(0.938018\pi\)
\(614\) −17.5797 + 30.4489i −0.709457 + 1.22882i
\(615\) −2.44562 −0.0986170
\(616\) 14.9684 12.1673i 0.603093 0.490236i
\(617\) 39.4056 1.58641 0.793205 0.608955i \(-0.208411\pi\)
0.793205 + 0.608955i \(0.208411\pi\)
\(618\) −8.95858 + 15.5167i −0.360367 + 0.624174i
\(619\) −15.3528 26.5919i −0.617082 1.06882i −0.990015 0.140959i \(-0.954981\pi\)
0.372934 0.927858i \(-0.378352\pi\)
\(620\) 0.575322 + 0.996487i 0.0231055 + 0.0400199i
\(621\) 3.93242 6.81115i 0.157803 0.273322i
\(622\) −1.81521 −0.0727832
\(623\) 13.5706 + 5.18031i 0.543694 + 0.207545i
\(624\) 4.57398 0.183106
\(625\) −10.4167 + 18.0422i −0.416668 + 0.721689i
\(626\) −3.36025 5.82013i −0.134303 0.232619i
\(627\) 2.97178 + 5.14728i 0.118682 + 0.205562i
\(628\) −3.74510 + 6.48670i −0.149446 + 0.258848i
\(629\) −2.18479 −0.0871134
\(630\) −0.341367 2.12965i −0.0136004 0.0848473i
\(631\) 21.4270 0.852994 0.426497 0.904489i \(-0.359748\pi\)
0.426497 + 0.904489i \(0.359748\pi\)
\(632\) 14.7062 25.4719i 0.584981 1.01322i
\(633\) −5.17499 8.96335i −0.205687 0.356261i
\(634\) 1.37939 + 2.38917i 0.0547824 + 0.0948859i
\(635\) −3.74376 + 6.48438i −0.148566 + 0.257325i
\(636\) −0.305407 −0.0121102
\(637\) −6.64930 + 2.18788i −0.263455 + 0.0866869i
\(638\) −31.0993 −1.23123
\(639\) −5.30793 + 9.19361i −0.209979 + 0.363694i
\(640\) −3.54916 6.14733i −0.140293 0.242995i
\(641\) 18.6395 + 32.2846i 0.736216 + 1.27516i 0.954188 + 0.299208i \(0.0967226\pi\)
−0.217972 + 0.975955i \(0.569944\pi\)
\(642\) 1.98293 3.43453i 0.0782598 0.135550i
\(643\) 23.7169 0.935303 0.467651 0.883913i \(-0.345100\pi\)
0.467651 + 0.883913i \(0.345100\pi\)
\(644\) −1.14378 7.13559i −0.0450713 0.281182i
\(645\) −3.24897 −0.127928
\(646\) −5.29292 + 9.16760i −0.208247 + 0.360695i
\(647\) −5.03462 8.72021i −0.197931 0.342827i 0.749926 0.661521i \(-0.230089\pi\)
−0.947857 + 0.318695i \(0.896756\pi\)
\(648\) −1.26604 2.19285i −0.0497349 0.0861434i
\(649\) −3.23396 + 5.60138i −0.126944 + 0.219873i
\(650\) 7.22668 0.283454
\(651\) −15.3910 5.87522i −0.603221 0.230268i
\(652\) −0.549001 −0.0215005
\(653\) 9.87480 17.1037i 0.386431 0.669318i −0.605536 0.795818i \(-0.707041\pi\)
0.991967 + 0.126500i \(0.0403745\pi\)
\(654\) −11.9081 20.6254i −0.465642 0.806516i
\(655\) 1.24969 + 2.16452i 0.0488293 + 0.0845747i
\(656\) −10.5116 + 18.2066i −0.410409 + 0.710850i
\(657\) −0.551689 −0.0215234
\(658\) 29.9368 24.3347i 1.16706 0.948664i
\(659\) 12.8075 0.498908 0.249454 0.968387i \(-0.419749\pi\)
0.249454 + 0.968387i \(0.419749\pi\)
\(660\) 0.266044 0.460802i 0.0103558 0.0179367i
\(661\) 17.3824 + 30.1072i 0.676096 + 1.17103i 0.976147 + 0.217110i \(0.0696630\pi\)
−0.300051 + 0.953923i \(0.597004\pi\)
\(662\) 19.2895 + 33.4104i 0.749708 + 1.29853i
\(663\) 1.67365 2.89884i 0.0649991 0.112582i
\(664\) −14.8871 −0.577733
\(665\) −2.25490 + 1.83294i −0.0874413 + 0.0710783i
\(666\) 1.00000 0.0387492
\(667\) 27.7221 48.0161i 1.07340 1.85919i
\(668\) −1.96926 3.41085i −0.0761928 0.131970i
\(669\) 10.3478 + 17.9229i 0.400068 + 0.692937i
\(670\) 5.05303 8.75211i 0.195216 0.338124i
\(671\) 23.8949 0.922451
\(672\) −4.80406 1.83386i −0.185321 0.0707426i
\(673\) 12.8479 0.495251 0.247626 0.968856i \(-0.420350\pi\)
0.247626 + 0.968856i \(0.420350\pi\)
\(674\) −15.0116 + 26.0009i −0.578226 + 1.00152i
\(675\) −2.35844 4.08494i −0.0907764 0.157229i
\(676\) −0.173648 0.300767i −0.00667878 0.0115680i
\(677\) −4.86571 + 8.42767i −0.187005 + 0.323901i −0.944250 0.329229i \(-0.893211\pi\)
0.757246 + 0.653130i \(0.226545\pi\)
\(678\) 32.1334 1.23408
\(679\) −5.35204 33.3893i −0.205393 1.28136i
\(680\) −4.50980 −0.172943
\(681\) −8.70233 + 15.0729i −0.333474 + 0.577594i
\(682\) −13.7344 23.7887i −0.525918 0.910917i
\(683\) −21.1125 36.5679i −0.807846 1.39923i −0.914353 0.404918i \(-0.867300\pi\)
0.106507 0.994312i \(-0.466033\pi\)
\(684\) 0.358441 0.620838i 0.0137053 0.0237383i
\(685\) −5.50568 −0.210361
\(686\) 28.3436 + 1.32683i 1.08217 + 0.0506585i
\(687\) −1.90673 −0.0727461
\(688\) −13.9645 + 24.1872i −0.532392 + 0.922130i
\(689\) −0.439693 0.761570i −0.0167510 0.0290135i
\(690\) 3.20574 + 5.55250i 0.122040 + 0.211380i
\(691\) −3.51114 + 6.08148i −0.133570 + 0.231350i −0.925050 0.379844i \(-0.875978\pi\)
0.791480 + 0.611195i \(0.209311\pi\)
\(692\) 0.816141 0.0310250
\(693\) 1.20574 + 7.52211i 0.0458022 + 0.285742i
\(694\) −17.3027 −0.656802
\(695\) 1.50181 2.60121i 0.0569669 0.0986696i
\(696\) −8.92514 15.4588i −0.338307 0.585964i
\(697\) 7.69253 + 13.3239i 0.291375 + 0.504677i
\(698\) 10.8662 18.8208i 0.411291 0.712377i
\(699\) 10.9932 0.415801
\(700\) −4.04916 1.54569i −0.153044 0.0584216i
\(701\) −7.47834 −0.282453 −0.141227 0.989977i \(-0.545105\pi\)
−0.141227 + 0.989977i \(0.545105\pi\)
\(702\) −0.766044 + 1.32683i −0.0289125 + 0.0500779i
\(703\) −0.673648 1.16679i −0.0254071 0.0440064i
\(704\) 8.88326 + 15.3863i 0.334800 + 0.579891i
\(705\) −2.53209 + 4.38571i −0.0953640 + 0.165175i
\(706\) −34.5749 −1.30124
\(707\) −29.8349 + 24.2518i −1.12206 + 0.912085i
\(708\) 0.780126 0.0293189
\(709\) 8.05010 13.9432i 0.302328 0.523647i −0.674335 0.738426i \(-0.735570\pi\)
0.976663 + 0.214779i \(0.0689030\pi\)
\(710\) −4.32707 7.49470i −0.162392 0.281271i
\(711\) 5.80793 + 10.0596i 0.217815 + 0.377266i
\(712\) −6.95084 + 12.0392i −0.260494 + 0.451188i
\(713\) 48.9718 1.83401
\(714\) −10.5287 + 8.55845i −0.394026 + 0.320292i
\(715\) 1.53209 0.0572969
\(716\) 2.05004 3.55077i 0.0766136 0.132699i
\(717\) 5.98680 + 10.3694i 0.223581 + 0.387254i
\(718\) −16.9381 29.3376i −0.632124 1.09487i
\(719\) −13.8584 + 24.0035i −0.516833 + 0.895180i 0.482976 + 0.875633i \(0.339556\pi\)
−0.999809 + 0.0195470i \(0.993778\pi\)
\(720\) 2.43376 0.0907010
\(721\) 28.9065 + 11.0345i 1.07653 + 0.410946i
\(722\) 22.5817 0.840405
\(723\) 12.0103 20.8024i 0.446667 0.773649i
\(724\) −3.44016 5.95853i −0.127853 0.221447i
\(725\) −16.6261 28.7973i −0.617479 1.06951i
\(726\) 2.07532 3.59456i 0.0770224 0.133407i
\(727\) −19.4543 −0.721520 −0.360760 0.932659i \(-0.617483\pi\)
−0.360760 + 0.932659i \(0.617483\pi\)
\(728\) −1.06031 6.61484i −0.0392976 0.245162i
\(729\) 1.00000 0.0370370
\(730\) 0.224871 0.389487i 0.00832283 0.0144156i
\(731\) 10.2194 + 17.7005i 0.377978 + 0.654678i
\(732\) −1.44104 2.49595i −0.0532623 0.0922529i
\(733\) −20.8705 + 36.1488i −0.770870 + 1.33519i 0.166216 + 0.986089i \(0.446845\pi\)
−0.937087 + 0.349097i \(0.886488\pi\)
\(734\) 47.4361 1.75090
\(735\) −3.53802 + 1.16415i −0.130502 + 0.0429401i
\(736\) 15.2858 0.563442
\(737\) −17.8478 + 30.9132i −0.657431 + 1.13870i
\(738\) −3.52094 6.09845i −0.129608 0.224487i
\(739\) −10.2173 17.6970i −0.375851 0.650993i 0.614603 0.788837i \(-0.289316\pi\)
−0.990454 + 0.137843i \(0.955983\pi\)
\(740\) −0.0603074 + 0.104455i −0.00221694 + 0.00383986i
\(741\) 2.06418 0.0758295
\(742\) 0.564178 + 3.51968i 0.0207116 + 0.129212i
\(743\) 42.7965 1.57005 0.785026 0.619462i \(-0.212649\pi\)
0.785026 + 0.619462i \(0.212649\pi\)
\(744\) 7.88326 13.6542i 0.289014 0.500587i
\(745\) 1.53983 + 2.66706i 0.0564150 + 0.0977136i
\(746\) 22.4761 + 38.9298i 0.822909 + 1.42532i
\(747\) 2.93969 5.09170i 0.107558 0.186295i
\(748\) −3.34730 −0.122389
\(749\) −6.39827 2.44242i −0.233788 0.0892440i
\(750\) 7.92127 0.289244
\(751\) 22.0476 38.1875i 0.804527 1.39348i −0.112082 0.993699i \(-0.535752\pi\)
0.916610 0.399783i \(-0.130915\pi\)
\(752\) 21.7665 + 37.7007i 0.793743 + 1.37480i
\(753\) 5.41400 + 9.37732i 0.197297 + 0.341729i
\(754\) −5.40033 + 9.35365i −0.196668 + 0.340640i
\(755\) 0.393304 0.0143138
\(756\) 0.713011 0.579585i 0.0259320 0.0210793i
\(757\) −3.65951 −0.133007 −0.0665036 0.997786i \(-0.521184\pi\)
−0.0665036 + 0.997786i \(0.521184\pi\)
\(758\) 28.5128 49.3856i 1.03563 1.79377i
\(759\) −11.3229 19.6119i −0.410997 0.711868i
\(760\) −1.39053 2.40847i −0.0504398 0.0873643i
\(761\) 4.33915 7.51562i 0.157294 0.272441i −0.776598 0.629996i \(-0.783056\pi\)
0.933892 + 0.357555i \(0.116390\pi\)
\(762\) −21.5594 −0.781016
\(763\) −31.9142 + 25.9420i −1.15537 + 0.939165i
\(764\) 4.04282 0.146264
\(765\) 0.890530 1.54244i 0.0321972 0.0557671i
\(766\) −11.3721 19.6971i −0.410891 0.711684i
\(767\) 1.12314 + 1.94534i 0.0405543 + 0.0702421i
\(768\) 4.04916 7.01336i 0.146112 0.253073i
\(769\) 35.8939 1.29437 0.647184 0.762334i \(-0.275946\pi\)
0.647184 + 0.762334i \(0.275946\pi\)
\(770\) −5.80200 2.21480i −0.209090 0.0798160i
\(771\)