Properties

Label 273.2.g.a.272.19
Level $273$
Weight $2$
Character 273.272
Analytic conductor $2.180$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 272.19
Character \(\chi\) \(=\) 273.272
Dual form 273.2.g.a.272.20

$q$-expansion

\(f(q)\) \(=\) \(q+0.305902 q^{2} +(1.47187 - 0.913018i) q^{3} -1.90642 q^{4} -2.05385i q^{5} +(0.450247 - 0.279294i) q^{6} +(-0.946976 - 2.47047i) q^{7} -1.19498 q^{8} +(1.33280 - 2.68769i) q^{9} +O(q^{10})\) \(q+0.305902 q^{2} +(1.47187 - 0.913018i) q^{3} -1.90642 q^{4} -2.05385i q^{5} +(0.450247 - 0.279294i) q^{6} +(-0.946976 - 2.47047i) q^{7} -1.19498 q^{8} +(1.33280 - 2.68769i) q^{9} -0.628276i q^{10} -5.03717 q^{11} +(-2.80601 + 1.74060i) q^{12} +(1.75886 + 3.14745i) q^{13} +(-0.289682 - 0.755722i) q^{14} +(-1.87520 - 3.02300i) q^{15} +3.44730 q^{16} +3.24764 q^{17} +(0.407705 - 0.822167i) q^{18} +4.21149 q^{19} +3.91551i q^{20} +(-3.64941 - 2.77161i) q^{21} -1.54088 q^{22} -5.65284i q^{23} +(-1.75886 + 1.09104i) q^{24} +0.781707 q^{25} +(0.538037 + 0.962809i) q^{26} +(-0.492200 - 5.17279i) q^{27} +(1.80534 + 4.70977i) q^{28} +5.12387i q^{29} +(-0.573627 - 0.924739i) q^{30} +5.11198 q^{31} +3.44450 q^{32} +(-7.41405 + 4.59902i) q^{33} +0.993458 q^{34} +(-5.07398 + 1.94495i) q^{35} +(-2.54088 + 5.12387i) q^{36} +4.85607i q^{37} +1.28830 q^{38} +(5.46248 + 3.02676i) q^{39} +2.45431i q^{40} -3.35692i q^{41} +(-1.11636 - 0.847839i) q^{42} -2.44730 q^{43} +9.60298 q^{44} +(-5.52010 - 2.73736i) q^{45} -1.72921i q^{46} -7.14420i q^{47} +(5.07398 - 3.14745i) q^{48} +(-5.20647 + 4.67896i) q^{49} +0.239125 q^{50} +(4.78010 - 2.96515i) q^{51} +(-3.35313 - 6.00037i) q^{52} -3.08346i q^{53} +(-0.150565 - 1.58236i) q^{54} +10.3456i q^{55} +(1.13162 + 2.95217i) q^{56} +(6.19876 - 3.84516i) q^{57} +1.56740i q^{58} +12.5550i q^{59} +(3.57493 + 5.76311i) q^{60} -3.48120i q^{61} +1.56376 q^{62} +(-7.90198 - 0.747467i) q^{63} -5.84093 q^{64} +(6.46438 - 3.61242i) q^{65} +(-2.26797 + 1.40685i) q^{66} +7.77520i q^{67} -6.19138 q^{68} +(-5.16114 - 8.32024i) q^{69} +(-1.55214 + 0.594962i) q^{70} -6.61172 q^{71} +(-1.59267 + 3.21173i) q^{72} +15.1278 q^{73} +1.48548i q^{74} +(1.15057 - 0.713712i) q^{75} -8.02888 q^{76} +(4.77008 + 12.4442i) q^{77} +(1.67098 + 0.925892i) q^{78} +2.15279 q^{79} -7.08024i q^{80} +(-5.44730 - 7.16428i) q^{81} -1.02689i q^{82} +0.936674i q^{83} +(6.95732 + 5.28386i) q^{84} -6.67016i q^{85} -0.748634 q^{86} +(4.67818 + 7.54166i) q^{87} +6.01932 q^{88} +11.5084i q^{89} +(-1.68861 - 0.837364i) q^{90} +(6.11009 - 7.32576i) q^{91} +10.7767i q^{92} +(7.52417 - 4.66733i) q^{93} -2.18542i q^{94} -8.64976i q^{95} +(5.06985 - 3.14489i) q^{96} -11.4241 q^{97} +(-1.59267 + 1.43130i) q^{98} +(-6.71352 + 13.5383i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 16q^{4} + O(q^{10}) \) \( 32q + 16q^{4} - 16q^{16} - 16q^{25} + 16q^{30} - 32q^{36} - 48q^{42} + 48q^{43} - 32q^{49} - 16q^{51} - 80q^{64} + 32q^{78} + 80q^{79} - 48q^{81} - 96q^{88} + 32q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.305902 0.216305 0.108153 0.994134i \(-0.465507\pi\)
0.108153 + 0.994134i \(0.465507\pi\)
\(3\) 1.47187 0.913018i 0.849784 0.527131i
\(4\) −1.90642 −0.953212
\(5\) 2.05385i 0.918509i −0.888305 0.459254i \(-0.848117\pi\)
0.888305 0.459254i \(-0.151883\pi\)
\(6\) 0.450247 0.279294i 0.183813 0.114021i
\(7\) −0.946976 2.47047i −0.357923 0.933751i
\(8\) −1.19498 −0.422490
\(9\) 1.33280 2.68769i 0.444266 0.895895i
\(10\) 0.628276i 0.198678i
\(11\) −5.03717 −1.51876 −0.759381 0.650646i \(-0.774498\pi\)
−0.759381 + 0.650646i \(0.774498\pi\)
\(12\) −2.80601 + 1.74060i −0.810024 + 0.502468i
\(13\) 1.75886 + 3.14745i 0.487819 + 0.872945i
\(14\) −0.289682 0.755722i −0.0774206 0.201975i
\(15\) −1.87520 3.02300i −0.484175 0.780534i
\(16\) 3.44730 0.861825
\(17\) 3.24764 0.787668 0.393834 0.919182i \(-0.371148\pi\)
0.393834 + 0.919182i \(0.371148\pi\)
\(18\) 0.407705 0.822167i 0.0960970 0.193787i
\(19\) 4.21149 0.966182 0.483091 0.875570i \(-0.339514\pi\)
0.483091 + 0.875570i \(0.339514\pi\)
\(20\) 3.91551i 0.875534i
\(21\) −3.64941 2.77161i −0.796367 0.604814i
\(22\) −1.54088 −0.328516
\(23\) 5.65284i 1.17870i −0.807879 0.589349i \(-0.799384\pi\)
0.807879 0.589349i \(-0.200616\pi\)
\(24\) −1.75886 + 1.09104i −0.359025 + 0.222707i
\(25\) 0.781707 0.156341
\(26\) 0.538037 + 0.962809i 0.105518 + 0.188822i
\(27\) −0.492200 5.17279i −0.0947240 0.995504i
\(28\) 1.80534 + 4.70977i 0.341177 + 0.890063i
\(29\) 5.12387i 0.951478i 0.879586 + 0.475739i \(0.157819\pi\)
−0.879586 + 0.475739i \(0.842181\pi\)
\(30\) −0.573627 0.924739i −0.104729 0.168834i
\(31\) 5.11198 0.918139 0.459070 0.888400i \(-0.348183\pi\)
0.459070 + 0.888400i \(0.348183\pi\)
\(32\) 3.44450 0.608907
\(33\) −7.41405 + 4.59902i −1.29062 + 0.800587i
\(34\) 0.993458 0.170377
\(35\) −5.07398 + 1.94495i −0.857659 + 0.328756i
\(36\) −2.54088 + 5.12387i −0.423480 + 0.853978i
\(37\) 4.85607i 0.798333i 0.916879 + 0.399166i \(0.130700\pi\)
−0.916879 + 0.399166i \(0.869300\pi\)
\(38\) 1.28830 0.208990
\(39\) 5.46248 + 3.02676i 0.874697 + 0.484670i
\(40\) 2.45431i 0.388061i
\(41\) 3.35692i 0.524263i −0.965032 0.262131i \(-0.915575\pi\)
0.965032 0.262131i \(-0.0844254\pi\)
\(42\) −1.11636 0.847839i −0.172258 0.130824i
\(43\) −2.44730 −0.373210 −0.186605 0.982435i \(-0.559748\pi\)
−0.186605 + 0.982435i \(0.559748\pi\)
\(44\) 9.60298 1.44770
\(45\) −5.52010 2.73736i −0.822888 0.408062i
\(46\) 1.72921i 0.254958i
\(47\) 7.14420i 1.04209i −0.853530 0.521044i \(-0.825543\pi\)
0.853530 0.521044i \(-0.174457\pi\)
\(48\) 5.07398 3.14745i 0.732365 0.454295i
\(49\) −5.20647 + 4.67896i −0.743782 + 0.668423i
\(50\) 0.239125 0.0338174
\(51\) 4.78010 2.96515i 0.669348 0.415204i
\(52\) −3.35313 6.00037i −0.464995 0.832102i
\(53\) 3.08346i 0.423545i −0.977319 0.211773i \(-0.932076\pi\)
0.977319 0.211773i \(-0.0679236\pi\)
\(54\) −0.150565 1.58236i −0.0204893 0.215333i
\(55\) 10.3456i 1.39500i
\(56\) 1.13162 + 2.95217i 0.151219 + 0.394500i
\(57\) 6.19876 3.84516i 0.821046 0.509304i
\(58\) 1.56740i 0.205810i
\(59\) 12.5550i 1.63452i 0.576271 + 0.817258i \(0.304507\pi\)
−0.576271 + 0.817258i \(0.695493\pi\)
\(60\) 3.57493 + 5.76311i 0.461521 + 0.744015i
\(61\) 3.48120i 0.445722i −0.974850 0.222861i \(-0.928460\pi\)
0.974850 0.222861i \(-0.0715396\pi\)
\(62\) 1.56376 0.198598
\(63\) −7.90198 0.747467i −0.995556 0.0941719i
\(64\) −5.84093 −0.730116
\(65\) 6.46438 3.61242i 0.801808 0.448066i
\(66\) −2.26797 + 1.40685i −0.279168 + 0.173171i
\(67\) 7.77520i 0.949892i 0.880015 + 0.474946i \(0.157532\pi\)
−0.880015 + 0.474946i \(0.842468\pi\)
\(68\) −6.19138 −0.750815
\(69\) −5.16114 8.32024i −0.621328 1.00164i
\(70\) −1.55214 + 0.594962i −0.185516 + 0.0711116i
\(71\) −6.61172 −0.784667 −0.392333 0.919823i \(-0.628332\pi\)
−0.392333 + 0.919823i \(0.628332\pi\)
\(72\) −1.59267 + 3.21173i −0.187698 + 0.378506i
\(73\) 15.1278 1.77057 0.885286 0.465046i \(-0.153962\pi\)
0.885286 + 0.465046i \(0.153962\pi\)
\(74\) 1.48548i 0.172683i
\(75\) 1.15057 0.713712i 0.132856 0.0824124i
\(76\) −8.02888 −0.920976
\(77\) 4.77008 + 12.4442i 0.543601 + 1.41815i
\(78\) 1.67098 + 0.925892i 0.189201 + 0.104837i
\(79\) 2.15279 0.242208 0.121104 0.992640i \(-0.461356\pi\)
0.121104 + 0.992640i \(0.461356\pi\)
\(80\) 7.08024i 0.791594i
\(81\) −5.44730 7.16428i −0.605256 0.796031i
\(82\) 1.02689i 0.113401i
\(83\) 0.936674i 0.102813i 0.998678 + 0.0514067i \(0.0163705\pi\)
−0.998678 + 0.0514067i \(0.983630\pi\)
\(84\) 6.95732 + 5.28386i 0.759106 + 0.576516i
\(85\) 6.67016i 0.723480i
\(86\) −0.748634 −0.0807272
\(87\) 4.67818 + 7.54166i 0.501554 + 0.808551i
\(88\) 6.01932 0.641662
\(89\) 11.5084i 1.21988i 0.792446 + 0.609941i \(0.208807\pi\)
−0.792446 + 0.609941i \(0.791193\pi\)
\(90\) −1.68861 0.837364i −0.177995 0.0882659i
\(91\) 6.11009 7.32576i 0.640511 0.767949i
\(92\) 10.7767i 1.12355i
\(93\) 7.52417 4.66733i 0.780220 0.483980i
\(94\) 2.18542i 0.225409i
\(95\) 8.64976i 0.887447i
\(96\) 5.06985 3.14489i 0.517439 0.320974i
\(97\) −11.4241 −1.15995 −0.579973 0.814636i \(-0.696937\pi\)
−0.579973 + 0.814636i \(0.696937\pi\)
\(98\) −1.59267 + 1.43130i −0.160884 + 0.144583i
\(99\) −6.71352 + 13.5383i −0.674734 + 1.36065i
\(100\) −1.49026 −0.149026
\(101\) −13.5884 −1.35210 −0.676048 0.736857i \(-0.736309\pi\)
−0.676048 + 0.736857i \(0.736309\pi\)
\(102\) 1.46224 0.907045i 0.144783 0.0898108i
\(103\) 4.90862i 0.483661i −0.970319 0.241830i \(-0.922252\pi\)
0.970319 0.241830i \(-0.0777478\pi\)
\(104\) −2.10180 3.76114i −0.206099 0.368810i
\(105\) −5.69246 + 7.49534i −0.555527 + 0.731470i
\(106\) 0.943234i 0.0916150i
\(107\) 7.75382i 0.749590i −0.927108 0.374795i \(-0.877713\pi\)
0.927108 0.374795i \(-0.122287\pi\)
\(108\) 0.938343 + 9.86153i 0.0902921 + 0.948926i
\(109\) 7.69033i 0.736600i 0.929707 + 0.368300i \(0.120060\pi\)
−0.929707 + 0.368300i \(0.879940\pi\)
\(110\) 3.16473i 0.301745i
\(111\) 4.43368 + 7.14750i 0.420826 + 0.678410i
\(112\) −3.26451 8.51647i −0.308467 0.804730i
\(113\) 0.251502i 0.0236593i 0.999930 + 0.0118297i \(0.00376559\pi\)
−0.999930 + 0.0118297i \(0.996234\pi\)
\(114\) 1.89621 1.17624i 0.177596 0.110165i
\(115\) −11.6101 −1.08264
\(116\) 9.76827i 0.906961i
\(117\) 10.8035 0.532342i 0.998788 0.0492150i
\(118\) 3.84058i 0.353554i
\(119\) −3.07544 8.02320i −0.281925 0.735486i
\(120\) 2.24083 + 3.61242i 0.204559 + 0.329768i
\(121\) 14.3730 1.30664
\(122\) 1.06490i 0.0964119i
\(123\) −3.06493 4.94095i −0.276355 0.445510i
\(124\) −9.74561 −0.875181
\(125\) 11.8747i 1.06211i
\(126\) −2.41723 0.228651i −0.215344 0.0203699i
\(127\) 6.22901 0.552735 0.276368 0.961052i \(-0.410869\pi\)
0.276368 + 0.961052i \(0.410869\pi\)
\(128\) −8.67574 −0.766835
\(129\) −3.60211 + 2.23443i −0.317148 + 0.196731i
\(130\) 1.97746 1.10505i 0.173435 0.0969190i
\(131\) 19.0708 1.66623 0.833114 0.553102i \(-0.186556\pi\)
0.833114 + 0.553102i \(0.186556\pi\)
\(132\) 14.1343 8.76769i 1.23024 0.763129i
\(133\) −3.98818 10.4044i −0.345819 0.902173i
\(134\) 2.37845i 0.205467i
\(135\) −10.6241 + 1.01090i −0.914379 + 0.0870048i
\(136\) −3.88087 −0.332782
\(137\) 1.85183 0.158212 0.0791062 0.996866i \(-0.474793\pi\)
0.0791062 + 0.996866i \(0.474793\pi\)
\(138\) −1.57880 2.54517i −0.134396 0.216660i
\(139\) 5.72541i 0.485623i 0.970073 + 0.242811i \(0.0780696\pi\)
−0.970073 + 0.242811i \(0.921930\pi\)
\(140\) 9.67315 3.70789i 0.817531 0.313374i
\(141\) −6.52278 10.5153i −0.549317 0.885550i
\(142\) −2.02254 −0.169727
\(143\) −8.85965 15.8542i −0.740881 1.32580i
\(144\) 4.59455 9.26526i 0.382880 0.772105i
\(145\) 10.5236 0.873941
\(146\) 4.62761 0.382984
\(147\) −3.39128 + 11.6404i −0.279708 + 0.960085i
\(148\) 9.25773i 0.760980i
\(149\) −0.129937 −0.0106448 −0.00532241 0.999986i \(-0.501694\pi\)
−0.00532241 + 0.999986i \(0.501694\pi\)
\(150\) 0.351961 0.218326i 0.0287375 0.0178262i
\(151\) 21.8890i 1.78130i −0.454688 0.890651i \(-0.650249\pi\)
0.454688 0.890651i \(-0.349751\pi\)
\(152\) −5.03265 −0.408202
\(153\) 4.32844 8.72863i 0.349934 0.705668i
\(154\) 1.45917 + 3.80670i 0.117584 + 0.306752i
\(155\) 10.4992i 0.843319i
\(156\) −10.4138 5.77030i −0.833772 0.461993i
\(157\) 10.1747i 0.812030i −0.913866 0.406015i \(-0.866918\pi\)
0.913866 0.406015i \(-0.133082\pi\)
\(158\) 0.658543 0.0523909
\(159\) −2.81525 4.53844i −0.223264 0.359922i
\(160\) 7.07448i 0.559287i
\(161\) −13.9652 + 5.35310i −1.10061 + 0.421883i
\(162\) −1.66634 2.19156i −0.130920 0.172186i
\(163\) 10.0437i 0.786684i −0.919392 0.393342i \(-0.871319\pi\)
0.919392 0.393342i \(-0.128681\pi\)
\(164\) 6.39971i 0.499734i
\(165\) 9.44569 + 15.2273i 0.735346 + 1.18545i
\(166\) 0.286530i 0.0222391i
\(167\) 10.8675i 0.840953i 0.907303 + 0.420477i \(0.138137\pi\)
−0.907303 + 0.420477i \(0.861863\pi\)
\(168\) 4.36098 + 3.31202i 0.336457 + 0.255528i
\(169\) −6.81285 + 11.0718i −0.524065 + 0.851678i
\(170\) 2.04041i 0.156492i
\(171\) 5.61306 11.3192i 0.429242 0.865597i
\(172\) 4.66560 0.355748
\(173\) 2.91530 0.221646 0.110823 0.993840i \(-0.464651\pi\)
0.110823 + 0.993840i \(0.464651\pi\)
\(174\) 1.43106 + 2.30701i 0.108489 + 0.174894i
\(175\) −0.740257 1.93118i −0.0559582 0.145984i
\(176\) −17.3646 −1.30891
\(177\) 11.4629 + 18.4793i 0.861605 + 1.38899i
\(178\) 3.52042i 0.263867i
\(179\) 14.3632i 1.07355i 0.843724 + 0.536777i \(0.180358\pi\)
−0.843724 + 0.536777i \(0.819642\pi\)
\(180\) 10.5236 + 5.21858i 0.784386 + 0.388970i
\(181\) 21.5491i 1.60173i 0.598844 + 0.800866i \(0.295627\pi\)
−0.598844 + 0.800866i \(0.704373\pi\)
\(182\) 1.86909 2.24096i 0.138546 0.166111i
\(183\) −3.17840 5.12387i −0.234954 0.378767i
\(184\) 6.75504i 0.497988i
\(185\) 9.97363 0.733276
\(186\) 2.30166 1.42774i 0.168766 0.104687i
\(187\) −16.3589 −1.19628
\(188\) 13.6199i 0.993331i
\(189\) −12.3131 + 6.11447i −0.895649 + 0.444763i
\(190\) 2.64598i 0.191959i
\(191\) 17.6376i 1.27621i −0.769950 0.638104i \(-0.779719\pi\)
0.769950 0.638104i \(-0.220281\pi\)
\(192\) −8.59708 + 5.33287i −0.620441 + 0.384867i
\(193\) 9.25773i 0.666386i 0.942859 + 0.333193i \(0.108126\pi\)
−0.942859 + 0.333193i \(0.891874\pi\)
\(194\) −3.49466 −0.250902
\(195\) 6.21651 11.2191i 0.445174 0.803417i
\(196\) 9.92575 8.92008i 0.708982 0.637148i
\(197\) 27.4590 1.95637 0.978186 0.207729i \(-0.0666072\pi\)
0.978186 + 0.207729i \(0.0666072\pi\)
\(198\) −2.05368 + 4.14139i −0.145949 + 0.294316i
\(199\) 7.53188i 0.533921i 0.963707 + 0.266960i \(0.0860193\pi\)
−0.963707 + 0.266960i \(0.913981\pi\)
\(200\) −0.934125 −0.0660526
\(201\) 7.09890 + 11.4441i 0.500718 + 0.807203i
\(202\) −4.15671 −0.292465
\(203\) 12.6584 4.85218i 0.888444 0.340556i
\(204\) −9.11290 + 5.65284i −0.638030 + 0.395778i
\(205\) −6.89460 −0.481540
\(206\) 1.50156i 0.104618i
\(207\) −15.1930 7.53409i −1.05599 0.523655i
\(208\) 6.06331 + 10.8502i 0.420415 + 0.752326i
\(209\) −21.2140 −1.46740
\(210\) −1.74133 + 2.29284i −0.120163 + 0.158221i
\(211\) −6.51280 −0.448360 −0.224180 0.974548i \(-0.571970\pi\)
−0.224180 + 0.974548i \(0.571970\pi\)
\(212\) 5.87837i 0.403728i
\(213\) −9.73159 + 6.03662i −0.666797 + 0.413622i
\(214\) 2.37191i 0.162140i
\(215\) 5.02639i 0.342797i
\(216\) 0.588170 + 6.18139i 0.0400199 + 0.420590i
\(217\) −4.84093 12.6290i −0.328623 0.857313i
\(218\) 2.35248i 0.159330i
\(219\) 22.2661 13.8119i 1.50460 0.933324i
\(220\) 19.7231i 1.32973i
\(221\) 5.71213 + 10.2218i 0.384239 + 0.687591i
\(222\) 1.35627 + 2.18643i 0.0910268 + 0.146744i
\(223\) −5.02772 −0.336681 −0.168340 0.985729i \(-0.553841\pi\)
−0.168340 + 0.985729i \(0.553841\pi\)
\(224\) −3.26186 8.50954i −0.217942 0.568568i
\(225\) 1.04186 2.10098i 0.0694571 0.140065i
\(226\) 0.0769350i 0.00511764i
\(227\) 10.0833i 0.669255i 0.942350 + 0.334628i \(0.108611\pi\)
−0.942350 + 0.334628i \(0.891389\pi\)
\(228\) −11.8175 + 7.33051i −0.782631 + 0.485475i
\(229\) 7.00449 0.462870 0.231435 0.972850i \(-0.425658\pi\)
0.231435 + 0.972850i \(0.425658\pi\)
\(230\) −3.55154 −0.234182
\(231\) 18.3827 + 13.9610i 1.20949 + 0.918569i
\(232\) 6.12293i 0.401990i
\(233\) 23.2904i 1.52580i 0.646514 + 0.762902i \(0.276226\pi\)
−0.646514 + 0.762902i \(0.723774\pi\)
\(234\) 3.30482 0.162844i 0.216043 0.0106455i
\(235\) −14.6731 −0.957167
\(236\) 23.9351i 1.55804i
\(237\) 3.16863 1.96554i 0.205825 0.127676i
\(238\) −0.940781 2.45431i −0.0609818 0.159089i
\(239\) −9.99015 −0.646209 −0.323105 0.946363i \(-0.604727\pi\)
−0.323105 + 0.946363i \(0.604727\pi\)
\(240\) −6.46438 10.4212i −0.417274 0.672684i
\(241\) −6.73574 −0.433887 −0.216944 0.976184i \(-0.569609\pi\)
−0.216944 + 0.976184i \(0.569609\pi\)
\(242\) 4.39674 0.282633
\(243\) −14.5588 5.57140i −0.933949 0.357405i
\(244\) 6.63664i 0.424867i
\(245\) 9.60987 + 10.6933i 0.613952 + 0.683170i
\(246\) −0.937566 1.51144i −0.0597770 0.0963661i
\(247\) 7.40740 + 13.2554i 0.471322 + 0.843423i
\(248\) −6.10872 −0.387904
\(249\) 0.855200 + 1.37866i 0.0541961 + 0.0873691i
\(250\) 3.63251i 0.229740i
\(251\) 7.28687 0.459943 0.229971 0.973197i \(-0.426137\pi\)
0.229971 + 0.973197i \(0.426137\pi\)
\(252\) 15.0645 + 1.42499i 0.948976 + 0.0897658i
\(253\) 28.4743i 1.79016i
\(254\) 1.90546 0.119559
\(255\) −6.08997 9.81760i −0.381369 0.614802i
\(256\) 9.02793 0.564245
\(257\) −13.3387 −0.832046 −0.416023 0.909354i \(-0.636576\pi\)
−0.416023 + 0.909354i \(0.636576\pi\)
\(258\) −1.10189 + 0.683516i −0.0686007 + 0.0425538i
\(259\) 11.9968 4.59858i 0.745444 0.285742i
\(260\) −12.3238 + 6.88681i −0.764293 + 0.427102i
\(261\) 13.7713 + 6.82908i 0.852425 + 0.422709i
\(262\) 5.83380 0.360413
\(263\) 17.9410i 1.10629i 0.833086 + 0.553144i \(0.186572\pi\)
−0.833086 + 0.553144i \(0.813428\pi\)
\(264\) 8.85965 5.49575i 0.545274 0.338240i
\(265\) −6.33295 −0.389030
\(266\) −1.21999 3.18271i −0.0748024 0.195145i
\(267\) 10.5073 + 16.9388i 0.643038 + 1.03664i
\(268\) 14.8228i 0.905449i
\(269\) 29.5227 1.80003 0.900015 0.435858i \(-0.143555\pi\)
0.900015 + 0.435858i \(0.143555\pi\)
\(270\) −3.24994 + 0.309237i −0.197785 + 0.0188196i
\(271\) −11.1865 −0.679531 −0.339765 0.940510i \(-0.610348\pi\)
−0.339765 + 0.940510i \(0.610348\pi\)
\(272\) 11.1956 0.678832
\(273\) 2.30470 16.3612i 0.139487 0.990224i
\(274\) 0.566478 0.0342222
\(275\) −3.93759 −0.237445
\(276\) 9.83932 + 15.8619i 0.592258 + 0.954774i
\(277\) −17.2968 −1.03927 −0.519633 0.854390i \(-0.673931\pi\)
−0.519633 + 0.854390i \(0.673931\pi\)
\(278\) 1.75141i 0.105043i
\(279\) 6.81324 13.7394i 0.407898 0.822556i
\(280\) 6.06331 2.32417i 0.362352 0.138896i
\(281\) 14.6332 0.872946 0.436473 0.899717i \(-0.356227\pi\)
0.436473 + 0.899717i \(0.356227\pi\)
\(282\) −1.99533 3.21665i −0.118820 0.191549i
\(283\) 22.6152i 1.34433i −0.740399 0.672167i \(-0.765364\pi\)
0.740399 0.672167i \(-0.234636\pi\)
\(284\) 12.6047 0.747954
\(285\) −7.89738 12.7313i −0.467801 0.754138i
\(286\) −2.71018 4.84983i −0.160256 0.286776i
\(287\) −8.29318 + 3.17892i −0.489531 + 0.187646i
\(288\) 4.59082 9.25773i 0.270517 0.545517i
\(289\) −6.45284 −0.379579
\(290\) 3.21920 0.189038
\(291\) −16.8148 + 10.4304i −0.985704 + 0.611443i
\(292\) −28.8400 −1.68773
\(293\) 7.02886i 0.410631i 0.978696 + 0.205315i \(0.0658220\pi\)
−0.978696 + 0.205315i \(0.934178\pi\)
\(294\) −1.03740 + 3.56082i −0.0605022 + 0.207671i
\(295\) 25.7860 1.50132
\(296\) 5.80291i 0.337287i
\(297\) 2.47930 + 26.0562i 0.143863 + 1.51193i
\(298\) −0.0397478 −0.00230253
\(299\) 17.7920 9.94253i 1.02894 0.574991i
\(300\) −2.19347 + 1.36064i −0.126640 + 0.0785565i
\(301\) 2.31754 + 6.04599i 0.133581 + 0.348485i
\(302\) 6.69588i 0.385305i
\(303\) −20.0004 + 12.4065i −1.14899 + 0.712732i
\(304\) 14.5183 0.832680
\(305\) −7.14985 −0.409399
\(306\) 1.32408 2.67010i 0.0756925 0.152640i
\(307\) 5.56810 0.317788 0.158894 0.987296i \(-0.449207\pi\)
0.158894 + 0.987296i \(0.449207\pi\)
\(308\) −9.09379 23.7239i −0.518167 1.35179i
\(309\) −4.48166 7.22485i −0.254953 0.411007i
\(310\) 3.21173i 0.182414i
\(311\) −11.4078 −0.646878 −0.323439 0.946249i \(-0.604839\pi\)
−0.323439 + 0.946249i \(0.604839\pi\)
\(312\) −6.52756 3.61693i −0.369551 0.204768i
\(313\) 30.7773i 1.73964i 0.493374 + 0.869818i \(0.335764\pi\)
−0.493374 + 0.869818i \(0.664236\pi\)
\(314\) 3.11246i 0.175646i
\(315\) −1.53518 + 16.2295i −0.0864978 + 0.914427i
\(316\) −4.10414 −0.230876
\(317\) 2.17223 0.122005 0.0610023 0.998138i \(-0.480570\pi\)
0.0610023 + 0.998138i \(0.480570\pi\)
\(318\) −0.861189 1.38832i −0.0482931 0.0778530i
\(319\) 25.8098i 1.44507i
\(320\) 11.9964i 0.670618i
\(321\) −7.07937 11.4126i −0.395132 0.636989i
\(322\) −4.27197 + 1.63752i −0.238068 + 0.0912556i
\(323\) 13.6774 0.761030
\(324\) 10.3849 + 13.6582i 0.576937 + 0.758786i
\(325\) 1.37491 + 2.46038i 0.0762663 + 0.136477i
\(326\) 3.07239i 0.170164i
\(327\) 7.02140 + 11.3192i 0.388285 + 0.625951i
\(328\) 4.01146i 0.221496i
\(329\) −17.6495 + 6.76538i −0.973051 + 0.372988i
\(330\) 2.88945 + 4.65807i 0.159059 + 0.256418i
\(331\) 6.75504i 0.371290i 0.982617 + 0.185645i \(0.0594375\pi\)
−0.982617 + 0.185645i \(0.940563\pi\)
\(332\) 1.78570i 0.0980029i
\(333\) 13.0516 + 6.47216i 0.715222 + 0.354672i
\(334\) 3.32439i 0.181902i
\(335\) 15.9691 0.872485
\(336\) −12.5806 9.55456i −0.686329 0.521244i
\(337\) 9.27641 0.505318 0.252659 0.967555i \(-0.418695\pi\)
0.252659 + 0.967555i \(0.418695\pi\)
\(338\) −2.08406 + 3.38689i −0.113358 + 0.184222i
\(339\) 0.229626 + 0.370178i 0.0124716 + 0.0201053i
\(340\) 12.7161i 0.689630i
\(341\) −25.7499 −1.39444
\(342\) 1.71704 3.46255i 0.0928471 0.187233i
\(343\) 16.4896 + 8.43159i 0.890357 + 0.455263i
\(344\) 2.92448 0.157677
\(345\) −17.0885 + 10.6002i −0.920014 + 0.570695i
\(346\) 0.891795 0.0479432
\(347\) 27.7698i 1.49076i 0.666639 + 0.745381i \(0.267732\pi\)
−0.666639 + 0.745381i \(0.732268\pi\)
\(348\) −8.91860 14.3776i −0.478087 0.770721i
\(349\) −3.18709 −0.170601 −0.0853006 0.996355i \(-0.527185\pi\)
−0.0853006 + 0.996355i \(0.527185\pi\)
\(350\) −0.226446 0.590753i −0.0121040 0.0315771i
\(351\) 15.4154 10.6474i 0.822812 0.568314i
\(352\) −17.3505 −0.924785
\(353\) 22.2593i 1.18474i 0.805664 + 0.592372i \(0.201808\pi\)
−0.805664 + 0.592372i \(0.798192\pi\)
\(354\) 3.50652 + 5.65284i 0.186369 + 0.300445i
\(355\) 13.5795i 0.720723i
\(356\) 21.9398i 1.16281i
\(357\) −11.8520 9.00118i −0.627273 0.476393i
\(358\) 4.39372i 0.232215i
\(359\) −21.3887 −1.12885 −0.564426 0.825484i \(-0.690902\pi\)
−0.564426 + 0.825484i \(0.690902\pi\)
\(360\) 6.59641 + 3.27110i 0.347662 + 0.172402i
\(361\) −1.26336 −0.0664929
\(362\) 6.59190i 0.346463i
\(363\) 21.1552 13.1228i 1.11036 0.688771i
\(364\) −11.6484 + 13.9660i −0.610543 + 0.732018i
\(365\) 31.0702i 1.62629i
\(366\) −0.972276 1.56740i −0.0508217 0.0819293i
\(367\) 0.740357i 0.0386463i −0.999813 0.0193232i \(-0.993849\pi\)
0.999813 0.0193232i \(-0.00615113\pi\)
\(368\) 19.4870i 1.01583i
\(369\) −9.02234 4.47409i −0.469684 0.232912i
\(370\) 3.05095 0.158611
\(371\) −7.61759 + 2.91996i −0.395486 + 0.151597i
\(372\) −14.3443 + 8.89791i −0.743715 + 0.461335i
\(373\) −32.7429 −1.69536 −0.847681 0.530506i \(-0.822002\pi\)
−0.847681 + 0.530506i \(0.822002\pi\)
\(374\) −5.00421 −0.258762
\(375\) −10.8419 17.4781i −0.559871 0.902564i
\(376\) 8.53718i 0.440272i
\(377\) −16.1271 + 9.01215i −0.830588 + 0.464149i
\(378\) −3.76661 + 1.87043i −0.193733 + 0.0962044i
\(379\) 17.2796i 0.887594i −0.896127 0.443797i \(-0.853631\pi\)
0.896127 0.443797i \(-0.146369\pi\)
\(380\) 16.4901i 0.845925i
\(381\) 9.16828 5.68719i 0.469705 0.291364i
\(382\) 5.39536i 0.276050i
\(383\) 20.5205i 1.04855i −0.851549 0.524274i \(-0.824337\pi\)
0.851549 0.524274i \(-0.175663\pi\)
\(384\) −12.7696 + 7.92111i −0.651644 + 0.404222i
\(385\) 25.5585 9.79701i 1.30258 0.499302i
\(386\) 2.83195i 0.144143i
\(387\) −3.26176 + 6.57758i −0.165804 + 0.334357i
\(388\) 21.7793 1.10567
\(389\) 32.7317i 1.65956i −0.558089 0.829781i \(-0.688465\pi\)
0.558089 0.829781i \(-0.311535\pi\)
\(390\) 1.90164 3.43194i 0.0962934 0.173783i
\(391\) 18.3584i 0.928423i
\(392\) 6.22164 5.59127i 0.314240 0.282402i
\(393\) 28.0698 17.4120i 1.41593 0.878320i
\(394\) 8.39975 0.423173
\(395\) 4.42151i 0.222471i
\(396\) 12.7988 25.8098i 0.643165 1.29699i
\(397\) 32.5731 1.63480 0.817399 0.576073i \(-0.195415\pi\)
0.817399 + 0.576073i \(0.195415\pi\)
\(398\) 2.30401i 0.115490i
\(399\) −15.3694 11.6726i −0.769435 0.584360i
\(400\) 2.69478 0.134739
\(401\) −26.8272 −1.33968 −0.669842 0.742503i \(-0.733638\pi\)
−0.669842 + 0.742503i \(0.733638\pi\)
\(402\) 2.17156 + 3.50076i 0.108308 + 0.174602i
\(403\) 8.99124 + 16.0897i 0.447886 + 0.801485i
\(404\) 25.9053 1.28883
\(405\) −14.7143 + 11.1879i −0.731162 + 0.555933i
\(406\) 3.87222 1.48429i 0.192175 0.0736641i
\(407\) 24.4608i 1.21248i
\(408\) −5.71213 + 3.54330i −0.282793 + 0.175420i
\(409\) 21.6481 1.07043 0.535215 0.844716i \(-0.320231\pi\)
0.535215 + 0.844716i \(0.320231\pi\)
\(410\) −2.10907 −0.104160
\(411\) 2.72565 1.69075i 0.134446 0.0833987i
\(412\) 9.35792i 0.461031i
\(413\) 31.0167 11.8893i 1.52623 0.585032i
\(414\) −4.64758 2.30469i −0.228416 0.113269i
\(415\) 1.92379 0.0944350
\(416\) 6.05838 + 10.8414i 0.297036 + 0.531542i
\(417\) 5.22740 + 8.42705i 0.255987 + 0.412675i
\(418\) −6.48939 −0.317406
\(419\) 15.2533 0.745173 0.372586 0.927998i \(-0.378471\pi\)
0.372586 + 0.927998i \(0.378471\pi\)
\(420\) 10.8522 14.2893i 0.529535 0.697246i
\(421\) 15.6273i 0.761630i −0.924651 0.380815i \(-0.875643\pi\)
0.924651 0.380815i \(-0.124357\pi\)
\(422\) −1.99228 −0.0969825
\(423\) −19.2013 9.52177i −0.933601 0.462964i
\(424\) 3.68467i 0.178944i
\(425\) 2.53870 0.123145
\(426\) −2.97691 + 1.84661i −0.144232 + 0.0894686i
\(427\) −8.60021 + 3.29661i −0.416193 + 0.159534i
\(428\) 14.7821i 0.714518i
\(429\) −27.5154 15.2463i −1.32846 0.736099i
\(430\) 1.53758i 0.0741487i
\(431\) −26.9735 −1.29927 −0.649634 0.760247i \(-0.725078\pi\)
−0.649634 + 0.760247i \(0.725078\pi\)
\(432\) −1.69676 17.8322i −0.0816356 0.857950i
\(433\) 22.0774i 1.06097i 0.847693 + 0.530487i \(0.177991\pi\)
−0.847693 + 0.530487i \(0.822009\pi\)
\(434\) −1.48085 3.86324i −0.0710829 0.185441i
\(435\) 15.4894 9.60828i 0.742661 0.460682i
\(436\) 14.6610i 0.702136i
\(437\) 23.8069i 1.13884i
\(438\) 6.81124 4.22509i 0.325454 0.201883i
\(439\) 14.1901i 0.677257i −0.940920 0.338628i \(-0.890037\pi\)
0.940920 0.338628i \(-0.109963\pi\)
\(440\) 12.3628i 0.589372i
\(441\) 5.63639 + 20.2295i 0.268400 + 0.963308i
\(442\) 1.74735 + 3.12686i 0.0831130 + 0.148729i
\(443\) 26.8422i 1.27531i 0.770321 + 0.637657i \(0.220096\pi\)
−0.770321 + 0.637657i \(0.779904\pi\)
\(444\) −8.45247 13.6262i −0.401136 0.646669i
\(445\) 23.6364 1.12047
\(446\) −1.53799 −0.0728258
\(447\) −0.191250 + 0.118634i −0.00904580 + 0.00561121i
\(448\) 5.53122 + 14.4298i 0.261325 + 0.681746i
\(449\) 2.49034 0.117526 0.0587631 0.998272i \(-0.481284\pi\)
0.0587631 + 0.998272i \(0.481284\pi\)
\(450\) 0.318706 0.642694i 0.0150239 0.0302969i
\(451\) 16.9094i 0.796231i
\(452\) 0.479470i 0.0225524i
\(453\) −19.9850 32.2177i −0.938979 1.51372i
\(454\) 3.08451i 0.144763i
\(455\) −15.0460 12.5492i −0.705368 0.588315i
\(456\) −7.40740 + 4.59490i −0.346883 + 0.215176i
\(457\) 19.3863i 0.906853i −0.891294 0.453427i \(-0.850201\pi\)
0.891294 0.453427i \(-0.149799\pi\)
\(458\) 2.14268 0.100121
\(459\) −1.59849 16.7993i −0.0746111 0.784126i
\(460\) 22.1337 1.03199
\(461\) 17.5300i 0.816452i −0.912881 0.408226i \(-0.866147\pi\)
0.912881 0.408226i \(-0.133853\pi\)
\(462\) 5.62329 + 4.27071i 0.261619 + 0.198691i
\(463\) 1.55946i 0.0724741i 0.999343 + 0.0362371i \(0.0115371\pi\)
−0.999343 + 0.0362371i \(0.988463\pi\)
\(464\) 17.6635i 0.820008i
\(465\) −9.58599 15.4535i −0.444540 0.716639i
\(466\) 7.12457i 0.330039i
\(467\) −36.3661 −1.68282 −0.841412 0.540394i \(-0.818275\pi\)
−0.841412 + 0.540394i \(0.818275\pi\)
\(468\) −20.5961 + 1.01487i −0.952057 + 0.0469124i
\(469\) 19.2084 7.36293i 0.886963 0.339989i
\(470\) −4.48852 −0.207040
\(471\) −9.28968 14.9758i −0.428046 0.690050i
\(472\) 15.0029i 0.690567i
\(473\) 12.3275 0.566817
\(474\) 0.969290 0.601262i 0.0445210 0.0276169i
\(475\) 3.29215 0.151054
\(476\) 5.86309 + 15.2956i 0.268734 + 0.701074i
\(477\) −8.28736 4.10962i −0.379452 0.188167i
\(478\) −3.05600 −0.139778
\(479\) 21.0908i 0.963662i −0.876264 0.481831i \(-0.839972\pi\)
0.876264 0.481831i \(-0.160028\pi\)
\(480\) −6.45912 10.4127i −0.294817 0.475273i
\(481\) −15.2842 + 8.54113i −0.696900 + 0.389442i
\(482\) −2.06047 −0.0938521
\(483\) −15.6674 + 20.6295i −0.712893 + 0.938676i
\(484\) −27.4011 −1.24551
\(485\) 23.4635i 1.06542i
\(486\) −4.45357 1.70430i −0.202018 0.0773086i
\(487\) 28.4284i 1.28821i 0.764936 + 0.644106i \(0.222771\pi\)
−0.764936 + 0.644106i \(0.777229\pi\)
\(488\) 4.15997i 0.188313i
\(489\) −9.17008 14.7830i −0.414685 0.668511i
\(490\) 2.93967 + 3.27110i 0.132801 + 0.147773i
\(491\) 11.0888i 0.500429i −0.968190 0.250215i \(-0.919499\pi\)
0.968190 0.250215i \(-0.0805012\pi\)
\(492\) 5.84305 + 9.41954i 0.263425 + 0.424666i
\(493\) 16.6405i 0.749449i
\(494\) 2.26594 + 4.05486i 0.101949 + 0.182437i
\(495\) 27.8057 + 13.7886i 1.24977 + 0.619750i
\(496\) 17.6225 0.791276
\(497\) 6.26114 + 16.3341i 0.280851 + 0.732683i
\(498\) 0.261607 + 0.421735i 0.0117229 + 0.0188984i
\(499\) 17.7340i 0.793884i −0.917844 0.396942i \(-0.870071\pi\)
0.917844 0.396942i \(-0.129929\pi\)
\(500\) 22.6383i 1.01242i
\(501\) 9.92223 + 15.9956i 0.443293 + 0.714629i
\(502\) 2.22906 0.0994880
\(503\) 5.75154 0.256449 0.128224 0.991745i \(-0.459072\pi\)
0.128224 + 0.991745i \(0.459072\pi\)
\(504\) 9.44272 + 0.893209i 0.420612 + 0.0397867i
\(505\) 27.9085i 1.24191i
\(506\) 8.71033i 0.387221i
\(507\) 0.0811417 + 22.5165i 0.00360363 + 0.999994i
\(508\) −11.8751 −0.526874
\(509\) 22.4218i 0.993831i 0.867799 + 0.496915i \(0.165534\pi\)
−0.867799 + 0.496915i \(0.834466\pi\)
\(510\) −1.86293 3.00322i −0.0824920 0.132985i
\(511\) −14.3256 37.3728i −0.633729 1.65327i
\(512\) 20.1131 0.888884
\(513\) −2.07290 21.7851i −0.0915206 0.961837i
\(514\) −4.08034 −0.179976
\(515\) −10.0816 −0.444247
\(516\) 6.86715 4.25977i 0.302309 0.187526i
\(517\) 35.9865i 1.58268i
\(518\) 3.66984 1.40671i 0.161243 0.0618074i
\(519\) 4.29094 2.66172i 0.188351 0.116837i
\(520\) −7.72481 + 4.31678i −0.338756 + 0.189303i
\(521\) 1.51591 0.0664132 0.0332066 0.999449i \(-0.489428\pi\)
0.0332066 + 0.999449i \(0.489428\pi\)
\(522\) 4.21268 + 2.08903i 0.184384 + 0.0914342i
\(523\) 10.9151i 0.477282i −0.971108 0.238641i \(-0.923298\pi\)
0.971108 0.238641i \(-0.0767020\pi\)
\(524\) −36.3571 −1.58827
\(525\) −2.85277 2.16658i −0.124505 0.0945575i
\(526\) 5.48818i 0.239296i
\(527\) 16.6019 0.723189
\(528\) −25.5585 + 15.8542i −1.11229 + 0.689966i
\(529\) −8.95456 −0.389329
\(530\) −1.93726 −0.0841492
\(531\) 33.7438 + 16.7332i 1.46436 + 0.726160i
\(532\) 7.60316 + 19.8351i 0.329639 + 0.859962i
\(533\) 10.5657 5.90434i 0.457652 0.255745i
\(534\) 3.21421 + 5.18160i 0.139092 + 0.224230i
\(535\) −15.9252 −0.688505
\(536\) 9.29123i 0.401320i
\(537\) 13.1138 + 21.1407i 0.565903 + 0.912288i
\(538\) 9.03104 0.389356
\(539\) 26.2259 23.5687i 1.12963 1.01518i
\(540\) 20.2541 1.92721i 0.871597 0.0829341i
\(541\) 7.42511i 0.319230i −0.987179 0.159615i \(-0.948975\pi\)
0.987179 0.159615i \(-0.0510253\pi\)
\(542\) −3.42196 −0.146986
\(543\) 19.6747 + 31.7174i 0.844322 + 1.36113i
\(544\) 11.1865 0.479617
\(545\) 15.7948 0.676573
\(546\) 0.705011 5.00491i 0.0301717 0.214191i
\(547\) 16.0698 0.687094 0.343547 0.939135i \(-0.388371\pi\)
0.343547 + 0.939135i \(0.388371\pi\)
\(548\) −3.53037 −0.150810
\(549\) −9.35636 4.63973i −0.399320 0.198019i
\(550\) −1.20451 −0.0513607
\(551\) 21.5791i 0.919301i
\(552\) 6.16747 + 9.94253i 0.262505 + 0.423182i
\(553\) −2.03865 5.31842i −0.0866920 0.226162i
\(554\) −5.29113 −0.224799
\(555\) 14.6799 9.10610i 0.623126 0.386532i
\(556\) 10.9151i 0.462902i
\(557\) −16.8791 −0.715193 −0.357596 0.933876i \(-0.616404\pi\)
−0.357596 + 0.933876i \(0.616404\pi\)
\(558\) 2.08418 4.20290i 0.0882304 0.177923i
\(559\) −4.30445 7.70275i −0.182059 0.325792i
\(560\) −17.4915 + 6.70481i −0.739152 + 0.283330i
\(561\) −24.0782 + 14.9360i −1.01658 + 0.630597i
\(562\) 4.47633 0.188823
\(563\) −0.607801 −0.0256157 −0.0128079 0.999918i \(-0.504077\pi\)
−0.0128079 + 0.999918i \(0.504077\pi\)
\(564\) 12.4352 + 20.0467i 0.523616 + 0.844117i
\(565\) 0.516548 0.0217313
\(566\) 6.91803i 0.290786i
\(567\) −12.5407 + 20.2418i −0.526660 + 0.850076i
\(568\) 7.90088 0.331514
\(569\) 5.43594i 0.227886i 0.993487 + 0.113943i \(0.0363482\pi\)
−0.993487 + 0.113943i \(0.963652\pi\)
\(570\) −2.41582 3.89453i −0.101188 0.163124i
\(571\) −25.0656 −1.04896 −0.524482 0.851422i \(-0.675741\pi\)
−0.524482 + 0.851422i \(0.675741\pi\)
\(572\) 16.8903 + 30.2249i 0.706217 + 1.26376i
\(573\) −16.1034 25.9602i −0.672729 1.08450i
\(574\) −2.53690 + 0.972438i −0.105888 + 0.0405888i
\(575\) 4.41886i 0.184279i
\(576\) −7.78477 + 15.6986i −0.324365 + 0.654107i
\(577\) −15.8303 −0.659022 −0.329511 0.944152i \(-0.606884\pi\)
−0.329511 + 0.944152i \(0.606884\pi\)
\(578\) −1.97394 −0.0821049
\(579\) 8.45247 + 13.6262i 0.351273 + 0.566284i
\(580\) −20.0625 −0.833051
\(581\) 2.31403 0.887008i 0.0960021 0.0367993i
\(582\) −5.14369 + 3.19069i −0.213213 + 0.132258i
\(583\) 15.5319i 0.643265i
\(584\) −18.0774 −0.748049
\(585\) −1.09335 22.1888i −0.0452045 0.917396i
\(586\) 2.15014i 0.0888215i
\(587\) 34.0187i 1.40410i 0.712126 + 0.702052i \(0.247733\pi\)
−0.712126 + 0.702052i \(0.752267\pi\)
\(588\) 6.46521 22.1916i 0.266621 0.915165i
\(589\) 21.5291 0.887089
\(590\) 7.88798 0.324743
\(591\) 40.4161 25.0706i 1.66249 1.03126i
\(592\) 16.7403i 0.688023i
\(593\) 0.808753i 0.0332115i −0.999862 0.0166058i \(-0.994714\pi\)
0.999862 0.0166058i \(-0.00528602\pi\)
\(594\) 0.758420 + 7.97063i 0.0311184 + 0.327039i
\(595\) −16.4784 + 6.31648i −0.675550 + 0.258950i
\(596\) 0.247714 0.0101468
\(597\) 6.87674 + 11.0859i 0.281446 + 0.453717i
\(598\) 5.44260 3.04144i 0.222565 0.124374i
\(599\) 0.0865332i 0.00353565i 0.999998 + 0.00176783i \(0.000562717\pi\)
−0.999998 + 0.00176783i \(0.999437\pi\)
\(600\) −1.37491 + 0.852873i −0.0561305 + 0.0348184i
\(601\) 11.1624i 0.455322i −0.973740 0.227661i \(-0.926892\pi\)
0.973740 0.227661i \(-0.0731079\pi\)
\(602\) 0.708938 + 1.84948i 0.0288942 + 0.0753791i
\(603\) 20.8973 + 10.3628i 0.851004 + 0.422005i
\(604\) 41.7297i 1.69796i
\(605\) 29.5201i 1.20016i
\(606\) −6.11814 + 3.79515i −0.248532 + 0.154168i
\(607\) 16.6405i 0.675416i −0.941251 0.337708i \(-0.890348\pi\)
0.941251 0.337708i \(-0.109652\pi\)
\(608\) 14.5065 0.588315
\(609\) 14.2013 18.6991i 0.575468 0.757726i
\(610\) −2.18715 −0.0885552
\(611\) 22.4860 12.5656i 0.909685 0.508350i
\(612\) −8.25185 + 16.6405i −0.333561 + 0.672651i
\(613\) 33.9935i 1.37298i −0.727137 0.686492i \(-0.759150\pi\)
0.727137 0.686492i \(-0.240850\pi\)
\(614\) 1.70329 0.0687392
\(615\) −10.1480 + 6.29489i −0.409205 + 0.253835i
\(616\) −5.70015 14.8706i −0.229666 0.599152i
\(617\) −8.17576 −0.329144 −0.164572 0.986365i \(-0.552624\pi\)
−0.164572 + 0.986365i \(0.552624\pi\)
\(618\) −1.37095 2.21009i −0.0551476 0.0889030i
\(619\) −35.7291 −1.43607 −0.718037 0.696005i \(-0.754959\pi\)
−0.718037 + 0.696005i \(0.754959\pi\)
\(620\) 20.0160i 0.803862i
\(621\) −29.2409 + 2.78233i −1.17340 + 0.111651i
\(622\) −3.48967 −0.139923
\(623\) 28.4311 10.8981i 1.13907 0.436625i
\(624\) 18.8308 + 10.4342i 0.753836 + 0.417701i
\(625\) −20.4804 −0.819216
\(626\) 9.41482i 0.376292i
\(627\) −31.2242 + 19.3687i −1.24697 + 0.773512i
\(628\) 19.3973i 0.774037i
\(629\) 15.7708i 0.628821i
\(630\) −0.469615 + 4.96462i −0.0187099 + 0.197795i
\(631\) 31.6781i 1.26108i −0.776155 0.630542i \(-0.782833\pi\)
0.776155 0.630542i \(-0.217167\pi\)
\(632\) −2.57255 −0.102331
\(633\) −9.58599 + 5.94630i −0.381009 + 0.236344i
\(634\) 0.664489 0.0263902
\(635\) 12.7934i 0.507692i
\(636\) 5.36706 + 8.65220i 0.212818 + 0.343082i
\(637\) −23.8842 8.15748i −0.946327 0.323211i
\(638\) 7.89525i 0.312576i
\(639\) −8.81208 + 17.7702i −0.348601 + 0.702979i
\(640\) 17.8187i 0.704345i
\(641\) 0.921906i 0.0364131i 0.999834 + 0.0182065i \(0.00579564\pi\)
−0.999834 + 0.0182065i \(0.994204\pi\)
\(642\) −2.16559 3.49113i −0.0854691 0.137784i
\(643\) −10.1310 −0.399528 −0.199764 0.979844i \(-0.564018\pi\)
−0.199764 + 0.979844i \(0.564018\pi\)
\(644\) 26.6236 10.2053i 1.04912 0.402144i
\(645\) 4.58918 + 7.39818i 0.180699 + 0.291303i
\(646\) 4.18394 0.164615
\(647\) −17.9763 −0.706721 −0.353360 0.935487i \(-0.614961\pi\)
−0.353360 + 0.935487i \(0.614961\pi\)
\(648\) 6.50942 + 8.56118i 0.255714 + 0.336315i
\(649\) 63.2414i 2.48244i
\(650\) 0.420587 + 0.752634i 0.0164968 + 0.0295207i
\(651\) −18.6557 14.1684i −0.731175 0.555304i
\(652\) 19.1476i 0.749876i
\(653\) 2.78003i 0.108791i −0.998519 0.0543954i \(-0.982677\pi\)
0.998519 0.0543954i \(-0.0173231\pi\)
\(654\) 2.14786 + 3.46255i 0.0839879 + 0.135396i
\(655\) 39.1686i 1.53044i
\(656\) 11.5723i 0.451823i
\(657\) 20.1623 40.6587i 0.786605 1.58625i
\(658\) −5.39902 + 2.06954i −0.210476 + 0.0806791i
\(659\) 27.7092i 1.07940i 0.841858 + 0.539700i \(0.181462\pi\)
−0.841858 + 0.539700i \(0.818538\pi\)
\(660\) −18.0075 29.0298i −0.700941 1.12998i
\(661\) −0.0294905 −0.00114705 −0.000573524 1.00000i \(-0.500183\pi\)
−0.000573524 1.00000i \(0.500183\pi\)
\(662\) 2.06638i 0.0803120i
\(663\) 17.7402 + 9.82983i 0.688971 + 0.381759i
\(664\) 1.11931i 0.0434376i
\(665\) −21.3690 + 8.19112i −0.828654 + 0.317638i
\(666\) 3.99250 + 1.97984i 0.154706 + 0.0767174i
\(667\) 28.9644 1.12151
\(668\) 20.7181i 0.801607i
\(669\) −7.40014 + 4.59040i −0.286106 + 0.177475i
\(670\) 4.88497 0.188723
\(671\) 17.5354i 0.676946i
\(672\) −12.5704 9.54679i −0.484913 0.368276i
\(673\) 23.4074 0.902289 0.451145 0.892451i \(-0.351016\pi\)
0.451145 + 0.892451i \(0.351016\pi\)
\(674\) 2.83767 0.109303
\(675\) −0.384756 4.04360i −0.0148093 0.155638i
\(676\) 12.9882 21.1076i 0.499545 0.811830i
\(677\) 24.9484 0.958844 0.479422 0.877585i \(-0.340846\pi\)
0.479422 + 0.877585i \(0.340846\pi\)
\(678\) 0.0702430 + 0.113238i 0.00269767 + 0.00434889i
\(679\) 10.8184 + 28.2230i 0.415172 + 1.08310i
\(680\) 7.97071i 0.305663i
\(681\) 9.20627 + 14.8414i 0.352785 + 0.568722i
\(682\) −7.87694 −0.301624
\(683\) 20.8437 0.797561 0.398780 0.917046i \(-0.369434\pi\)
0.398780 + 0.917046i \(0.369434\pi\)
\(684\) −10.7009 + 21.5791i −0.409158 + 0.825098i
\(685\) 3.80338i 0.145320i
\(686\) 5.04421 + 2.57924i 0.192589 + 0.0984757i
\(687\) 10.3097 6.39522i 0.393339 0.243993i
\(688\) −8.43659 −0.321642
\(689\) 9.70501 5.42336i 0.369732 0.206613i
\(690\) −5.22740 + 3.24262i −0.199004 + 0.123444i
\(691\) −35.0440 −1.33314 −0.666569 0.745443i \(-0.732238\pi\)
−0.666569 + 0.745443i \(0.732238\pi\)
\(692\) −5.55780 −0.211276
\(693\) 39.8036 + 3.76511i 1.51201 + 0.143025i
\(694\) 8.49483i 0.322459i
\(695\) 11.7591 0.446049
\(696\) −5.59034 9.01215i −0.211901 0.341605i
\(697\) 10.9021i 0.412945i
\(698\) −0.974937 −0.0369019
\(699\) 21.2645 + 34.2804i 0.804299 + 1.29660i
\(700\) 1.41124 + 3.68166i 0.0533400 + 0.139154i
\(701\) 9.20469i 0.347656i −0.984776 0.173828i \(-0.944386\pi\)
0.984776 0.173828i \(-0.0556137\pi\)
\(702\) 4.71559 3.25705i 0.177978 0.122929i
\(703\) 20.4513i 0.771334i
\(704\) 29.4217 1.10887
\(705\) −21.5969 + 13.3968i −0.813385 + 0.504552i
\(706\) 6.80916i 0.256266i
\(707\) 12.8679 + 33.5698i 0.483947 + 1.26252i
\(708\) −21.8532 35.2293i −0.821292 1.32400i
\(709\) 16.2515i 0.610338i 0.952298 + 0.305169i \(0.0987130\pi\)
−0.952298 + 0.305169i \(0.901287\pi\)
\(710\) 4.15398i 0.155896i
\(711\) 2.86924 5.78603i 0.107605 0.216993i
\(712\) 13.7523i 0.515388i
\(713\) 28.8972i 1.08221i
\(714\) −3.62554 2.75347i −0.135682 0.103046i
\(715\) −32.5622 + 18.1964i −1.21776 + 0.680506i
\(716\) 27.3823i 1.02332i
\(717\) −14.7042 + 9.12119i −0.549138 + 0.340637i
\(718\) −6.54284 −0.244176
\(719\) 50.1573 1.87055 0.935276 0.353920i \(-0.115151\pi\)
0.935276 + 0.353920i \(0.115151\pi\)
\(720\) −19.0294 9.43652i −0.709185 0.351678i
\(721\) −12.1266 + 4.64835i −0.451619 + 0.173114i
\(722\) −0.386465 −0.0143828
\(723\) −9.91413 + 6.14985i −0.368711 + 0.228715i
\(724\) 41.0817i 1.52679i
\(725\) 4.00536i 0.148755i
\(726\) 6.47142 4.01430i 0.240177 0.148985i
\(727\) 19.3029i 0.715903i −0.933740 0.357952i \(-0.883475\pi\)
0.933740 0.357952i \(-0.116525\pi\)
\(728\) −7.30144 + 8.75415i −0.270609 + 0.324450i
\(729\) −26.5155 + 5.09210i −0.982055 + 0.188596i
\(730\) 9.50442i 0.351774i
\(731\) −7.94795 −0.293966
\(732\) 6.05937 + 9.76827i 0.223961 + 0.361045i
\(733\) 23.6407 0.873188 0.436594 0.899659i \(-0.356185\pi\)
0.436594 + 0.899659i \(0.356185\pi\)
\(734\) 0.226476i 0.00835940i
\(735\) 23.9076 + 6.96517i 0.881847 + 0.256914i
\(736\) 19.4712i 0.717717i
\(737\) 39.1650i 1.44266i
\(738\) −2.75995 1.36863i −0.101595 0.0503801i
\(739\) 20.0184i 0.736389i 0.929749 + 0.368195i \(0.120024\pi\)
−0.929749 + 0.368195i \(0.879976\pi\)
\(740\) −19.0140 −0.698967
\(741\) 23.0052 + 12.7472i 0.845116 + 0.468279i
\(742\) −2.33023 + 0.893220i −0.0855456 + 0.0327911i
\(743\) −27.2916 −1.00123 −0.500616 0.865669i \(-0.666893\pi\)
−0.500616 + 0.865669i \(0.666893\pi\)
\(744\) −8.99124 + 5.57737i −0.329635 + 0.204476i
\(745\) 0.266870i 0.00977736i
\(746\) −10.0161 −0.366715
\(747\) 2.51748 + 1.24840i 0.0921100 + 0.0456765i
\(748\) 31.1870 1.14031
\(749\) −19.1556 + 7.34268i −0.699930 + 0.268296i
\(750\) −3.31654 5.34657i −0.121103 0.195229i
\(751\) 26.4623 0.965623 0.482812 0.875724i \(-0.339616\pi\)
0.482812 + 0.875724i \(0.339616\pi\)
\(752\) 24.6282i 0.898098i
\(753\) 10.7253 6.65304i 0.390852 0.242450i
\(754\) −4.93331 + 2.75683i −0.179660 + 0.100398i
\(755\) −44.9567 −1.63614
\(756\) 23.4741 11.6568i 0.853743 0.423953i
\(757\) −20.3911 −0.741129 −0.370564 0.928807i \(-0.620836\pi\)
−0.370564 + 0.928807i \(0.620836\pi\)
\(758\) 5.28586i 0.191991i
\(759\) 25.9975 + 41.9104i 0.943650 + 1.52125i
\(760\) 10.3363i 0.374937i
\(761\) 47.6663i 1.72790i −0.503576 0.863951i \(-0.667983\pi\)
0.503576 0.863951i \(-0.332017\pi\)
\(762\) 2.80459 1.73972i 0.101600 0.0630235i
\(763\) 18.9987 7.28256i 0.687801 0.263646i
\(764\) 33.6247i 1.21650i
\(765\) −17.9273 8.88997i −0.648162 0.321418i
\(766\) 6.27725i 0.226806i
\(767\) −39.5161 + 22.0824i −1.42684 + 0.797348i
\(768\) 13.2879 8.24266i 0.479487 0.297431i
\(769\) −16.8136 −0.606313 −0.303156 0.952941i \(-0.598040\pi\)
−0.303156 + 0.952941i \(0.598040\pi\)
\(770\) 7.81838 2.99692i 0.281755 0.108002i
\(771\) −19.6328 + 12.1785i −0.707060 + 0.438597i
\(772\) 17.6492i 0.635207i
\(773\) 23.0113i 0.827659i 0.910354 + 0.413830i \(0.135809\pi\)
−0.910354 + 0.413830i \(0.864191\pi\)
\(774\) −0.997777 + 2.01209i −0.0358644 + 0.0723231i
\(775\) 3.99607 0.143543
\(776\) 13.6516 0.490065
\(777\) 13.4591 17.7218i 0.482843 0.635766i
\(778\) 10.0127i 0.358972i
\(779\) 14.1376i 0.506533i
\(780\) −11.8513 + 21.3884i −0.424345 + 0.765827i
\(781\) 33.3043 1.19172
\(782\) 5.61586i 0.200823i
\(783\) 26.5047 2.52197i 0.947200 0.0901278i
\(784\) −17.9483 + 16.1298i −0.641010 + 0.576064i
\(785\) &min