Properties

 Label 273.2.cg.b.19.2 Level $273$ Weight $2$ Character 273.19 Analytic conductor $2.180$ Analytic rank $0$ Dimension $40$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$273 = 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 273.cg (of order $$12$$, degree $$4$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$2.17991597518$$ Analytic rank: $$0$$ Dimension: $$40$$ Relative dimension: $$10$$ over $$\Q(\zeta_{12})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

 Embedding label 19.2 Character $$\chi$$ $$=$$ 273.19 Dual form 273.2.cg.b.115.2

$q$-expansion

 $$f(q)$$ $$=$$ $$q+(-2.14623 - 0.575080i) q^{2} +1.00000i q^{3} +(2.54352 + 1.46850i) q^{4} +(3.44337 - 0.922649i) q^{5} +(0.575080 - 2.14623i) q^{6} +(2.25660 + 1.38122i) q^{7} +(-1.47218 - 1.47218i) q^{8} -1.00000 q^{9} +O(q^{10})$$ $$q+(-2.14623 - 0.575080i) q^{2} +1.00000i q^{3} +(2.54352 + 1.46850i) q^{4} +(3.44337 - 0.922649i) q^{5} +(0.575080 - 2.14623i) q^{6} +(2.25660 + 1.38122i) q^{7} +(-1.47218 - 1.47218i) q^{8} -1.00000 q^{9} -7.92086 q^{10} +(-2.44335 - 2.44335i) q^{11} +(-1.46850 + 2.54352i) q^{12} +(-0.668132 + 3.54311i) q^{13} +(-4.04887 - 4.26213i) q^{14} +(0.922649 + 3.44337i) q^{15} +(-0.624002 - 1.08080i) q^{16} +(1.26366 - 2.18873i) q^{17} +(2.14623 + 0.575080i) q^{18} +(3.15731 + 3.15731i) q^{19} +(10.1132 + 2.70983i) q^{20} +(-1.38122 + 2.25660i) q^{21} +(3.83886 + 6.64910i) q^{22} +(2.64388 - 1.52645i) q^{23} +(1.47218 - 1.47218i) q^{24} +(6.67542 - 3.85405i) q^{25} +(3.47153 - 7.22008i) q^{26} -1.00000i q^{27} +(3.71139 + 6.82698i) q^{28} +(-1.12965 + 1.95662i) q^{29} -7.92086i q^{30} +(-1.54238 + 5.75625i) q^{31} +(1.79541 + 6.70056i) q^{32} +(2.44335 - 2.44335i) q^{33} +(-3.97081 + 3.97081i) q^{34} +(9.04470 + 2.67399i) q^{35} +(-2.54352 - 1.46850i) q^{36} +(2.71503 - 10.1326i) q^{37} +(-4.96060 - 8.59202i) q^{38} +(-3.54311 - 0.668132i) q^{39} +(-6.42756 - 3.71095i) q^{40} +(-2.06529 + 0.553392i) q^{41} +(4.26213 - 4.04887i) q^{42} +(3.23658 - 1.86864i) q^{43} +(-2.62665 - 9.80278i) q^{44} +(-3.44337 + 0.922649i) q^{45} +(-6.55221 + 1.75566i) q^{46} +(1.75541 + 6.55128i) q^{47} +(1.08080 - 0.624002i) q^{48} +(3.18448 + 6.23370i) q^{49} +(-16.5433 + 4.43278i) q^{50} +(2.18873 + 1.26366i) q^{51} +(-6.90247 + 8.03082i) q^{52} +(-2.54393 - 4.40622i) q^{53} +(-0.575080 + 2.14623i) q^{54} +(-10.6677 - 6.15901i) q^{55} +(-1.28872 - 5.35551i) q^{56} +(-3.15731 + 3.15731i) q^{57} +(3.54971 - 3.54971i) q^{58} +(2.20064 + 8.21290i) q^{59} +(-2.70983 + 10.1132i) q^{60} -13.0938i q^{61} +(6.62060 - 11.4672i) q^{62} +(-2.25660 - 1.38122i) q^{63} -12.9174i q^{64} +(0.968415 + 12.8167i) q^{65} +(-6.64910 + 3.83886i) q^{66} +(-6.52131 + 6.52131i) q^{67} +(6.42832 - 3.71139i) q^{68} +(1.52645 + 2.64388i) q^{69} +(-17.8742 - 10.9404i) q^{70} +(-12.8101 - 3.43246i) q^{71} +(1.47218 + 1.47218i) q^{72} +(4.73040 + 1.26751i) q^{73} +(-11.6541 + 20.1856i) q^{74} +(3.85405 + 6.67542i) q^{75} +(3.39417 + 12.6672i) q^{76} +(-2.13887 - 8.88845i) q^{77} +(7.22008 + 3.47153i) q^{78} +(-4.45795 + 7.72140i) q^{79} +(-3.14587 - 3.14587i) q^{80} +1.00000 q^{81} +4.75082 q^{82} +(0.573646 + 0.573646i) q^{83} +(-6.82698 + 3.71139i) q^{84} +(2.33184 - 8.70254i) q^{85} +(-8.02106 + 2.14924i) q^{86} +(-1.95662 - 1.12965i) q^{87} +7.19408i q^{88} +(-8.03851 - 2.15391i) q^{89} +7.92086 q^{90} +(-6.40150 + 7.07254i) q^{91} +8.96637 q^{92} +(-5.75625 - 1.54238i) q^{93} -15.0700i q^{94} +(13.7849 + 7.95872i) q^{95} +(-6.70056 + 1.79541i) q^{96} +(4.06679 - 15.1775i) q^{97} +(-3.24975 - 15.2103i) q^{98} +(2.44335 + 2.44335i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$40q - 8q^{7} - 40q^{9} + O(q^{10})$$ $$40q - 8q^{7} - 40q^{9} + 4q^{11} - 24q^{12} - 18q^{14} + 32q^{16} + 4q^{17} + 14q^{19} + 14q^{20} + 2q^{21} + 4q^{22} + 12q^{23} + 24q^{25} - 32q^{26} + 16q^{28} + 8q^{29} + 14q^{31} - 26q^{32} - 4q^{33} - 24q^{34} + 26q^{35} + 36q^{37} - 8q^{38} + 18q^{39} - 30q^{40} - 2q^{41} - 66q^{43} - 32q^{44} - 26q^{46} - 4q^{47} + 24q^{48} - 14q^{49} - 20q^{50} + 2q^{52} - 8q^{53} - 42q^{55} + 46q^{56} - 14q^{57} + 24q^{58} + 14q^{59} + 2q^{60} + 24q^{62} + 8q^{63} + 28q^{65} - 18q^{66} - 44q^{67} - 18q^{68} + 4q^{69} - 4q^{70} - 6q^{71} + 14q^{73} - 20q^{74} + 24q^{75} - 64q^{76} + 24q^{77} + 8q^{78} + 20q^{80} + 40q^{81} + 48q^{82} - 12q^{83} + 22q^{84} + 2q^{85} - 60q^{86} + 18q^{87} - 2q^{89} - 14q^{91} + 236q^{92} - 8q^{93} + 24q^{95} + 16q^{96} - 62q^{97} - 88q^{98} - 4q^{99} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/273\mathbb{Z}\right)^\times$$.

 $$n$$ $$92$$ $$106$$ $$157$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −2.14623 0.575080i −1.51761 0.406643i −0.598657 0.801006i $$-0.704299\pi$$
−0.918955 + 0.394363i $$0.870965\pi$$
$$3$$ 1.00000i 0.577350i
$$4$$ 2.54352 + 1.46850i 1.27176 + 0.734252i
$$5$$ 3.44337 0.922649i 1.53992 0.412621i 0.613683 0.789553i $$-0.289687\pi$$
0.926241 + 0.376931i $$0.123021\pi$$
$$6$$ 0.575080 2.14623i 0.234775 0.876194i
$$7$$ 2.25660 + 1.38122i 0.852915 + 0.522051i
$$8$$ −1.47218 1.47218i −0.520493 0.520493i
$$9$$ −1.00000 −0.333333
$$10$$ −7.92086 −2.50480
$$11$$ −2.44335 2.44335i −0.736697 0.736697i 0.235240 0.971937i $$-0.424412\pi$$
−0.971937 + 0.235240i $$0.924412\pi$$
$$12$$ −1.46850 + 2.54352i −0.423920 + 0.734252i
$$13$$ −0.668132 + 3.54311i −0.185307 + 0.982681i
$$14$$ −4.04887 4.26213i −1.08210 1.13910i
$$15$$ 0.922649 + 3.44337i 0.238227 + 0.889075i
$$16$$ −0.624002 1.08080i −0.156000 0.270201i
$$17$$ 1.26366 2.18873i 0.306484 0.530845i −0.671107 0.741361i $$-0.734181\pi$$
0.977591 + 0.210515i $$0.0675142\pi$$
$$18$$ 2.14623 + 0.575080i 0.505871 + 0.135548i
$$19$$ 3.15731 + 3.15731i 0.724337 + 0.724337i 0.969486 0.245148i $$-0.0788367\pi$$
−0.245148 + 0.969486i $$0.578837\pi$$
$$20$$ 10.1132 + 2.70983i 2.26138 + 0.605936i
$$21$$ −1.38122 + 2.25660i −0.301406 + 0.492430i
$$22$$ 3.83886 + 6.64910i 0.818447 + 1.41759i
$$23$$ 2.64388 1.52645i 0.551288 0.318286i −0.198353 0.980131i $$-0.563559\pi$$
0.749641 + 0.661844i $$0.230226\pi$$
$$24$$ 1.47218 1.47218i 0.300507 0.300507i
$$25$$ 6.67542 3.85405i 1.33508 0.770811i
$$26$$ 3.47153 7.22008i 0.680823 1.41597i
$$27$$ 1.00000i 0.192450i
$$28$$ 3.71139 + 6.82698i 0.701387 + 1.29018i
$$29$$ −1.12965 + 1.95662i −0.209771 + 0.363335i −0.951642 0.307208i $$-0.900605\pi$$
0.741871 + 0.670543i $$0.233939\pi$$
$$30$$ 7.92086i 1.44614i
$$31$$ −1.54238 + 5.75625i −0.277020 + 1.03385i 0.677456 + 0.735564i $$0.263083\pi$$
−0.954476 + 0.298289i $$0.903584\pi$$
$$32$$ 1.79541 + 6.70056i 0.317387 + 1.18450i
$$33$$ 2.44335 2.44335i 0.425332 0.425332i
$$34$$ −3.97081 + 3.97081i −0.680988 + 0.680988i
$$35$$ 9.04470 + 2.67399i 1.52883 + 0.451987i
$$36$$ −2.54352 1.46850i −0.423920 0.244751i
$$37$$ 2.71503 10.1326i 0.446348 1.66579i −0.266003 0.963972i $$-0.585703\pi$$
0.712352 0.701823i $$-0.247630\pi$$
$$38$$ −4.96060 8.59202i −0.804716 1.39381i
$$39$$ −3.54311 0.668132i −0.567351 0.106987i
$$40$$ −6.42756 3.71095i −1.01629 0.586753i
$$41$$ −2.06529 + 0.553392i −0.322544 + 0.0864254i −0.416458 0.909155i $$-0.636729\pi$$
0.0939142 + 0.995580i $$0.470062\pi$$
$$42$$ 4.26213 4.04887i 0.657661 0.624754i
$$43$$ 3.23658 1.86864i 0.493574 0.284965i −0.232482 0.972601i $$-0.574685\pi$$
0.726056 + 0.687635i $$0.241351\pi$$
$$44$$ −2.62665 9.80278i −0.395982 1.47782i
$$45$$ −3.44337 + 0.922649i −0.513308 + 0.137540i
$$46$$ −6.55221 + 1.75566i −0.966070 + 0.258858i
$$47$$ 1.75541 + 6.55128i 0.256053 + 0.955603i 0.967502 + 0.252865i $$0.0813728\pi$$
−0.711449 + 0.702738i $$0.751961\pi$$
$$48$$ 1.08080 0.624002i 0.156000 0.0900669i
$$49$$ 3.18448 + 6.23370i 0.454926 + 0.890529i
$$50$$ −16.5433 + 4.43278i −2.33958 + 0.626889i
$$51$$ 2.18873 + 1.26366i 0.306484 + 0.176948i
$$52$$ −6.90247 + 8.03082i −0.957201 + 1.11367i
$$53$$ −2.54393 4.40622i −0.349436 0.605241i 0.636713 0.771101i $$-0.280294\pi$$
−0.986149 + 0.165860i $$0.946960\pi$$
$$54$$ −0.575080 + 2.14623i −0.0782584 + 0.292065i
$$55$$ −10.6677 6.15901i −1.43843 0.830480i
$$56$$ −1.28872 5.35551i −0.172212 0.715660i
$$57$$ −3.15731 + 3.15731i −0.418196 + 0.418196i
$$58$$ 3.54971 3.54971i 0.466099 0.466099i
$$59$$ 2.20064 + 8.21290i 0.286499 + 1.06923i 0.947737 + 0.319052i $$0.103365\pi$$
−0.661238 + 0.750176i $$0.729969\pi$$
$$60$$ −2.70983 + 10.1132i −0.349837 + 1.30561i
$$61$$ 13.0938i 1.67648i −0.545299 0.838242i $$-0.683584\pi$$
0.545299 0.838242i $$-0.316416\pi$$
$$62$$ 6.62060 11.4672i 0.840818 1.45634i
$$63$$ −2.25660 1.38122i −0.284305 0.174017i
$$64$$ 12.9174i 1.61468i
$$65$$ 0.968415 + 12.8167i 0.120117 + 1.58971i
$$66$$ −6.64910 + 3.83886i −0.818447 + 0.472531i
$$67$$ −6.52131 + 6.52131i −0.796704 + 0.796704i −0.982574 0.185870i $$-0.940490\pi$$
0.185870 + 0.982574i $$0.440490\pi$$
$$68$$ 6.42832 3.71139i 0.779548 0.450072i
$$69$$ 1.52645 + 2.64388i 0.183763 + 0.318286i
$$70$$ −17.8742 10.9404i −2.13638 1.30763i
$$71$$ −12.8101 3.43246i −1.52028 0.407358i −0.600446 0.799665i $$-0.705010\pi$$
−0.919834 + 0.392307i $$0.871677\pi$$
$$72$$ 1.47218 + 1.47218i 0.173498 + 0.173498i
$$73$$ 4.73040 + 1.26751i 0.553652 + 0.148351i 0.524788 0.851233i $$-0.324145\pi$$
0.0288635 + 0.999583i $$0.490811\pi$$
$$74$$ −11.6541 + 20.1856i −1.35477 + 2.34653i
$$75$$ 3.85405 + 6.67542i 0.445028 + 0.770811i
$$76$$ 3.39417 + 12.6672i 0.389338 + 1.45303i
$$77$$ −2.13887 8.88845i −0.243746 1.01293i
$$78$$ 7.22008 + 3.47153i 0.817513 + 0.393074i
$$79$$ −4.45795 + 7.72140i −0.501559 + 0.868725i 0.498440 + 0.866924i $$0.333907\pi$$
−0.999998 + 0.00180087i $$0.999427\pi$$
$$80$$ −3.14587 3.14587i −0.351719 0.351719i
$$81$$ 1.00000 0.111111
$$82$$ 4.75082 0.524641
$$83$$ 0.573646 + 0.573646i 0.0629659 + 0.0629659i 0.737889 0.674923i $$-0.235823\pi$$
−0.674923 + 0.737889i $$0.735823\pi$$
$$84$$ −6.82698 + 3.71139i −0.744884 + 0.404946i
$$85$$ 2.33184 8.70254i 0.252923 0.943923i
$$86$$ −8.02106 + 2.14924i −0.864933 + 0.231758i
$$87$$ −1.95662 1.12965i −0.209771 0.121112i
$$88$$ 7.19408i 0.766891i
$$89$$ −8.03851 2.15391i −0.852081 0.228314i −0.193757 0.981050i $$-0.562067\pi$$
−0.658323 + 0.752735i $$0.728734\pi$$
$$90$$ 7.92086 0.834932
$$91$$ −6.40150 + 7.07254i −0.671060 + 0.741403i
$$92$$ 8.96637 0.934809
$$93$$ −5.75625 1.54238i −0.596895 0.159938i
$$94$$ 15.0700i 1.55436i
$$95$$ 13.7849 + 7.95872i 1.41430 + 0.816547i
$$96$$ −6.70056 + 1.79541i −0.683873 + 0.183243i
$$97$$ 4.06679 15.1775i 0.412920 1.54104i −0.376045 0.926602i $$-0.622716\pi$$
0.788965 0.614438i $$-0.210617\pi$$
$$98$$ −3.24975 15.2103i −0.328274 1.53647i
$$99$$ 2.44335 + 2.44335i 0.245566 + 0.245566i
$$100$$ 22.6388 2.26388
$$101$$ 2.94757 0.293294 0.146647 0.989189i $$-0.453152\pi$$
0.146647 + 0.989189i $$0.453152\pi$$
$$102$$ −3.97081 3.97081i −0.393168 0.393168i
$$103$$ 7.76476 13.4490i 0.765085 1.32517i −0.175117 0.984548i $$-0.556030\pi$$
0.940202 0.340618i $$-0.110636\pi$$
$$104$$ 6.19968 4.23247i 0.607929 0.415028i
$$105$$ −2.67399 + 9.04470i −0.260955 + 0.882672i
$$106$$ 2.92593 + 10.9197i 0.284191 + 1.06062i
$$107$$ 2.00547 + 3.47358i 0.193877 + 0.335804i 0.946532 0.322611i $$-0.104561\pi$$
−0.752655 + 0.658415i $$0.771227\pi$$
$$108$$ 1.46850 2.54352i 0.141307 0.244751i
$$109$$ 3.62714 + 0.971889i 0.347417 + 0.0930901i 0.428308 0.903633i $$-0.359110\pi$$
−0.0808909 + 0.996723i $$0.525777\pi$$
$$110$$ 19.3534 + 19.3534i 1.84528 + 1.84528i
$$111$$ 10.1326 + 2.71503i 0.961747 + 0.257699i
$$112$$ 0.0846998 3.30082i 0.00800338 0.311898i
$$113$$ −4.05082 7.01622i −0.381069 0.660031i 0.610146 0.792289i $$-0.291111\pi$$
−0.991215 + 0.132258i $$0.957777\pi$$
$$114$$ 8.59202 4.96060i 0.804716 0.464603i
$$115$$ 7.69551 7.69551i 0.717610 0.717610i
$$116$$ −5.74660 + 3.31780i −0.533558 + 0.308050i
$$117$$ 0.668132 3.54311i 0.0617688 0.327560i
$$118$$ 18.8923i 1.73918i
$$119$$ 5.87470 3.19370i 0.538533 0.292766i
$$120$$ 3.71095 6.42756i 0.338762 0.586753i
$$121$$ 0.939896i 0.0854451i
$$122$$ −7.52995 + 28.1022i −0.681730 + 2.54425i
$$123$$ −0.553392 2.06529i −0.0498977 0.186221i
$$124$$ −12.3762 + 12.3762i −1.11141 + 1.11141i
$$125$$ 6.82639 6.82639i 0.610571 0.610571i
$$126$$ 4.04887 + 4.26213i 0.360702 + 0.379701i
$$127$$ −9.30669 5.37322i −0.825835 0.476796i 0.0265893 0.999646i $$-0.491535\pi$$
−0.852425 + 0.522850i $$0.824869\pi$$
$$128$$ −3.83773 + 14.3226i −0.339210 + 1.26595i
$$129$$ 1.86864 + 3.23658i 0.164525 + 0.284965i
$$130$$ 5.29218 28.0644i 0.464155 2.46141i
$$131$$ −14.4464 8.34065i −1.26219 0.728726i −0.288692 0.957422i $$-0.593220\pi$$
−0.973498 + 0.228696i $$0.926554\pi$$
$$132$$ 9.80278 2.62665i 0.853222 0.228620i
$$133$$ 2.76386 + 11.4857i 0.239657 + 0.995938i
$$134$$ 17.7465 10.2459i 1.53306 0.885114i
$$135$$ −0.922649 3.44337i −0.0794090 0.296358i
$$136$$ −5.08254 + 1.36186i −0.435824 + 0.116779i
$$137$$ −13.0012 + 3.48367i −1.11077 + 0.297630i −0.767143 0.641476i $$-0.778322\pi$$
−0.343627 + 0.939106i $$0.611656\pi$$
$$138$$ −1.75566 6.55221i −0.149452 0.557761i
$$139$$ −13.5614 + 7.82969i −1.15026 + 0.664106i −0.948952 0.315421i $$-0.897854\pi$$
−0.201313 + 0.979527i $$0.564521\pi$$
$$140$$ 19.0786 + 20.0835i 1.61244 + 1.69737i
$$141$$ −6.55128 + 1.75541i −0.551718 + 0.147832i
$$142$$ 25.5195 + 14.7337i 2.14155 + 1.23642i
$$143$$ 10.2895 7.02456i 0.860453 0.587423i
$$144$$ 0.624002 + 1.08080i 0.0520001 + 0.0900669i
$$145$$ −2.08455 + 7.77964i −0.173112 + 0.646064i
$$146$$ −9.42360 5.44072i −0.779903 0.450277i
$$147$$ −6.23370 + 3.18448i −0.514147 + 0.262652i
$$148$$ 21.7856 21.7856i 1.79076 1.79076i
$$149$$ 6.27597 6.27597i 0.514148 0.514148i −0.401647 0.915795i $$-0.631562\pi$$
0.915795 + 0.401647i $$0.131562\pi$$
$$150$$ −4.43278 16.5433i −0.361935 1.35076i
$$151$$ −4.29176 + 16.0171i −0.349259 + 1.30345i 0.538299 + 0.842754i $$0.319067\pi$$
−0.887558 + 0.460697i $$0.847600\pi$$
$$152$$ 9.29624i 0.754025i
$$153$$ −1.26366 + 2.18873i −0.102161 + 0.176948i
$$154$$ −0.521074 + 20.3066i −0.0419893 + 1.63636i
$$155$$ 21.2440i 1.70636i
$$156$$ −8.03082 6.90247i −0.642980 0.552640i
$$157$$ −14.4182 + 8.32436i −1.15070 + 0.664356i −0.949058 0.315103i $$-0.897961\pi$$
−0.201642 + 0.979459i $$0.564628\pi$$
$$158$$ 14.0082 14.0082i 1.11443 1.11443i
$$159$$ 4.40622 2.54393i 0.349436 0.201747i
$$160$$ 12.3645 + 21.4160i 0.977502 + 1.69308i
$$161$$ 8.07454 + 0.207195i 0.636363 + 0.0163292i
$$162$$ −2.14623 0.575080i −0.168624 0.0451825i
$$163$$ −1.81122 1.81122i −0.141866 0.141866i 0.632607 0.774473i $$-0.281985\pi$$
−0.774473 + 0.632607i $$0.781985\pi$$
$$164$$ −6.06577 1.62532i −0.473657 0.126916i
$$165$$ 6.15901 10.6677i 0.479478 0.830480i
$$166$$ −0.901283 1.56107i −0.0699531 0.121162i
$$167$$ −0.167384 0.624684i −0.0129525 0.0483395i 0.959147 0.282908i $$-0.0912990\pi$$
−0.972100 + 0.234568i $$0.924632\pi$$
$$168$$ 5.35551 1.28872i 0.413186 0.0994268i
$$169$$ −12.1072 4.73453i −0.931323 0.364194i
$$170$$ −10.0093 + 17.3366i −0.767679 + 1.32966i
$$171$$ −3.15731 3.15731i −0.241446 0.241446i
$$172$$ 10.9764 0.836945
$$173$$ −0.904451 −0.0687641 −0.0343821 0.999409i $$-0.510946\pi$$
−0.0343821 + 0.999409i $$0.510946\pi$$
$$174$$ 3.54971 + 3.54971i 0.269102 + 0.269102i
$$175$$ 20.3870 + 0.523136i 1.54111 + 0.0395454i
$$176$$ −1.11612 + 4.16543i −0.0841310 + 0.313981i
$$177$$ −8.21290 + 2.20064i −0.617319 + 0.165410i
$$178$$ 16.0138 + 9.24557i 1.20029 + 0.692985i
$$179$$ 21.2755i 1.59021i −0.606474 0.795103i $$-0.707416\pi$$
0.606474 0.795103i $$-0.292584\pi$$
$$180$$ −10.1132 2.70983i −0.753795 0.201979i
$$181$$ −19.9161 −1.48035 −0.740176 0.672413i $$-0.765258\pi$$
−0.740176 + 0.672413i $$0.765258\pi$$
$$182$$ 17.8063 11.4979i 1.31989 0.852281i
$$183$$ 13.0938 0.967918
$$184$$ −6.13946 1.64506i −0.452607 0.121276i
$$185$$ 37.3955i 2.74937i
$$186$$ 11.4672 + 6.62060i 0.840818 + 0.485446i
$$187$$ −8.43540 + 2.26026i −0.616858 + 0.165287i
$$188$$ −5.15566 + 19.2412i −0.376015 + 1.40331i
$$189$$ 1.38122 2.25660i 0.100469 0.164143i
$$190$$ −25.0086 25.0086i −1.81432 1.81432i
$$191$$ −9.12189 −0.660037 −0.330018 0.943974i $$-0.607055\pi$$
−0.330018 + 0.943974i $$0.607055\pi$$
$$192$$ 12.9174 0.932234
$$193$$ 11.2754 + 11.2754i 0.811619 + 0.811619i 0.984877 0.173257i $$-0.0554292\pi$$
−0.173257 + 0.984877i $$0.555429\pi$$
$$194$$ −17.4565 + 30.2356i −1.25331 + 2.17079i
$$195$$ −12.8167 + 0.968415i −0.917822 + 0.0693497i
$$196$$ −1.05441 + 20.5320i −0.0753147 + 1.46657i
$$197$$ 6.25761 + 23.3537i 0.445836 + 1.66388i 0.713719 + 0.700432i $$0.247009\pi$$
−0.267883 + 0.963451i $$0.586324\pi$$
$$198$$ −3.83886 6.64910i −0.272816 0.472531i
$$199$$ 5.79667 10.0401i 0.410915 0.711726i −0.584075 0.811700i $$-0.698543\pi$$
0.994990 + 0.0999741i $$0.0318760\pi$$
$$200$$ −15.5012 4.15354i −1.09610 0.293700i
$$201$$ −6.52131 6.52131i −0.459978 0.459978i
$$202$$ −6.32615 1.69509i −0.445106 0.119266i
$$203$$ −5.25169 + 2.85501i −0.368596 + 0.200382i
$$204$$ 3.71139 + 6.42832i 0.259849 + 0.450072i
$$205$$ −6.60097 + 3.81107i −0.461032 + 0.266177i
$$206$$ −24.3992 + 24.3992i −1.69997 + 1.69997i
$$207$$ −2.64388 + 1.52645i −0.183763 + 0.106095i
$$208$$ 4.24631 1.48879i 0.294429 0.103229i
$$209$$ 15.4288i 1.06723i
$$210$$ 10.9404 17.8742i 0.754961 1.23344i
$$211$$ 0.178987 0.310015i 0.0123220 0.0213423i −0.859799 0.510633i $$-0.829411\pi$$
0.872121 + 0.489291i $$0.162744\pi$$
$$212$$ 14.9431i 1.02630i
$$213$$ 3.43246 12.8101i 0.235188 0.877735i
$$214$$ −2.30662 8.60841i −0.157677 0.588459i
$$215$$ 9.42067 9.42067i 0.642484 0.642484i
$$216$$ −1.47218 + 1.47218i −0.100169 + 0.100169i
$$217$$ −11.4312 + 10.8592i −0.775998 + 0.737169i
$$218$$ −7.22575 4.17179i −0.489390 0.282549i
$$219$$ −1.26751 + 4.73040i −0.0856502 + 0.319651i
$$220$$ −18.0890 31.3312i −1.21956 2.11235i
$$221$$ 6.91061 + 5.93966i 0.464858 + 0.399545i
$$222$$ −20.1856 11.6541i −1.35477 0.782175i
$$223$$ 5.47574 1.46722i 0.366683 0.0982523i −0.0707726 0.997492i $$-0.522546\pi$$
0.437455 + 0.899240i $$0.355880\pi$$
$$224$$ −5.20340 + 17.6003i −0.347667 + 1.17597i
$$225$$ −6.67542 + 3.85405i −0.445028 + 0.256937i
$$226$$ 4.65909 + 17.3880i 0.309918 + 1.15663i
$$227$$ 10.3200 2.76523i 0.684961 0.183535i 0.100476 0.994939i $$-0.467963\pi$$
0.584485 + 0.811405i $$0.301297\pi$$
$$228$$ −12.6672 + 3.39417i −0.838907 + 0.224785i
$$229$$ −7.29728 27.2338i −0.482218 1.79966i −0.592275 0.805736i $$-0.701770\pi$$
0.110058 0.993925i $$-0.464896\pi$$
$$230$$ −20.9418 + 12.0908i −1.38086 + 0.797242i
$$231$$ 8.88845 2.13887i 0.584817 0.140727i
$$232$$ 4.54354 1.21744i 0.298298 0.0799286i
$$233$$ 1.17324 + 0.677369i 0.0768614 + 0.0443759i 0.537938 0.842984i $$-0.319203\pi$$
−0.461077 + 0.887360i $$0.652537\pi$$
$$234$$ −3.47153 + 7.22008i −0.226941 + 0.471991i
$$235$$ 12.0891 + 20.9389i 0.788604 + 1.36590i
$$236$$ −6.46330 + 24.1213i −0.420725 + 1.57017i
$$237$$ −7.72140 4.45795i −0.501559 0.289575i
$$238$$ −14.4451 + 3.47598i −0.936334 + 0.225314i
$$239$$ 7.36460 7.36460i 0.476376 0.476376i −0.427594 0.903971i $$-0.640639\pi$$
0.903971 + 0.427594i $$0.140639\pi$$
$$240$$ 3.14587 3.14587i 0.203065 0.203065i
$$241$$ 1.34404 + 5.01601i 0.0865770 + 0.323110i 0.995608 0.0936184i $$-0.0298434\pi$$
−0.909031 + 0.416728i $$0.863177\pi$$
$$242$$ 0.540515 2.01723i 0.0347456 0.129672i
$$243$$ 1.00000i 0.0641500i
$$244$$ 19.2282 33.3043i 1.23096 2.13209i
$$245$$ 16.7169 + 18.5268i 1.06800 + 1.18363i
$$246$$ 4.75082i 0.302901i
$$247$$ −13.2962 + 9.07719i −0.846017 + 0.577568i
$$248$$ 10.7449 6.20355i 0.682300 0.393926i
$$249$$ −0.573646 + 0.573646i −0.0363534 + 0.0363534i
$$250$$ −18.5767 + 10.7253i −1.17489 + 0.678326i
$$251$$ −4.58523 7.94186i −0.289417 0.501285i 0.684253 0.729244i $$-0.260128\pi$$
−0.973671 + 0.227959i $$0.926795\pi$$
$$252$$ −3.71139 6.82698i −0.233796 0.430059i
$$253$$ −10.1896 2.73029i −0.640613 0.171652i
$$254$$ 16.8842 + 16.8842i 1.05941 + 1.05941i
$$255$$ 8.70254 + 2.33184i 0.544974 + 0.146025i
$$256$$ 3.55585 6.15891i 0.222241 0.384932i
$$257$$ 1.89888 + 3.28895i 0.118449 + 0.205159i 0.919153 0.393901i $$-0.128875\pi$$
−0.800704 + 0.599060i $$0.795541\pi$$
$$258$$ −2.14924 8.02106i −0.133806 0.499369i
$$259$$ 20.1221 19.1153i 1.25033 1.18776i
$$260$$ −16.3582 + 34.0217i −1.01449 + 2.10993i
$$261$$ 1.12965 1.95662i 0.0699238 0.121112i
$$262$$ 26.2088 + 26.2088i 1.61918 + 1.61918i
$$263$$ −21.6207 −1.33319 −0.666594 0.745421i $$-0.732249\pi$$
−0.666594 + 0.745421i $$0.732249\pi$$
$$264$$ −7.19408 −0.442765
$$265$$ −12.8251 12.8251i −0.787840 0.787840i
$$266$$ 0.673335 26.2404i 0.0412848 1.60890i
$$267$$ 2.15391 8.03851i 0.131817 0.491949i
$$268$$ −26.1637 + 7.01053i −1.59820 + 0.428236i
$$269$$ −14.7786 8.53242i −0.901066 0.520231i −0.0235200 0.999723i $$-0.507487\pi$$
−0.877546 + 0.479493i $$0.840821\pi$$
$$270$$ 7.92086i 0.482048i
$$271$$ −9.29983 2.49188i −0.564925 0.151371i −0.0349568 0.999389i $$-0.511129\pi$$
−0.529968 + 0.848018i $$0.677796\pi$$
$$272$$ −3.15412 −0.191246
$$273$$ −7.07254 6.40150i −0.428049 0.387436i
$$274$$ 29.9070 1.80675
$$275$$ −25.7272 6.89357i −1.55141 0.415698i
$$276$$ 8.96637i 0.539712i
$$277$$ −6.00440 3.46664i −0.360769 0.208290i 0.308649 0.951176i $$-0.400123\pi$$
−0.669418 + 0.742886i $$0.733457\pi$$
$$278$$ 33.6086 9.00539i 2.01571 0.540108i
$$279$$ 1.54238 5.75625i 0.0923400 0.344618i
$$280$$ −9.37880 17.2520i −0.560490 1.03100i
$$281$$ 15.5652 + 15.5652i 0.928544 + 0.928544i 0.997612 0.0690682i $$-0.0220026\pi$$
−0.0690682 + 0.997612i $$0.522003\pi$$
$$282$$ 15.0700 0.897408
$$283$$ 24.1017 1.43270 0.716349 0.697742i $$-0.245812\pi$$
0.716349 + 0.697742i $$0.245812\pi$$
$$284$$ −27.5422 27.5422i −1.63433 1.63433i
$$285$$ −7.95872 + 13.7849i −0.471434 + 0.816547i
$$286$$ −26.1233 + 9.15901i −1.54470 + 0.541583i
$$287$$ −5.42488 1.60382i −0.320221 0.0946708i
$$288$$ −1.79541 6.70056i −0.105796 0.394834i
$$289$$ 5.30630 + 9.19079i 0.312135 + 0.540635i
$$290$$ 8.94783 15.4981i 0.525435 0.910080i
$$291$$ 15.1775 + 4.06679i 0.889720 + 0.238400i
$$292$$ 10.1705 + 10.1705i 0.595186 + 0.595186i
$$293$$ 12.3864 + 3.31893i 0.723622 + 0.193894i 0.601787 0.798656i $$-0.294455\pi$$
0.121835 + 0.992550i $$0.461122\pi$$
$$294$$ 15.2103 3.24975i 0.887081 0.189529i
$$295$$ 15.1553 + 26.2497i 0.882373 + 1.52831i
$$296$$ −18.9140 + 10.9200i −1.09936 + 0.634713i
$$297$$ −2.44335 + 2.44335i −0.141777 + 0.141777i
$$298$$ −17.0788 + 9.86048i −0.989351 + 0.571202i
$$299$$ 3.64190 + 10.3874i 0.210617 + 0.600721i
$$300$$ 22.6388i 1.30705i
$$301$$ 9.88467 + 0.253643i 0.569743 + 0.0146197i
$$302$$ 18.4222 31.9082i 1.06008 1.83611i
$$303$$ 2.94757i 0.169333i
$$304$$ 1.44226 5.38260i 0.0827195 0.308713i
$$305$$ −12.0809 45.0867i −0.691753 2.58166i
$$306$$ 3.97081 3.97081i 0.226996 0.226996i
$$307$$ 15.4570 15.4570i 0.882178 0.882178i −0.111577 0.993756i $$-0.535590\pi$$
0.993756 + 0.111577i $$0.0355903\pi$$
$$308$$ 7.61246 25.7489i 0.433760 1.46718i
$$309$$ 13.4490 + 7.76476i 0.765085 + 0.441722i
$$310$$ 12.2170 45.5944i 0.693878 2.58959i
$$311$$ 1.62070 + 2.80714i 0.0919017 + 0.159178i 0.908311 0.418295i $$-0.137372\pi$$
−0.816410 + 0.577473i $$0.804039\pi$$
$$312$$ 4.23247 + 6.19968i 0.239616 + 0.350988i
$$313$$ 24.9122 + 14.3831i 1.40812 + 0.812978i 0.995207 0.0977925i $$-0.0311781\pi$$
0.412913 + 0.910771i $$0.364511\pi$$
$$314$$ 35.7319 9.57435i 2.01647 0.540312i
$$315$$ −9.04470 2.67399i −0.509611 0.150662i
$$316$$ −22.6778 + 13.0930i −1.27573 + 0.736541i
$$317$$ −0.144647 0.539831i −0.00812420 0.0303199i 0.961745 0.273947i $$-0.0883293\pi$$
−0.969869 + 0.243627i $$0.921663\pi$$
$$318$$ −10.9197 + 2.92593i −0.612347 + 0.164078i
$$319$$ 7.54083 2.02056i 0.422206 0.113130i
$$320$$ −11.9182 44.4795i −0.666250 2.48648i
$$321$$ −3.47358 + 2.00547i −0.193877 + 0.111935i
$$322$$ −17.2106 5.08819i −0.959112 0.283554i
$$323$$ 10.9003 2.92073i 0.606509 0.162513i
$$324$$ 2.54352 + 1.46850i 0.141307 + 0.0815835i
$$325$$ 9.19526 + 26.2267i 0.510061 + 1.45480i
$$326$$ 2.84570 + 4.92890i 0.157609 + 0.272986i
$$327$$ −0.971889 + 3.62714i −0.0537456 + 0.200581i
$$328$$ 3.85516 + 2.22578i 0.212866 + 0.122898i
$$329$$ −5.08748 + 17.2082i −0.280482 + 0.948720i
$$330$$ −19.3534 + 19.3534i −1.06537 + 1.06537i
$$331$$ −0.504043 + 0.504043i −0.0277047 + 0.0277047i −0.720823 0.693119i $$-0.756236\pi$$
0.693119 + 0.720823i $$0.256236\pi$$
$$332$$ 0.616681 + 2.30148i 0.0338448 + 0.126310i
$$333$$ −2.71503 + 10.1326i −0.148783 + 0.555265i
$$334$$ 1.43697i 0.0786277i
$$335$$ −16.4384 + 28.4722i −0.898127 + 1.55560i
$$336$$ 3.30082 + 0.0846998i 0.180074 + 0.00462076i
$$337$$ 1.28970i 0.0702542i 0.999383 + 0.0351271i $$0.0111836\pi$$
−0.999383 + 0.0351271i $$0.988816\pi$$
$$338$$ 23.2621 + 17.1240i 1.26529 + 0.931421i
$$339$$ 7.01622 4.05082i 0.381069 0.220010i
$$340$$ 18.7108 18.7108i 1.01474 1.01474i
$$341$$ 17.8331 10.2959i 0.965716 0.557556i
$$342$$ 4.96060 + 8.59202i 0.268239 + 0.464603i
$$343$$ −1.42398 + 18.4654i −0.0768879 + 0.997040i
$$344$$ −7.51579 2.01385i −0.405224 0.108580i
$$345$$ 7.69551 + 7.69551i 0.414312 + 0.414312i
$$346$$ 1.94116 + 0.520131i 0.104357 + 0.0279624i
$$347$$ −7.23774 + 12.5361i −0.388542 + 0.672975i −0.992254 0.124228i $$-0.960355\pi$$
0.603711 + 0.797203i $$0.293688\pi$$
$$348$$ −3.31780 5.74660i −0.177853 0.308050i
$$349$$ 1.55296 + 5.79571i 0.0831278 + 0.310237i 0.994953 0.100341i $$-0.0319934\pi$$
−0.911825 + 0.410578i $$0.865327\pi$$
$$350$$ −43.4543 12.8469i −2.32273 0.686698i
$$351$$ 3.54311 + 0.668132i 0.189117 + 0.0356623i
$$352$$ 11.9850 20.7586i 0.638802 1.10644i
$$353$$ −12.4611 12.4611i −0.663240 0.663240i 0.292902 0.956142i $$-0.405379\pi$$
−0.956142 + 0.292902i $$0.905379\pi$$
$$354$$ 18.8923 1.00411
$$355$$ −47.2770 −2.50920
$$356$$ −17.2831 17.2831i −0.916003 0.916003i
$$357$$ 3.19370 + 5.87470i 0.169028 + 0.310922i
$$358$$ −12.2351 + 45.6621i −0.646646 + 2.41332i
$$359$$ −6.88215 + 1.84407i −0.363226 + 0.0973262i −0.435816 0.900036i $$-0.643540\pi$$
0.0725899 + 0.997362i $$0.476874\pi$$
$$360$$ 6.42756 + 3.71095i 0.338762 + 0.195584i
$$361$$ 0.937248i 0.0493288i
$$362$$ 42.7445 + 11.4533i 2.24660 + 0.601974i
$$363$$ −0.939896 −0.0493317
$$364$$ −26.6684 + 8.58853i −1.39780 + 0.450161i
$$365$$ 17.4580 0.913794
$$366$$ −28.1022 7.52995i −1.46892 0.393597i
$$367$$ 2.38011i 0.124241i −0.998069 0.0621203i $$-0.980214\pi$$
0.998069 0.0621203i $$-0.0197862\pi$$
$$368$$ −3.29958 1.90501i −0.172002 0.0993056i
$$369$$ 2.06529 0.553392i 0.107515 0.0288085i
$$370$$ −21.5054 + 80.2592i −1.11801 + 4.17248i
$$371$$ 0.345305 13.4568i 0.0179273 0.698642i
$$372$$ −12.3762 12.3762i −0.641674 0.641674i
$$373$$ 0.909346 0.0470841 0.0235421 0.999723i $$-0.492506\pi$$
0.0235421 + 0.999723i $$0.492506\pi$$
$$374$$ 19.4041 1.00336
$$375$$ 6.82639 + 6.82639i 0.352513 + 0.352513i
$$376$$ 7.06037 12.2289i 0.364111 0.630658i
$$377$$ −6.17775 5.30976i −0.318170 0.273467i
$$378$$ −4.26213 + 4.04887i −0.219220 + 0.208251i
$$379$$ −7.19570 26.8547i −0.369618 1.37943i −0.861051 0.508519i $$-0.830193\pi$$
0.491432 0.870916i $$-0.336474\pi$$
$$380$$ 23.3748 + 40.4864i 1.19910 + 2.07691i
$$381$$ 5.37322 9.30669i 0.275278 0.476796i
$$382$$ 19.5776 + 5.24581i 1.00168 + 0.268399i
$$383$$ 8.57505 + 8.57505i 0.438165 + 0.438165i 0.891394 0.453229i $$-0.149728\pi$$
−0.453229 + 0.891394i $$0.649728\pi$$
$$384$$ −14.3226 3.83773i −0.730897 0.195843i
$$385$$ −15.5658 28.6328i −0.793309 1.45926i
$$386$$ −17.7153 30.6838i −0.901684 1.56176i
$$387$$ −3.23658 + 1.86864i −0.164525 + 0.0949884i
$$388$$ 32.6322 32.6322i 1.65665 1.65665i
$$389$$ 25.6348 14.8003i 1.29974 0.750403i 0.319377 0.947628i $$-0.396526\pi$$
0.980358 + 0.197225i $$0.0631930\pi$$
$$390$$ 28.0644 + 5.29218i 1.42110 + 0.267980i
$$391$$ 7.71567i 0.390198i
$$392$$ 4.48899 13.8652i 0.226728 0.700300i
$$393$$ 8.34065 14.4464i 0.420730 0.728726i
$$394$$ 53.7210i 2.70642i
$$395$$ −8.22625 + 30.7008i −0.413908 + 1.54472i
$$396$$ 2.62665 + 9.80278i 0.131994 + 0.492608i
$$397$$ 2.67697 2.67697i 0.134353 0.134353i −0.636732 0.771085i $$-0.719714\pi$$
0.771085 + 0.636732i $$0.219714\pi$$
$$398$$ −18.2148 + 18.2148i −0.913027 + 0.913027i
$$399$$ −11.4857 + 2.76386i −0.575005 + 0.138366i
$$400$$ −8.33094 4.80987i −0.416547 0.240494i
$$401$$ −0.682164 + 2.54587i −0.0340656 + 0.127135i −0.980865 0.194691i $$-0.937630\pi$$
0.946799 + 0.321825i $$0.104296\pi$$
$$402$$ 10.2459 + 17.7465i 0.511021 + 0.885114i
$$403$$ −19.3645 9.31076i −0.964613 0.463802i
$$404$$ 7.49721 + 4.32851i 0.373000 + 0.215352i
$$405$$ 3.44337 0.922649i 0.171103 0.0458468i
$$406$$ 12.9132 3.10735i 0.640870 0.154215i
$$407$$ −31.3913 + 18.1238i −1.55601 + 0.898363i
$$408$$ −1.36186 5.08254i −0.0674222 0.251623i
$$409$$ −15.3494 + 4.11286i −0.758978 + 0.203368i −0.617497 0.786573i $$-0.711853\pi$$
−0.141481 + 0.989941i $$0.545187\pi$$
$$410$$ 16.3589 4.38334i 0.807906 0.216478i
$$411$$ −3.48367 13.0012i −0.171837 0.641303i
$$412$$ 39.4997 22.8052i 1.94601 1.12353i
$$413$$ −6.37783 + 21.5728i −0.313832 + 1.06153i
$$414$$ 6.55221 1.75566i 0.322023 0.0862859i
$$415$$ 2.50455 + 1.44600i 0.122944 + 0.0709816i
$$416$$ −24.9404 + 1.88447i −1.22280 + 0.0923936i
$$417$$ −7.82969 13.5614i −0.383422 0.664106i
$$418$$ −8.87281 + 33.1138i −0.433983 + 1.61965i
$$419$$ 34.6920 + 20.0294i 1.69481 + 0.978501i 0.950528 + 0.310640i $$0.100543\pi$$
0.744286 + 0.667861i $$0.232790\pi$$
$$420$$ −20.0835 + 19.0786i −0.979976 + 0.930941i
$$421$$ 5.73237 5.73237i 0.279379 0.279379i −0.553482 0.832861i $$-0.686701\pi$$
0.832861 + 0.553482i $$0.186701\pi$$
$$422$$ −0.562430 + 0.562430i −0.0273787 + 0.0273787i
$$423$$ −1.75541 6.55128i −0.0853510 0.318534i
$$424$$ −2.74162 + 10.2319i −0.133145 + 0.496903i
$$425$$ 19.4809i 0.944964i
$$426$$ −14.7337 + 25.5195i −0.713849 + 1.23642i
$$427$$ 18.0853 29.5474i 0.875209 1.42990i
$$428$$ 11.7802i 0.569417i
$$429$$ 7.02456 + 10.2895i 0.339149 + 0.496783i
$$430$$ −25.6365 + 14.8013i −1.23630 + 0.713780i
$$431$$ −6.52548 + 6.52548i −0.314321 + 0.314321i −0.846581 0.532260i $$-0.821343\pi$$
0.532260 + 0.846581i $$0.321343\pi$$
$$432$$ −1.08080 + 0.624002i −0.0520001 + 0.0300223i
$$433$$ 5.04205 + 8.73309i 0.242306 + 0.419686i 0.961371 0.275257i $$-0.0887630\pi$$
−0.719065 + 0.694943i $$0.755430\pi$$
$$434$$ 30.7788 16.7324i 1.47743 0.803183i
$$435$$ −7.77964 2.08455i −0.373005 0.0999465i
$$436$$ 7.79849 + 7.79849i 0.373480 + 0.373480i
$$437$$ 13.1670 + 3.52810i 0.629865 + 0.168772i
$$438$$ 5.44072 9.42360i 0.259968 0.450277i
$$439$$ 2.19526 + 3.80230i 0.104774 + 0.181474i 0.913646 0.406511i $$-0.133255\pi$$
−0.808872 + 0.587985i $$0.799921\pi$$
$$440$$ 6.63761 + 24.7719i 0.316436 + 1.18095i
$$441$$ −3.18448 6.23370i −0.151642 0.296843i
$$442$$ −11.4160 16.7220i −0.543002 0.795385i
$$443$$ 5.48205 9.49519i 0.260460 0.451130i −0.705904 0.708307i $$-0.749459\pi$$
0.966364 + 0.257177i $$0.0827924\pi$$
$$444$$ 21.7856 + 21.7856i 1.03390 + 1.03390i
$$445$$ −29.6669 −1.40635
$$446$$ −12.5960 −0.596436
$$447$$ 6.27597 + 6.27597i 0.296843 + 0.296843i
$$448$$ 17.8417 29.1494i 0.842943 1.37718i
$$449$$ −5.37942 + 20.0763i −0.253871 + 0.947459i 0.714844 + 0.699283i $$0.246497\pi$$
−0.968715 + 0.248175i $$0.920169\pi$$
$$450$$ 16.5433 4.43278i 0.779861 0.208963i
$$451$$ 6.39835 + 3.69409i 0.301286 + 0.173948i
$$452$$ 23.7946i 1.11920i
$$453$$ −16.0171 4.29176i −0.752548 0.201645i
$$454$$ −23.7392 −1.11414
$$455$$ −15.5173 + 30.2597i −0.727462 + 1.41860i
$$456$$ 9.29624 0.435336
$$457$$ −37.5976 10.0743i −1.75874 0.471254i −0.772286 0.635275i $$-0.780887\pi$$
−0.986457 + 0.164021i $$0.947553\pi$$
$$458$$ 62.6465i 2.92728i
$$459$$ −2.18873 1.26366i −0.102161 0.0589828i
$$460$$ 30.8746 8.27282i 1.43953 0.385722i
$$461$$ 3.90240 14.5639i 0.181753 0.678311i −0.813550 0.581496i $$-0.802468\pi$$
0.995302 0.0968151i $$-0.0308655\pi$$
$$462$$ −20.3066 0.521074i −0.944751 0.0242425i
$$463$$ 4.92292 + 4.92292i 0.228787 + 0.228787i 0.812186 0.583399i $$-0.198277\pi$$
−0.583399 + 0.812186i $$0.698277\pi$$
$$464$$ 2.81962 0.130898
$$465$$ −21.2440 −0.985167
$$466$$ −2.12849 2.12849i −0.0986006 0.0986006i
$$467$$ 8.08617 14.0057i 0.374183 0.648105i −0.616021 0.787730i $$-0.711256\pi$$
0.990204 + 0.139625i $$0.0445897\pi$$
$$468$$ 6.90247 8.03082i 0.319067 0.371225i
$$469$$ −23.7233 + 5.70865i −1.09544 + 0.263601i
$$470$$ −13.9044 51.8918i −0.641361 2.39359i
$$471$$ −8.32436 14.4182i −0.383566 0.664356i
$$472$$ 8.85111 15.3306i 0.407405 0.705646i
$$473$$ −12.4738 3.34236i −0.573548 0.153682i
$$474$$ 14.0082 + 14.0082i 0.643418 + 0.643418i
$$475$$ 33.2448 + 8.90793i 1.52538 + 0.408724i
$$476$$ 19.6324 + 0.503772i 0.899849 + 0.0230903i
$$477$$ 2.54393 + 4.40622i 0.116479 + 0.201747i
$$478$$ −20.0413 + 11.5709i −0.916669 + 0.529239i
$$479$$ −20.7958 + 20.7958i −0.950184 + 0.950184i −0.998817 0.0486324i $$-0.984514\pi$$
0.0486324 + 0.998817i $$0.484514\pi$$
$$480$$ −21.4160 + 12.3645i −0.977502 + 0.564361i
$$481$$ 34.0870 + 16.3896i 1.55423 + 0.747301i
$$482$$ 11.5384i 0.525561i
$$483$$ −0.207195 + 8.07454i −0.00942769 + 0.367404i
$$484$$ −1.38024 + 2.39065i −0.0627382 + 0.108666i
$$485$$ 56.0140i 2.54346i
$$486$$ 0.575080 2.14623i 0.0260861 0.0973548i
$$487$$ 4.64339 + 17.3294i 0.210412 + 0.785268i 0.987731 + 0.156162i $$0.0499122\pi$$
−0.777319 + 0.629106i $$0.783421\pi$$
$$488$$ −19.2763 + 19.2763i −0.872598 + 0.872598i
$$489$$ 1.81122 1.81122i 0.0819064 0.0819064i
$$490$$ −25.2239 49.3763i −1.13950 2.23059i
$$491$$ −1.73849 1.00372i −0.0784569 0.0452971i 0.460258 0.887785i $$-0.347757\pi$$
−0.538715 + 0.842488i $$0.681090\pi$$
$$492$$ 1.62532 6.06577i 0.0732750 0.273466i
$$493$$ 2.85501 + 4.94502i 0.128583 + 0.222712i
$$494$$ 33.7568 11.8353i 1.51879 0.532497i
$$495$$ 10.6677 + 6.15901i 0.479478 + 0.276827i
$$496$$ 7.18382 1.92490i 0.322563 0.0864305i
$$497$$ −24.1663 25.4392i −1.08401 1.14111i
$$498$$ 1.56107 0.901283i 0.0699531 0.0403875i
$$499$$ 4.41437 + 16.4747i 0.197615 + 0.737507i 0.991575 + 0.129537i $$0.0413492\pi$$
−0.793960 + 0.607970i $$0.791984\pi$$
$$500$$ 27.3877 7.33850i 1.22481 0.328188i
$$501$$ 0.624684 0.167384i 0.0279088 0.00747815i
$$502$$ 5.27375 + 19.6819i 0.235379 + 0.878446i
$$503$$ 13.6715 7.89323i 0.609581 0.351942i −0.163221 0.986590i $$-0.552188\pi$$
0.772801 + 0.634648i $$0.218855\pi$$
$$504$$ 1.28872 + 5.35551i 0.0574041 + 0.238553i
$$505$$ 10.1496 2.71957i 0.451650 0.121019i
$$506$$ 20.2990 + 11.7196i 0.902401 + 0.521001i
$$507$$ 4.73453 12.1072i 0.210268 0.537700i
$$508$$ −15.7812 27.3338i −0.700177 1.21274i
$$509$$ −4.05672 + 15.1399i −0.179811 + 0.671064i 0.815871 + 0.578234i $$0.196258\pi$$
−0.995682 + 0.0928301i $$0.970409\pi$$
$$510$$ −17.3366 10.0093i −0.767679 0.443220i
$$511$$ 8.92392 + 9.39397i 0.394771 + 0.415565i
$$512$$ 9.79620 9.79620i 0.432935 0.432935i
$$513$$ 3.15731 3.15731i 0.139399 0.139399i
$$514$$ −2.18401 8.15084i −0.0963326 0.359518i
$$515$$ 14.3283 53.4740i 0.631380 2.35634i
$$516$$ 10.9764i 0.483210i
$$517$$ 11.7180 20.2961i 0.515356 0.892624i
$$518$$ −54.1794 + 29.4539i −2.38051 + 1.29413i
$$519$$ 0.904451i 0.0397010i
$$520$$ 17.4427 20.2941i 0.764915 0.889955i
$$521$$ 14.0981 8.13957i 0.617651 0.356601i −0.158303 0.987391i $$-0.550602\pi$$
0.775954 + 0.630790i $$0.217269\pi$$
$$522$$ −3.54971 + 3.54971i −0.155366 + 0.155366i
$$523$$ −14.9531 + 8.63317i −0.653853 + 0.377502i −0.789931 0.613196i $$-0.789884\pi$$
0.136078 + 0.990698i $$0.456550\pi$$
$$524$$ −24.4965 42.4293i −1.07014 1.85353i
$$525$$ −0.523136 + 20.3870i −0.0228315 + 0.889763i
$$526$$ 46.4029 + 12.4336i 2.02326 + 0.542132i
$$527$$ 10.6498 + 10.6498i 0.463914 + 0.463914i
$$528$$ −4.16543 1.11612i −0.181277 0.0485730i
$$529$$ −6.83992 + 11.8471i −0.297388 + 0.515090i
$$530$$ 20.1501 + 34.9011i 0.875266 + 1.51601i
$$531$$ −2.20064 8.21290i −0.0954996 0.356410i
$$532$$ −9.83688 + 33.2729i −0.426483 + 1.44256i
$$533$$ −0.580842 7.68727i −0.0251591 0.332973i
$$534$$ −9.24557 + 16.0138i −0.400095 + 0.692985i
$$535$$ 10.1105 + 10.1105i 0.437115 + 0.437115i
$$536$$ 19.2010 0.829358
$$537$$ 21.2755 0.918106
$$538$$ 26.8114 + 26.8114i 1.15592 + 1.15592i
$$539$$ 7.45030 23.0119i 0.320907 0.991193i
$$540$$ 2.70983 10.1132i 0.116612 0.435203i
$$541$$ 5.38179 1.44205i 0.231381 0.0619984i −0.141265 0.989972i $$-0.545117\pi$$
0.372647 + 0.927973i $$0.378450\pi$$
$$542$$ 18.5265 + 10.6963i 0.795782 + 0.459445i
$$543$$ 19.9161i 0.854681i
$$544$$ 16.9345 + 4.53759i 0.726061 + 0.194548i
$$545$$ 13.3863 0.573407
$$546$$ 11.4979 + 17.8063i 0.492065 + 0.762041i
$$547$$ 1.45857 0.0623640 0.0311820 0.999514i $$-0.490073\pi$$
0.0311820 + 0.999514i $$0.490073\pi$$
$$548$$ −38.1847 10.2316i −1.63117 0.437071i
$$549$$ 13.0938i 0.558828i
$$550$$ 51.2520 + 29.5903i 2.18539 + 1.26174i
$$551$$ −9.74433 + 2.61098i −0.415122 + 0.111232i
$$552$$ 1.64506 6.13946i 0.0700186 0.261313i
$$553$$ −20.7247 + 11.2667i −0.881305 + 0.479109i
$$554$$ 10.8932 + 10.8932i 0.462808 + 0.462808i
$$555$$ 37.3955 1.58735
$$556$$ −45.9917 −1.95048
$$557$$ 25.3584 + 25.3584i 1.07447 + 1.07447i 0.996994 + 0.0774745i $$0.0246856\pi$$
0.0774745 + 0.996994i $$0.475314\pi$$
$$558$$ −6.62060 + 11.4672i −0.280273 + 0.485446i
$$559$$ 4.45833 + 12.7161i 0.188567 + 0.537832i
$$560$$ −2.75385 11.4441i −0.116371 0.483602i
$$561$$ −2.26026 8.43540i −0.0954282 0.356143i
$$562$$ −24.4553 42.3578i −1.03158 1.78675i
$$563$$ −10.2234 + 17.7074i −0.430865 + 0.746280i −0.996948 0.0780682i $$-0.975125\pi$$
0.566083 + 0.824348i $$0.308458\pi$$
$$564$$ −19.2412 5.15566i −0.810199 0.217092i
$$565$$ −20.4220 20.4220i −0.859160 0.859160i
$$566$$ −51.7278 13.8604i −2.17428 0.582597i
$$567$$ 2.25660 + 1.38122i 0.0947683 + 0.0580056i
$$568$$ 13.8056 + 23.9119i 0.579268 + 1.00332i
$$569$$ 2.54333 1.46839i 0.106622 0.0615583i −0.445741 0.895162i $$-0.647060\pi$$
0.552363 + 0.833604i $$0.313726\pi$$
$$570$$ 25.0086 25.0086i 1.04750 1.04750i
$$571$$ 20.2914 11.7152i 0.849168 0.490268i −0.0112018 0.999937i $$-0.503566\pi$$
0.860370 + 0.509670i $$0.170232\pi$$
$$572$$ 36.4872 2.75693i 1.52561 0.115273i
$$573$$ 9.12189i 0.381072i
$$574$$ 10.7207 + 6.56191i 0.447474 + 0.273889i
$$575$$ 11.7660 20.3793i 0.490677 0.849878i
$$576$$ 12.9174i 0.538226i
$$577$$ −1.49434 + 5.57694i −0.0622101 + 0.232171i −0.990030 0.140858i $$-0.955014\pi$$
0.927820 + 0.373029i $$0.121681\pi$$
$$578$$ −6.10310 22.7771i −0.253855 0.947401i
$$579$$ −11.2754 + 11.2754i −0.468589 + 0.468589i
$$580$$ −16.7265 + 16.7265i −0.694531 + 0.694531i
$$581$$ 0.502161 + 2.08682i 0.0208331 + 0.0865759i
$$582$$ −30.2356 17.4565i −1.25331 0.723596i
$$583$$ −4.55022 + 16.9816i −0.188451 + 0.703308i
$$584$$ −5.09799 8.82998i −0.210956 0.365387i
$$585$$ −0.968415 12.8167i −0.0400390 0.529905i
$$586$$ −24.6754 14.2464i −1.01933 0.588512i
$$587$$ 1.45889 0.390908i 0.0602147 0.0161345i −0.228586 0.973524i $$-0.573410\pi$$
0.288801 + 0.957389i $$0.406744\pi$$
$$588$$ −20.5320 1.05441i −0.846725 0.0434830i
$$589$$ −23.0441 + 13.3045i −0.949514 + 0.548202i
$$590$$ −17.4310 65.0532i −0.717621 2.67820i
$$591$$ −23.3537 + 6.25761i −0.960643 + 0.257404i
$$592$$ −12.6456 + 3.38837i −0.519729 + 0.139261i
$$593$$ 3.93254 + 14.6764i 0.161490 + 0.602689i 0.998462 + 0.0554430i $$0.0176571\pi$$
−0.836972 + 0.547246i $$0.815676\pi$$
$$594$$ 6.64910 3.83886i 0.272816 0.157510i
$$595$$ 17.2821 16.4174i 0.708498 0.673047i
$$596$$ 25.1794 6.74679i 1.03139 0.276359i
$$597$$ 10.0401 + 5.79667i 0.410915 + 0.237242i
$$598$$ −1.84274 24.3882i −0.0753554 0.997307i
$$599$$ 21.2625 + 36.8277i 0.868761 + 1.50474i 0.863264 + 0.504753i $$0.168416\pi$$
0.00549669 + 0.999985i $$0.498250\pi$$
$$600$$ 4.15354 15.5012i 0.169568 0.632835i
$$601$$ 7.41322 + 4.28002i 0.302391 + 0.174586i 0.643517 0.765432i $$-0.277475\pi$$
−0.341125 + 0.940018i $$0.610808\pi$$
$$602$$ −21.0689 6.22885i −0.858704 0.253869i
$$603$$ 6.52131 6.52131i 0.265568 0.265568i
$$604$$ −34.4373 + 34.4373i −1.40123 + 1.40123i
$$605$$ 0.867194 + 3.23641i 0.0352565 + 0.131579i
$$606$$ 1.69509 6.32615i 0.0688582 0.256982i
$$607$$ 2.24372i 0.0910697i −0.998963 0.0455349i $$-0.985501\pi$$
0.998963 0.0455349i $$-0.0144992\pi$$
$$608$$ −15.4871 + 26.8244i −0.628084 + 1.08787i
$$609$$ −2.85501 5.25169i −0.115691 0.212809i
$$610$$ 103.714i 4.19925i
$$611$$ −24.3847 + 1.84248i −0.986501 + 0.0745390i
$$612$$ −6.42832 + 3.71139i −0.259849 + 0.150024i
$$613$$ 10.5452 10.5452i 0.425918 0.425918i −0.461317 0.887235i $$-0.652623\pi$$
0.887235 + 0.461317i $$0.152623\pi$$
$$614$$ −42.0633 + 24.2852i −1.69754 + 0.980073i
$$615$$ −3.81107 6.60097i −0.153677 0.266177i
$$616$$ −9.93657 + 16.2342i −0.400356 + 0.654093i
$$617$$ −42.8048 11.4695i −1.72326 0.461745i −0.744645 0.667461i $$-0.767381\pi$$
−0.978612 + 0.205716i $$0.934048\pi$$
$$618$$ −24.3992 24.3992i −0.981478 0.981478i
$$619$$ 19.0455 + 5.10322i 0.765503 + 0.205116i 0.620384 0.784298i $$-0.286977\pi$$
0.145119 + 0.989414i $$0.453643\pi$$
$$620$$ −31.1969 + 54.0346i −1.25290 + 2.17008i
$$621$$ −1.52645 2.64388i −0.0612542 0.106095i
$$622$$ −1.86407 6.95680i −0.0747423 0.278942i
$$623$$ −15.1647 15.9634i −0.607560 0.639562i
$$624$$ 1.48879 + 4.24631i 0.0595991 + 0.169989i
$$625$$ −2.06281 + 3.57289i −0.0825123 + 0.142916i
$$626$$ −45.1958 45.1958i −1.80639 1.80639i
$$627$$ 15.4288 0.616168
$$628$$ −48.8974 −1.95122
$$629$$ −18.7467 18.7467i −0.747481 0.747481i
$$630$$ 17.8742 + 10.9404i 0.712126 + 0.435877i
$$631$$ −4.48791 + 16.7491i −0.178661 + 0.666772i 0.817238 + 0.576300i $$0.195504\pi$$
−0.995899 + 0.0904714i $$0.971163\pi$$
$$632$$ 17.9302 4.80437i 0.713223 0.191108i
$$633$$ 0.310015 + 0.178987i 0.0123220 + 0.00711410i
$$634$$ 1.24178i 0.0493175i
$$635$$ −37.0040 9.91520i −1.46846 0.393473i
$$636$$ 14.9431 0.592533
$$637$$ −24.2143 + 7.11803i −0.959407 + 0.282027i
$$638$$ −17.3463 −0.686748
$$639$$ 12.8101 + 3.43246i 0.506760 + 0.135786i
$$640$$ 52.8589i 2.08943i
$$641$$ 38.3533 + 22.1433i 1.51486 + 0.874607i 0.999848 + 0.0174256i $$0.00554703\pi$$
0.515015 + 0.857181i $$0.327786\pi$$
$$642$$ 8.60841 2.30662i 0.339747 0.0910349i
$$643$$ −4.58915 + 17.1270i −0.180979 + 0.675421i 0.814477 + 0.580196i $$0.197024\pi$$
−0.995456 + 0.0952256i $$0.969643\pi$$
$$644$$ 20.2335 + 12.3845i 0.797312 + 0.488018i
$$645$$ 9.42067 + 9.42067i 0.370938 + 0.370938i
$$646$$ −25.0742 −0.986529
$$647$$ −8.74076 −0.343635 −0.171817 0.985129i $$-0.554964\pi$$
−0.171817 + 0.985129i $$0.554964\pi$$
$$648$$ −1.47218 1.47218i −0.0578325 0.0578325i
$$649$$ 14.6900 25.4439i 0.576635 0.998760i
$$650$$ −4.65265 61.5765i −0.182492 2.41523i
$$651$$ −10.8592 11.4312i −0.425605 0.448022i
$$652$$ −1.94710 7.26668i −0.0762544 0.284585i
$$653$$ 7.63256 + 13.2200i 0.298685 + 0.517338i 0.975835 0.218507i $$-0.0701186\pi$$
−0.677150 + 0.735845i $$0.736785\pi$$
$$654$$ 4.17179 7.22575i 0.163130 0.282549i
$$655$$ −57.4399 15.3910i −2.24436 0.601376i
$$656$$ 1.88685 + 1.88685i 0.0736692 + 0.0736692i
$$657$$ −4.73040 1.26751i −0.184551 0.0494502i
$$658$$ 20.8150 34.0071i 0.811453 1.32573i
$$659$$ −16.9799 29.4100i −0.661443 1.14565i −0.980237 0.197829i $$-0.936611\pi$$
0.318794 0.947824i $$-0.396722\pi$$
$$660$$ 31.3312 18.0890i 1.21956 0.704115i
$$661$$ −19.2329 + 19.2329i −0.748072 + 0.748072i −0.974117 0.226045i $$-0.927420\pi$$
0.226045 + 0.974117i $$0.427420\pi$$
$$662$$ 1.37165 0.791925i 0.0533109 0.0307790i
$$663$$ −5.93966 + 6.91061i −0.230677 + 0.268386i
$$664$$ 1.68902i 0.0655466i
$$665$$ 20.1143 + 36.9996i 0.779999 + 1.43478i
$$666$$ 11.6541 20.1856i 0.451589 0.782175i
$$667$$ 6.89743i 0.267070i
$$668$$ 0.491607 1.83470i 0.0190208 0.0709867i
$$669$$ 1.46722 + 5.47574i 0.0567260 + 0.211704i
$$670$$ 51.6544 51.6544i 1.99558 1.99558i
$$671$$ −31.9926 + 31.9926i −1.23506 + 1.23506i
$$672$$ −17.6003 5.20340i −0.678947 0.200725i
$$673$$ 10.6058 + 6.12329i 0.408825 + 0.236035i 0.690285 0.723538i $$-0.257485\pi$$
−0.281460 + 0.959573i $$0.590819\pi$$
$$674$$ 0.741678 2.76798i 0.0285684 0.106619i
$$675$$ −3.85405 6.67542i −0.148343 0.256937i
$$676$$ −23.8423 29.8218i −0.917010 1.14699i
$$677$$ 16.0226 + 9.25064i 0.615798 + 0.355531i 0.775231 0.631678i $$-0.217633\pi$$
−0.159433 + 0.987209i $$0.550967\pi$$
$$678$$ −17.3880 + 4.65909i −0.667780 + 0.178931i
$$679$$ 30.1405 28.6324i 1.15669 1.09881i
$$680$$ −16.2446 + 9.37880i −0.622950 + 0.359660i
$$681$$ 2.76523 + 10.3200i 0.105964 + 0.395462i
$$682$$ −44.1948 + 11.8420i −1.69231 + 0.453453i
$$683$$ 12.6237 3.38250i 0.483031 0.129428i −0.00908284 0.999959i $$-0.502891\pi$$
0.492113 + 0.870531i $$0.336225\pi$$
$$684$$ −3.39417 12.6672i −0.129779 0.484343i
$$685$$ −41.5539 + 23.9912i −1.58769 + 0.916655i
$$686$$ 13.6753 38.8121i 0.522125 1.48185i
$$687$$ 27.2338 7.29728i 1.03903 0.278408i
$$688$$ −4.03927 2.33207i −0.153996 0.0889094i
$$689$$ 17.3114 6.06949i 0.659512 0.231229i
$$690$$ −12.0908 20.9418i −0.460288 0.797242i
$$691$$ 6.01271 22.4398i 0.228734 0.853648i −0.752139 0.659004i $$-0.770978\pi$$
0.980874 0.194644i $$-0.0623553\pi$$
$$692$$ −2.30049 1.32819i −0.0874515 0.0504902i
$$693$$ 2.13887 + 8.88845i 0.0812488 + 0.337644i
$$694$$ 22.7431 22.7431i 0.863317 0.863317i
$$695$$ −39.4730 + 39.4730i −1.49730 + 1.49730i
$$696$$ 1.21744 + 4.54354i 0.0461468 + 0.172222i
$$697$$ −1.39860 + 5.21966i −0.0529759 + 0.197709i
$$698$$ 13.3320i 0.504623i
$$699$$ −0.677369 + 1.17324i −0.0256205 + 0.0443759i
$$700$$ 51.0866 + 31.2690i 1.93089 + 1.18186i
$$701$$ 4.81650i 0.181917i 0.995855 + 0.0909584i $$0.0289930\pi$$
−0.995855 + 0.0909584i $$0.971007\pi$$
$$702$$ −7.22008 3.47153i −0.272504 0.131025i
$$703$$ 40.5641 23.4197i 1.52990 0.883290i
$$704$$ −31.5617 + 31.5617i −1.18953 + 1.18953i
$$705$$ −20.9389 + 12.0891i −0.788604 + 0.455301i
$$706$$ 19.5783 + 33.9106i 0.736839 + 1.27624i
$$707$$ 6.65148 + 4.07123i 0.250155 + 0.153114i
$$708$$ −24.1213 6.46330i −0.906536 0.242906i
$$709$$ −4.63907 4.63907i −0.174224 0.174224i 0.614608 0.788832i $$-0.289314\pi$$
−0.788832 + 0.614608i $$0.789314\pi$$
$$710$$ 101.467 + 27.1880i 3.80799 + 1.02035i
$$711$$ 4.45795 7.72140i 0.167186 0.289575i
$$712$$ 8.66317 + 15.0050i 0.324666 + 0.562338i
$$713$$ 4.70873 + 17.5732i 0.176343 + 0.658122i
$$714$$ −3.47598 14.4451i −0.130085 0.540593i
$$715$$ 28.9495 33.6818i 1.08265 1.25963i
$$716$$ 31.2432 54.1148i 1.16761 2.02236i
$$717$$ 7.36460 + 7.36460i 0.275036 + 0.275036i
$$718$$ 15.8312 0.590813
$$719$$ −11.0944 −0.413753 −0.206876 0.978367i $$-0.566330\pi$$
−0.206876 + 0.978367i $$0.566330\pi$$
$$720$$ 3.14587 + 3.14587i 0.117240 + 0.117240i
$$721$$ 36.0979 19.6241i 1.34436 0.730840i
$$722$$ 0.538992 2.01155i 0.0200592 0.0748620i
$$723$$ −5.01601 + 1.34404i −0.186548 + 0.0499853i
$$724$$ −50.6570 29.2469i −1.88265 1.08695i
$$725$$ 17.4150i 0.646776i
$$726$$ 2.01723 + 0.540515i 0.0748664 + 0.0200604i
$$727$$ 3.05345 0.113246 0.0566230 0.998396i $$-0.481967\pi$$
0.0566230 + 0.998396i $$0.481967\pi$$
$$728$$ 19.8362 0.987883i 0.735177 0.0366134i
$$729$$ −1.00000 −0.0370370
$$730$$ −37.4689 10.0397i −1.38678 0.371588i
$$731$$ 9.44535i 0.349349i
$$732$$ 33.3043 + 19.2282i 1.23096 + 0.710696i
$$733$$ −16.4195 + 4.39960i −0.606469 + 0.162503i −0.548969 0.835843i $$-0.684980\pi$$
−0.0574997 + 0.998346i $$0.518313\pi$$
$$734$$ −1.36875 + 5.10825i −0.0505215 + 0.188549i
$$735$$ −18.5268 + 16.7169i −0.683372 + 0.616612i
$$736$$ 14.9749 + 14.9749i 0.551982 + 0.551982i
$$737$$ 31.8676 1.17386
$$738$$ −4.75082 −0.174880
$$739$$ −38.0804 38.0804i −1.40081 1.40081i −0.797523 0.603288i $$-0.793857\pi$$
−0.603288 0.797523i $$-0.706143\pi$$
$$740$$ 54.9154 95.1162i 2.01873 3.49654i
$$741$$ −9.07719 13.2962i −0.333459 0.488448i
$$742$$ −8.47984 + 28.6828i −0.311305 + 1.05298i
$$743$$ −0.571152 2.13157i −0.0209535 0.0781997i 0.954657 0.297707i $$-0.0962218\pi$$
−0.975611 + 0.219507i $$0.929555\pi$$
$$744$$ 6.20355 + 10.7449i 0.227433 + 0.393926i
$$745$$ 15.8200 27.4010i 0.579600 1.00390i
$$746$$ −1.95166 0.522946i −0.0714555 0.0191464i
$$747$$ −0.573646 0.573646i −0.0209886 0.0209886i
$$748$$ −24.7748 6.63840i −0.905858 0.242724i
$$749$$ −0.272216 + 10.6085i −0.00994656 + 0.387625i
$$750$$ −10.7253 18.5767i −0.391631 0.678326i
$$751$$ −2.18913 + 1.26390i −0.0798826 + 0.0461202i −0.539409 0.842044i $$-0.681352\pi$$
0.459527 + 0.888164i $$0.348019\pi$$
$$752$$ 5.98527 5.98527i 0.218260 0.218260i
$$753$$ 7.94186 4.58523i 0.289417 0.167095i
$$754$$ 10.2053 + 14.9487i 0.371655 + 0.544398i
$$755$$ 59.1126i 2.15133i
$$756$$ 6.82698 3.71139i 0.248295 0.134982i
$$757$$ −4.00640 + 6.93928i −0.145615 + 0.252213i −0.929602 0.368564i $$-0.879849\pi$$
0.783987 + 0.620777i $$0.213183\pi$$
$$758$$ 61.7745i 2.24375i
$$759$$ 2.73029 10.1896i 0.0991032 0.369858i
$$760$$ −8.57717 32.0104i −0.311127 1.16114i
$$761$$ 2.70358 2.70358i 0.0980047 0.0980047i −0.656404 0.754409i $$-0.727923\pi$$
0.754409 + 0.656404i $$0.227923\pi$$
$$762$$ −16.8842 + 16.8842i −0.611651 + 0.611651i
$$763$$ 6.84261 + 7.20303i 0.247719 + 0.260767i
$$764$$ −23.2017 13.3955i −0.839409 0.484633i
$$765$$ −2.33184 + 8.70254i −0.0843078 + 0.314641i
$$766$$ −13.4727 23.3354i −0.486787 0.843140i
$$767$$ −30.5695 + 2.30980i −1.10380 + 0.0834020i
$$768$$ 6.15891 + 3.55585i 0.222241 + 0.128311i
$$769$$ 11.5757 3.10171i 0.417431 0.111850i −0.0439891 0.999032i $$-0.514007\pi$$
0.461420 + 0.887182i $$0.347340\pi$$
$$770$$ 16.9417 + 70.4042i 0.610535 + 2.53719i
$$771$$ −3.28895 + 1.89888i −0.118449 + 0.0683864i
$$772$$ 12.1212 + 45.2371i 0.436253 + 1.62812i
$$773$$ 51.8808 13.9014i 1.86602 0.500000i 0.866024 0.500002i $$-0.166668\pi$$
1.00000 2.85353e-6i $$9.08307e-7\pi$$
$$774$$