Properties

Label 273.2.cg.b.115.5
Level $273$
Weight $2$
Character 273.115
Analytic conductor $2.180$
Analytic rank $0$
Dimension $40$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.cg (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 115.5
Character \(\chi\) \(=\) 273.115
Dual form 273.2.cg.b.19.5

$q$-expansion

\(f(q)\) \(=\) \(q+(0.251431 - 0.0673706i) q^{2} -1.00000i q^{3} +(-1.67337 + 0.966122i) q^{4} +(3.35960 + 0.900201i) q^{5} +(-0.0673706 - 0.251431i) q^{6} +(0.422545 + 2.61179i) q^{7} +(-0.723769 + 0.723769i) q^{8} -1.00000 q^{9} +O(q^{10})\) \(q+(0.251431 - 0.0673706i) q^{2} -1.00000i q^{3} +(-1.67337 + 0.966122i) q^{4} +(3.35960 + 0.900201i) q^{5} +(-0.0673706 - 0.251431i) q^{6} +(0.422545 + 2.61179i) q^{7} +(-0.723769 + 0.723769i) q^{8} -1.00000 q^{9} +0.905353 q^{10} +(1.69834 - 1.69834i) q^{11} +(0.966122 + 1.67337i) q^{12} +(-1.60070 + 3.23075i) q^{13} +(0.282199 + 0.628217i) q^{14} +(0.900201 - 3.35960i) q^{15} +(1.79903 - 3.11601i) q^{16} +(1.67183 + 2.89570i) q^{17} +(-0.251431 + 0.0673706i) q^{18} +(4.43691 - 4.43691i) q^{19} +(-6.49156 + 1.73941i) q^{20} +(2.61179 - 0.422545i) q^{21} +(0.312595 - 0.541431i) q^{22} +(0.136428 + 0.0787667i) q^{23} +(0.723769 + 0.723769i) q^{24} +(6.14641 + 3.54863i) q^{25} +(-0.184807 + 0.920150i) q^{26} +1.00000i q^{27} +(-3.23038 - 3.96227i) q^{28} +(0.530733 + 0.919257i) q^{29} -0.905353i q^{30} +(-1.37778 - 5.14195i) q^{31} +(0.772239 - 2.88203i) q^{32} +(-1.69834 - 1.69834i) q^{33} +(0.615434 + 0.615434i) q^{34} +(-0.931557 + 9.15494i) q^{35} +(1.67337 - 0.966122i) q^{36} +(-0.635774 - 2.37274i) q^{37} +(0.816657 - 1.41449i) q^{38} +(3.23075 + 1.60070i) q^{39} +(-3.08311 + 1.78003i) q^{40} +(-11.0466 - 2.95993i) q^{41} +(0.628217 - 0.282199i) q^{42} +(-6.74236 - 3.89270i) q^{43} +(-1.20115 + 4.48275i) q^{44} +(-3.35960 - 0.900201i) q^{45} +(0.0396087 + 0.0106131i) q^{46} +(-2.03894 + 7.60944i) q^{47} +(-3.11601 - 1.79903i) q^{48} +(-6.64291 + 2.20720i) q^{49} +(1.78447 + 0.478147i) q^{50} +(2.89570 - 1.67183i) q^{51} +(-0.442737 - 6.95272i) q^{52} +(-3.19888 + 5.54063i) q^{53} +(0.0673706 + 0.251431i) q^{54} +(7.23457 - 4.17688i) q^{55} +(-2.19616 - 1.58451i) q^{56} +(-4.43691 - 4.43691i) q^{57} +(0.195374 + 0.195374i) q^{58} +(0.931813 - 3.47757i) q^{59} +(1.73941 + 6.49156i) q^{60} -12.4907i q^{61} +(-0.692833 - 1.20002i) q^{62} +(-0.422545 - 2.61179i) q^{63} +6.41945i q^{64} +(-8.28603 + 9.41308i) q^{65} +(-0.541431 - 0.312595i) q^{66} +(3.01674 + 3.01674i) q^{67} +(-5.59519 - 3.23038i) q^{68} +(0.0787667 - 0.136428i) q^{69} +(0.382552 + 2.36459i) q^{70} +(3.09532 - 0.829388i) q^{71} +(0.723769 - 0.723769i) q^{72} +(7.36626 - 1.97378i) q^{73} +(-0.319706 - 0.553747i) q^{74} +(3.54863 - 6.14641i) q^{75} +(-3.13800 + 11.7112i) q^{76} +(5.15332 + 3.71807i) q^{77} +(0.920150 + 0.184807i) q^{78} +(3.17152 + 5.49324i) q^{79} +(8.84904 - 8.84904i) q^{80} +1.00000 q^{81} -2.97687 q^{82} +(10.4950 - 10.4950i) q^{83} +(-3.96227 + 3.23038i) q^{84} +(3.00997 + 11.2334i) q^{85} +(-1.95749 - 0.524508i) q^{86} +(0.919257 - 0.530733i) q^{87} +2.45840i q^{88} +(-13.8732 + 3.71732i) q^{89} -0.905353 q^{90} +(-9.11442 - 2.81555i) q^{91} -0.304393 q^{92} +(-5.14195 + 1.37778i) q^{93} +2.05061i q^{94} +(18.9003 - 10.9121i) q^{95} +(-2.88203 - 0.772239i) q^{96} +(-1.40662 - 5.24959i) q^{97} +(-1.52153 + 1.00249i) q^{98} +(-1.69834 + 1.69834i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40q - 8q^{7} - 40q^{9} + O(q^{10}) \) \( 40q - 8q^{7} - 40q^{9} + 4q^{11} - 24q^{12} - 18q^{14} + 32q^{16} + 4q^{17} + 14q^{19} + 14q^{20} + 2q^{21} + 4q^{22} + 12q^{23} + 24q^{25} - 32q^{26} + 16q^{28} + 8q^{29} + 14q^{31} - 26q^{32} - 4q^{33} - 24q^{34} + 26q^{35} + 36q^{37} - 8q^{38} + 18q^{39} - 30q^{40} - 2q^{41} - 66q^{43} - 32q^{44} - 26q^{46} - 4q^{47} + 24q^{48} - 14q^{49} - 20q^{50} + 2q^{52} - 8q^{53} - 42q^{55} + 46q^{56} - 14q^{57} + 24q^{58} + 14q^{59} + 2q^{60} + 24q^{62} + 8q^{63} + 28q^{65} - 18q^{66} - 44q^{67} - 18q^{68} + 4q^{69} - 4q^{70} - 6q^{71} + 14q^{73} - 20q^{74} + 24q^{75} - 64q^{76} + 24q^{77} + 8q^{78} + 20q^{80} + 40q^{81} + 48q^{82} - 12q^{83} + 22q^{84} + 2q^{85} - 60q^{86} + 18q^{87} - 2q^{89} - 14q^{91} + 236q^{92} - 8q^{93} + 24q^{95} + 16q^{96} - 62q^{97} - 88q^{98} - 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.251431 0.0673706i 0.177788 0.0476382i −0.168827 0.985646i \(-0.553998\pi\)
0.346615 + 0.938008i \(0.387331\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −1.67337 + 0.966122i −0.836686 + 0.483061i
\(5\) 3.35960 + 0.900201i 1.50246 + 0.402582i 0.913922 0.405889i \(-0.133038\pi\)
0.588535 + 0.808471i \(0.299705\pi\)
\(6\) −0.0673706 0.251431i −0.0275039 0.102646i
\(7\) 0.422545 + 2.61179i 0.159707 + 0.987164i
\(8\) −0.723769 + 0.723769i −0.255891 + 0.255891i
\(9\) −1.00000 −0.333333
\(10\) 0.905353 0.286298
\(11\) 1.69834 1.69834i 0.512067 0.512067i −0.403092 0.915159i \(-0.632065\pi\)
0.915159 + 0.403092i \(0.132065\pi\)
\(12\) 0.966122 + 1.67337i 0.278895 + 0.483061i
\(13\) −1.60070 + 3.23075i −0.443954 + 0.896050i
\(14\) 0.282199 + 0.628217i 0.0754208 + 0.167898i
\(15\) 0.900201 3.35960i 0.232431 0.867444i
\(16\) 1.79903 3.11601i 0.449757 0.779002i
\(17\) 1.67183 + 2.89570i 0.405479 + 0.702309i 0.994377 0.105898i \(-0.0337716\pi\)
−0.588899 + 0.808207i \(0.700438\pi\)
\(18\) −0.251431 + 0.0673706i −0.0592628 + 0.0158794i
\(19\) 4.43691 4.43691i 1.01790 1.01790i 0.0180596 0.999837i \(-0.494251\pi\)
0.999837 0.0180596i \(-0.00574887\pi\)
\(20\) −6.49156 + 1.73941i −1.45156 + 0.388944i
\(21\) 2.61179 0.422545i 0.569940 0.0922069i
\(22\) 0.312595 0.541431i 0.0666456 0.115434i
\(23\) 0.136428 + 0.0787667i 0.0284472 + 0.0164240i 0.514156 0.857697i \(-0.328105\pi\)
−0.485709 + 0.874121i \(0.661439\pi\)
\(24\) 0.723769 + 0.723769i 0.147739 + 0.147739i
\(25\) 6.14641 + 3.54863i 1.22928 + 0.709726i
\(26\) −0.184807 + 0.920150i −0.0362436 + 0.180456i
\(27\) 1.00000i 0.192450i
\(28\) −3.23038 3.96227i −0.610485 0.748799i
\(29\) 0.530733 + 0.919257i 0.0985547 + 0.170702i 0.911087 0.412215i \(-0.135245\pi\)
−0.812532 + 0.582917i \(0.801911\pi\)
\(30\) 0.905353i 0.165294i
\(31\) −1.37778 5.14195i −0.247457 0.923521i −0.972133 0.234431i \(-0.924677\pi\)
0.724676 0.689090i \(-0.241989\pi\)
\(32\) 0.772239 2.88203i 0.136514 0.509476i
\(33\) −1.69834 1.69834i −0.295642 0.295642i
\(34\) 0.615434 + 0.615434i 0.105546 + 0.105546i
\(35\) −0.931557 + 9.15494i −0.157462 + 1.54747i
\(36\) 1.67337 0.966122i 0.278895 0.161020i
\(37\) −0.635774 2.37274i −0.104521 0.390076i 0.893770 0.448526i \(-0.148051\pi\)
−0.998290 + 0.0584498i \(0.981384\pi\)
\(38\) 0.816657 1.41449i 0.132479 0.229461i
\(39\) 3.23075 + 1.60070i 0.517335 + 0.256317i
\(40\) −3.08311 + 1.78003i −0.487482 + 0.281448i
\(41\) −11.0466 2.95993i −1.72519 0.462264i −0.746125 0.665806i \(-0.768088\pi\)
−0.979066 + 0.203542i \(0.934755\pi\)
\(42\) 0.628217 0.282199i 0.0969360 0.0435442i
\(43\) −6.74236 3.89270i −1.02820 0.593632i −0.111732 0.993738i \(-0.535640\pi\)
−0.916469 + 0.400107i \(0.868973\pi\)
\(44\) −1.20115 + 4.48275i −0.181080 + 0.675799i
\(45\) −3.35960 0.900201i −0.500819 0.134194i
\(46\) 0.0396087 + 0.0106131i 0.00583999 + 0.00156482i
\(47\) −2.03894 + 7.60944i −0.297410 + 1.10995i 0.641874 + 0.766810i \(0.278157\pi\)
−0.939284 + 0.343140i \(0.888509\pi\)
\(48\) −3.11601 1.79903i −0.449757 0.259667i
\(49\) −6.64291 + 2.20720i −0.948987 + 0.315314i
\(50\) 1.78447 + 0.478147i 0.252362 + 0.0676202i
\(51\) 2.89570 1.67183i 0.405479 0.234103i
\(52\) −0.442737 6.95272i −0.0613966 0.964169i
\(53\) −3.19888 + 5.54063i −0.439400 + 0.761064i −0.997643 0.0686138i \(-0.978142\pi\)
0.558243 + 0.829678i \(0.311476\pi\)
\(54\) 0.0673706 + 0.251431i 0.00916798 + 0.0342154i
\(55\) 7.23457 4.17688i 0.975509 0.563210i
\(56\) −2.19616 1.58451i −0.293474 0.211739i
\(57\) −4.43691 4.43691i −0.587683 0.587683i
\(58\) 0.195374 + 0.195374i 0.0256538 + 0.0256538i
\(59\) 0.931813 3.47757i 0.121312 0.452741i −0.878370 0.477982i \(-0.841368\pi\)
0.999681 + 0.0252405i \(0.00803514\pi\)
\(60\) 1.73941 + 6.49156i 0.224557 + 0.838057i
\(61\) 12.4907i 1.59927i −0.600488 0.799634i \(-0.705027\pi\)
0.600488 0.799634i \(-0.294973\pi\)
\(62\) −0.692833 1.20002i −0.0879898 0.152403i
\(63\) −0.422545 2.61179i −0.0532357 0.329055i
\(64\) 6.41945i 0.802431i
\(65\) −8.28603 + 9.41308i −1.02776 + 1.16755i
\(66\) −0.541431 0.312595i −0.0666456 0.0384778i
\(67\) 3.01674 + 3.01674i 0.368553 + 0.368553i 0.866949 0.498396i \(-0.166078\pi\)
−0.498396 + 0.866949i \(0.666078\pi\)
\(68\) −5.59519 3.23038i −0.678516 0.391742i
\(69\) 0.0787667 0.136428i 0.00948240 0.0164240i
\(70\) 0.382552 + 2.36459i 0.0457238 + 0.282623i
\(71\) 3.09532 0.829388i 0.367347 0.0984302i −0.0704235 0.997517i \(-0.522435\pi\)
0.437770 + 0.899087i \(0.355768\pi\)
\(72\) 0.723769 0.723769i 0.0852969 0.0852969i
\(73\) 7.36626 1.97378i 0.862156 0.231014i 0.199463 0.979905i \(-0.436080\pi\)
0.662693 + 0.748891i \(0.269414\pi\)
\(74\) −0.319706 0.553747i −0.0371651 0.0643718i
\(75\) 3.54863 6.14641i 0.409760 0.709726i
\(76\) −3.13800 + 11.7112i −0.359954 + 1.34337i
\(77\) 5.15332 + 3.71807i 0.587275 + 0.423714i
\(78\) 0.920150 + 0.184807i 0.104186 + 0.0209252i
\(79\) 3.17152 + 5.49324i 0.356824 + 0.618038i 0.987428 0.158067i \(-0.0505262\pi\)
−0.630604 + 0.776105i \(0.717193\pi\)
\(80\) 8.84904 8.84904i 0.989353 0.989353i
\(81\) 1.00000 0.111111
\(82\) −2.97687 −0.328740
\(83\) 10.4950 10.4950i 1.15197 1.15197i 0.165818 0.986156i \(-0.446974\pi\)
0.986156 0.165818i \(-0.0530264\pi\)
\(84\) −3.96227 + 3.23038i −0.432319 + 0.352464i
\(85\) 3.00997 + 11.2334i 0.326477 + 1.21843i
\(86\) −1.95749 0.524508i −0.211081 0.0565591i
\(87\) 0.919257 0.530733i 0.0985547 0.0569006i
\(88\) 2.45840i 0.262067i
\(89\) −13.8732 + 3.71732i −1.47056 + 0.394035i −0.903123 0.429382i \(-0.858732\pi\)
−0.567437 + 0.823417i \(0.692065\pi\)
\(90\) −0.905353 −0.0954325
\(91\) −9.11442 2.81555i −0.955451 0.295150i
\(92\) −0.304393 −0.0317352
\(93\) −5.14195 + 1.37778i −0.533195 + 0.142869i
\(94\) 2.05061i 0.211504i
\(95\) 18.9003 10.9121i 1.93913 1.11956i
\(96\) −2.88203 0.772239i −0.294146 0.0788163i
\(97\) −1.40662 5.24959i −0.142821 0.533015i −0.999843 0.0177346i \(-0.994355\pi\)
0.857022 0.515280i \(-0.172312\pi\)
\(98\) −1.52153 + 1.00249i −0.153698 + 0.101267i
\(99\) −1.69834 + 1.69834i −0.170689 + 0.170689i
\(100\) −13.7136 −1.37136
\(101\) −0.165504 −0.0164683 −0.00823415 0.999966i \(-0.502621\pi\)
−0.00823415 + 0.999966i \(0.502621\pi\)
\(102\) 0.615434 0.615434i 0.0609371 0.0609371i
\(103\) −8.50977 14.7394i −0.838493 1.45231i −0.891155 0.453700i \(-0.850104\pi\)
0.0526616 0.998612i \(-0.483230\pi\)
\(104\) −1.17978 3.49685i −0.115687 0.342895i
\(105\) 9.15494 + 0.931557i 0.893431 + 0.0909106i
\(106\) −0.431021 + 1.60859i −0.0418645 + 0.156240i
\(107\) 7.18946 12.4525i 0.695031 1.20383i −0.275139 0.961405i \(-0.588724\pi\)
0.970170 0.242425i \(-0.0779429\pi\)
\(108\) −0.966122 1.67337i −0.0929651 0.161020i
\(109\) 3.53370 0.946851i 0.338467 0.0906919i −0.0855823 0.996331i \(-0.527275\pi\)
0.424049 + 0.905639i \(0.360608\pi\)
\(110\) 1.53759 1.53759i 0.146604 0.146604i
\(111\) −2.37274 + 0.635774i −0.225211 + 0.0603450i
\(112\) 8.89853 + 3.38203i 0.840832 + 0.319572i
\(113\) 1.01802 1.76326i 0.0957674 0.165874i −0.814161 0.580639i \(-0.802803\pi\)
0.909929 + 0.414765i \(0.136136\pi\)
\(114\) −1.41449 0.816657i −0.132479 0.0764869i
\(115\) 0.387437 + 0.387437i 0.0361287 + 0.0361287i
\(116\) −1.77623 1.02551i −0.164919 0.0952159i
\(117\) 1.60070 3.23075i 0.147985 0.298683i
\(118\) 0.937145i 0.0862712i
\(119\) −6.85653 + 5.59004i −0.628537 + 0.512438i
\(120\) 1.78003 + 3.08311i 0.162494 + 0.281448i
\(121\) 5.23132i 0.475574i
\(122\) −0.841505 3.14054i −0.0761863 0.284331i
\(123\) −2.95993 + 11.0466i −0.266888 + 0.996040i
\(124\) 7.27329 + 7.27329i 0.653161 + 0.653161i
\(125\) 5.15799 + 5.15799i 0.461345 + 0.461345i
\(126\) −0.282199 0.628217i −0.0251403 0.0559660i
\(127\) 5.00974 2.89237i 0.444542 0.256657i −0.260980 0.965344i \(-0.584046\pi\)
0.705522 + 0.708688i \(0.250712\pi\)
\(128\) 1.97696 + 7.37811i 0.174740 + 0.652139i
\(129\) −3.89270 + 6.74236i −0.342733 + 0.593632i
\(130\) −1.44920 + 2.92497i −0.127103 + 0.256537i
\(131\) −7.30515 + 4.21763i −0.638254 + 0.368496i −0.783942 0.620835i \(-0.786794\pi\)
0.145688 + 0.989331i \(0.453460\pi\)
\(132\) 4.48275 + 1.20115i 0.390173 + 0.104547i
\(133\) 13.4631 + 9.71349i 1.16740 + 0.842266i
\(134\) 0.961739 + 0.555260i 0.0830816 + 0.0479672i
\(135\) −0.900201 + 3.35960i −0.0774770 + 0.289148i
\(136\) −3.30583 0.885795i −0.283473 0.0759563i
\(137\) −2.58836 0.693549i −0.221139 0.0592539i 0.146548 0.989203i \(-0.453184\pi\)
−0.367687 + 0.929950i \(0.619850\pi\)
\(138\) 0.0106131 0.0396087i 0.000903449 0.00337172i
\(139\) −6.31386 3.64531i −0.535534 0.309191i 0.207733 0.978186i \(-0.433392\pi\)
−0.743267 + 0.668995i \(0.766725\pi\)
\(140\) −7.28595 16.2196i −0.615775 1.37081i
\(141\) 7.60944 + 2.03894i 0.640830 + 0.171710i
\(142\) 0.722381 0.417067i 0.0606209 0.0349995i
\(143\) 2.76838 + 8.20542i 0.231503 + 0.686172i
\(144\) −1.79903 + 3.11601i −0.149919 + 0.259667i
\(145\) 0.955534 + 3.56610i 0.0793528 + 0.296149i
\(146\) 1.71913 0.992539i 0.142276 0.0821431i
\(147\) 2.20720 + 6.64291i 0.182047 + 0.547898i
\(148\) 3.35624 + 3.35624i 0.275882 + 0.275882i
\(149\) 15.6641 + 15.6641i 1.28325 + 1.28325i 0.938807 + 0.344443i \(0.111932\pi\)
0.344443 + 0.938807i \(0.388068\pi\)
\(150\) 0.478147 1.78447i 0.0390405 0.145701i
\(151\) 0.0610444 + 0.227821i 0.00496772 + 0.0185398i 0.968365 0.249537i \(-0.0802785\pi\)
−0.963397 + 0.268077i \(0.913612\pi\)
\(152\) 6.42259i 0.520941i
\(153\) −1.67183 2.89570i −0.135160 0.234103i
\(154\) 1.54619 + 0.587655i 0.124596 + 0.0473546i
\(155\) 18.5152i 1.48717i
\(156\) −6.95272 + 0.442737i −0.556663 + 0.0354473i
\(157\) 7.43594 + 4.29314i 0.593452 + 0.342630i 0.766461 0.642290i \(-0.222016\pi\)
−0.173009 + 0.984920i \(0.555349\pi\)
\(158\) 1.16750 + 1.16750i 0.0928814 + 0.0928814i
\(159\) 5.54063 + 3.19888i 0.439400 + 0.253688i
\(160\) 5.18882 8.98730i 0.410212 0.710509i
\(161\) −0.148075 + 0.389604i −0.0116700 + 0.0307051i
\(162\) 0.251431 0.0673706i 0.0197543 0.00529314i
\(163\) 9.69493 9.69493i 0.759366 0.759366i −0.216841 0.976207i \(-0.569575\pi\)
0.976207 + 0.216841i \(0.0695754\pi\)
\(164\) 21.3448 5.71931i 1.66675 0.446603i
\(165\) −4.17688 7.23457i −0.325170 0.563210i
\(166\) 1.93171 3.34581i 0.149930 0.259686i
\(167\) −6.17130 + 23.0316i −0.477549 + 1.78224i 0.133945 + 0.990989i \(0.457236\pi\)
−0.611494 + 0.791249i \(0.709431\pi\)
\(168\) −1.58451 + 2.19616i −0.122247 + 0.169437i
\(169\) −7.87553 10.3429i −0.605810 0.795609i
\(170\) 1.51360 + 2.62163i 0.116088 + 0.201070i
\(171\) −4.43691 + 4.43691i −0.339299 + 0.339299i
\(172\) 15.0433 1.14704
\(173\) 23.6712 1.79969 0.899845 0.436210i \(-0.143679\pi\)
0.899845 + 0.436210i \(0.143679\pi\)
\(174\) 0.195374 0.195374i 0.0148112 0.0148112i
\(175\) −6.67115 + 17.5526i −0.504291 + 1.32685i
\(176\) −2.23667 8.34737i −0.168595 0.629207i
\(177\) −3.47757 0.931813i −0.261390 0.0700393i
\(178\) −3.23772 + 1.86930i −0.242677 + 0.140110i
\(179\) 8.63009i 0.645043i −0.946562 0.322522i \(-0.895469\pi\)
0.946562 0.322522i \(-0.104531\pi\)
\(180\) 6.49156 1.73941i 0.483852 0.129648i
\(181\) −17.8086 −1.32370 −0.661850 0.749636i \(-0.730228\pi\)
−0.661850 + 0.749636i \(0.730228\pi\)
\(182\) −2.48133 0.0938715i −0.183928 0.00695822i
\(183\) −12.4907 −0.923337
\(184\) −0.155751 + 0.0417334i −0.0114821 + 0.00307663i
\(185\) 8.54378i 0.628151i
\(186\) −1.20002 + 0.692833i −0.0879898 + 0.0508009i
\(187\) 7.75719 + 2.07853i 0.567262 + 0.151997i
\(188\) −3.93974 14.7033i −0.287335 1.07235i
\(189\) −2.61179 + 0.422545i −0.189980 + 0.0307356i
\(190\) 4.01697 4.01697i 0.291421 0.291421i
\(191\) 11.4675 0.829757 0.414879 0.909877i \(-0.363824\pi\)
0.414879 + 0.909877i \(0.363824\pi\)
\(192\) 6.41945 0.463284
\(193\) −11.3907 + 11.3907i −0.819918 + 0.819918i −0.986096 0.166178i \(-0.946857\pi\)
0.166178 + 0.986096i \(0.446857\pi\)
\(194\) −0.707336 1.22514i −0.0507837 0.0879600i
\(195\) 9.41308 + 8.28603i 0.674085 + 0.593375i
\(196\) 8.98364 10.1113i 0.641688 0.722238i
\(197\) −5.08168 + 18.9651i −0.362055 + 1.35121i 0.509315 + 0.860580i \(0.329899\pi\)
−0.871370 + 0.490627i \(0.836768\pi\)
\(198\) −0.312595 + 0.541431i −0.0222152 + 0.0384778i
\(199\) −0.303972 0.526495i −0.0215480 0.0373222i 0.855050 0.518545i \(-0.173526\pi\)
−0.876598 + 0.481223i \(0.840193\pi\)
\(200\) −7.01696 + 1.88019i −0.496174 + 0.132949i
\(201\) 3.01674 3.01674i 0.212784 0.212784i
\(202\) −0.0416129 + 0.0111501i −0.00292787 + 0.000784521i
\(203\) −2.17665 + 1.77459i −0.152771 + 0.124552i
\(204\) −3.23038 + 5.59519i −0.226172 + 0.391742i
\(205\) −34.4476 19.8884i −2.40593 1.38906i
\(206\) −3.13262 3.13262i −0.218260 0.218260i
\(207\) −0.136428 0.0787667i −0.00948240 0.00547467i
\(208\) 7.18735 + 10.8000i 0.498353 + 0.748845i
\(209\) 15.0707i 1.04246i
\(210\) 2.36459 0.382552i 0.163172 0.0263986i
\(211\) −5.93600 10.2814i −0.408651 0.707804i 0.586088 0.810247i \(-0.300667\pi\)
−0.994739 + 0.102443i \(0.967334\pi\)
\(212\) 12.3620i 0.849029i
\(213\) −0.829388 3.09532i −0.0568287 0.212088i
\(214\) 0.968717 3.61530i 0.0662201 0.247137i
\(215\) −19.1474 19.1474i −1.30584 1.30584i
\(216\) −0.723769 0.723769i −0.0492462 0.0492462i
\(217\) 12.8475 5.77118i 0.872147 0.391773i
\(218\) 0.824689 0.476135i 0.0558550 0.0322479i
\(219\) −1.97378 7.36626i −0.133376 0.497766i
\(220\) −8.07075 + 13.9789i −0.544130 + 0.942460i
\(221\) −12.0314 + 0.766137i −0.809318 + 0.0515359i
\(222\) −0.553747 + 0.319706i −0.0371651 + 0.0214573i
\(223\) −13.6762 3.66451i −0.915823 0.245394i −0.230024 0.973185i \(-0.573880\pi\)
−0.685799 + 0.727791i \(0.740547\pi\)
\(224\) 7.85358 + 0.799137i 0.524739 + 0.0533946i
\(225\) −6.14641 3.54863i −0.409760 0.236575i
\(226\) 0.137169 0.511923i 0.00912437 0.0340526i
\(227\) −26.6767 7.14799i −1.77059 0.474429i −0.781774 0.623561i \(-0.785685\pi\)
−0.988817 + 0.149133i \(0.952352\pi\)
\(228\) 11.7112 + 3.13800i 0.775593 + 0.207819i
\(229\) −3.56611 + 13.3089i −0.235655 + 0.879478i 0.742197 + 0.670182i \(0.233784\pi\)
−0.977852 + 0.209296i \(0.932883\pi\)
\(230\) 0.123515 + 0.0713117i 0.00814437 + 0.00470215i
\(231\) 3.71807 5.15332i 0.244631 0.339064i
\(232\) −1.04946 0.281201i −0.0689003 0.0184618i
\(233\) 16.7885 9.69285i 1.09985 0.635000i 0.163670 0.986515i \(-0.447667\pi\)
0.936182 + 0.351516i \(0.114334\pi\)
\(234\) 0.184807 0.920150i 0.0120812 0.0601521i
\(235\) −13.7001 + 23.7292i −0.893693 + 1.54792i
\(236\) 1.80049 + 6.71952i 0.117202 + 0.437403i
\(237\) 5.49324 3.17152i 0.356824 0.206013i
\(238\) −1.34734 + 1.86743i −0.0873349 + 0.121048i
\(239\) 2.28662 + 2.28662i 0.147909 + 0.147909i 0.777183 0.629274i \(-0.216648\pi\)
−0.629274 + 0.777183i \(0.716648\pi\)
\(240\) −8.84904 8.84904i −0.571203 0.571203i
\(241\) 0.546836 2.04082i 0.0352248 0.131461i −0.946074 0.323949i \(-0.894989\pi\)
0.981299 + 0.192489i \(0.0616559\pi\)
\(242\) 0.352437 + 1.31531i 0.0226555 + 0.0845515i
\(243\) 1.00000i 0.0641500i
\(244\) 12.0675 + 20.9016i 0.772544 + 1.33808i
\(245\) −24.3044 + 1.43535i −1.55275 + 0.0917009i
\(246\) 2.97687i 0.189798i
\(247\) 7.23240 + 21.4367i 0.460187 + 1.36398i
\(248\) 4.71878 + 2.72439i 0.299643 + 0.172999i
\(249\) −10.4950 10.4950i −0.665093 0.665093i
\(250\) 1.64437 + 0.949379i 0.103999 + 0.0600440i
\(251\) −3.94432 + 6.83176i −0.248963 + 0.431217i −0.963238 0.268648i \(-0.913423\pi\)
0.714275 + 0.699865i \(0.246757\pi\)
\(252\) 3.23038 + 3.96227i 0.203495 + 0.249600i
\(253\) 0.365473 0.0979281i 0.0229771 0.00615669i
\(254\) 1.06474 1.06474i 0.0668077 0.0668077i
\(255\) 11.2334 3.00997i 0.703460 0.188492i
\(256\) −5.42531 9.39692i −0.339082 0.587308i
\(257\) −12.3451 + 21.3823i −0.770064 + 1.33379i 0.167464 + 0.985878i \(0.446442\pi\)
−0.937528 + 0.347911i \(0.886891\pi\)
\(258\) −0.524508 + 1.95749i −0.0326544 + 0.121868i
\(259\) 5.92846 2.66310i 0.368377 0.165477i
\(260\) 4.77143 23.7569i 0.295912 1.47334i
\(261\) −0.530733 0.919257i −0.0328516 0.0569006i
\(262\) −1.55259 + 1.55259i −0.0959195 + 0.0959195i
\(263\) 0.287705 0.0177407 0.00887034 0.999961i \(-0.497176\pi\)
0.00887034 + 0.999961i \(0.497176\pi\)
\(264\) 2.45840 0.151304
\(265\) −15.7346 + 15.7346i −0.966571 + 0.966571i
\(266\) 4.03943 + 1.53525i 0.247673 + 0.0941323i
\(267\) 3.71732 + 13.8732i 0.227496 + 0.849028i
\(268\) −7.96265 2.13359i −0.486397 0.130330i
\(269\) 2.21411 1.27832i 0.134997 0.0779404i −0.430981 0.902361i \(-0.641832\pi\)
0.565977 + 0.824421i \(0.308499\pi\)
\(270\) 0.905353i 0.0550980i
\(271\) 20.4852 5.48899i 1.24439 0.333432i 0.424221 0.905559i \(-0.360548\pi\)
0.820165 + 0.572127i \(0.193881\pi\)
\(272\) 12.0307 0.729467
\(273\) −2.81555 + 9.11442i −0.170405 + 0.551630i
\(274\) −0.697518 −0.0421386
\(275\) 16.4654 4.41190i 0.992902 0.266047i
\(276\) 0.304393i 0.0183223i
\(277\) 7.21292 4.16438i 0.433383 0.250214i −0.267404 0.963585i \(-0.586166\pi\)
0.700787 + 0.713371i \(0.252832\pi\)
\(278\) −1.83308 0.491173i −0.109941 0.0294586i
\(279\) 1.37778 + 5.14195i 0.0824856 + 0.307840i
\(280\) −5.95183 7.30029i −0.355690 0.436276i
\(281\) −6.21366 + 6.21366i −0.370676 + 0.370676i −0.867723 0.497048i \(-0.834417\pi\)
0.497048 + 0.867723i \(0.334417\pi\)
\(282\) 2.05061 0.122112
\(283\) −2.89632 −0.172169 −0.0860843 0.996288i \(-0.527435\pi\)
−0.0860843 + 0.996288i \(0.527435\pi\)
\(284\) −4.37833 + 4.37833i −0.259806 + 0.259806i
\(285\) −10.9121 18.9003i −0.646378 1.11956i
\(286\) 1.24886 + 1.87659i 0.0738466 + 0.110965i
\(287\) 3.06303 30.1022i 0.180805 1.77687i
\(288\) −0.772239 + 2.88203i −0.0455046 + 0.169825i
\(289\) 2.90996 5.04021i 0.171174 0.296483i
\(290\) 0.480501 + 0.832252i 0.0282160 + 0.0488715i
\(291\) −5.24959 + 1.40662i −0.307736 + 0.0824576i
\(292\) −10.4196 + 10.4196i −0.609760 + 0.609760i
\(293\) 5.02628 1.34679i 0.293639 0.0786802i −0.108993 0.994043i \(-0.534762\pi\)
0.402631 + 0.915362i \(0.368096\pi\)
\(294\) 1.00249 + 1.52153i 0.0584667 + 0.0887375i
\(295\) 6.26103 10.8444i 0.364531 0.631387i
\(296\) 2.17747 + 1.25716i 0.126563 + 0.0730711i
\(297\) 1.69834 + 1.69834i 0.0985474 + 0.0985474i
\(298\) 4.99372 + 2.88313i 0.289279 + 0.167015i
\(299\) −0.472856 + 0.314683i −0.0273460 + 0.0181986i
\(300\) 13.7136i 0.791757i
\(301\) 7.31798 19.2545i 0.421801 1.10981i
\(302\) 0.0306968 + 0.0531685i 0.00176640 + 0.00305950i
\(303\) 0.165504i 0.00950798i
\(304\) −5.84332 21.8076i −0.335137 1.25075i
\(305\) 11.2441 41.9637i 0.643837 2.40283i
\(306\) −0.615434 0.615434i −0.0351820 0.0351820i
\(307\) 1.10470 + 1.10470i 0.0630485 + 0.0630485i 0.737928 0.674879i \(-0.235804\pi\)
−0.674879 + 0.737928i \(0.735804\pi\)
\(308\) −12.2155 1.24299i −0.696045 0.0708257i
\(309\) −14.7394 + 8.50977i −0.838493 + 0.484104i
\(310\) −1.24738 4.65528i −0.0708463 0.264402i
\(311\) −14.6804 + 25.4273i −0.832451 + 1.44185i 0.0636376 + 0.997973i \(0.479730\pi\)
−0.896089 + 0.443875i \(0.853603\pi\)
\(312\) −3.49685 + 1.17978i −0.197970 + 0.0667920i
\(313\) −2.54238 + 1.46784i −0.143704 + 0.0829673i −0.570128 0.821556i \(-0.693106\pi\)
0.426424 + 0.904523i \(0.359773\pi\)
\(314\) 2.15885 + 0.578463i 0.121831 + 0.0326446i
\(315\) 0.931557 9.15494i 0.0524873 0.515823i
\(316\) −10.6143 6.12816i −0.597100 0.344736i
\(317\) −4.87405 + 18.1902i −0.273754 + 1.02166i 0.682918 + 0.730495i \(0.260711\pi\)
−0.956672 + 0.291169i \(0.905956\pi\)
\(318\) 1.60859 + 0.431021i 0.0902055 + 0.0241705i
\(319\) 2.46257 + 0.659844i 0.137877 + 0.0369441i
\(320\) −5.77880 + 21.5668i −0.323045 + 1.20562i
\(321\) −12.4525 7.18946i −0.695031 0.401277i
\(322\) −0.0109828 + 0.107934i −0.000612047 + 0.00601494i
\(323\) 20.2657 + 5.43018i 1.12761 + 0.302143i
\(324\) −1.67337 + 0.966122i −0.0929651 + 0.0536734i
\(325\) −21.3033 + 14.1772i −1.18169 + 0.786412i
\(326\) 1.78445 3.09076i 0.0988315 0.171181i
\(327\) −0.946851 3.53370i −0.0523610 0.195414i
\(328\) 10.1375 5.85289i 0.559750 0.323172i
\(329\) −20.7358 2.10996i −1.14320 0.116326i
\(330\) −1.53759 1.53759i −0.0846417 0.0846417i
\(331\) 2.34537 + 2.34537i 0.128913 + 0.128913i 0.768619 0.639706i \(-0.220944\pi\)
−0.639706 + 0.768619i \(0.720944\pi\)
\(332\) −7.42258 + 27.7015i −0.407367 + 1.52031i
\(333\) 0.635774 + 2.37274i 0.0348402 + 0.130025i
\(334\) 6.20661i 0.339611i
\(335\) 7.41935 + 12.8507i 0.405362 + 0.702108i
\(336\) 3.38203 8.89853i 0.184505 0.485455i
\(337\) 10.8862i 0.593007i 0.955032 + 0.296503i \(0.0958206\pi\)
−0.955032 + 0.296503i \(0.904179\pi\)
\(338\) −2.67696 2.06995i −0.145607 0.112590i
\(339\) −1.76326 1.01802i −0.0957674 0.0552913i
\(340\) −15.8896 15.8896i −0.861734 0.861734i
\(341\) −11.0727 6.39282i −0.599620 0.346191i
\(342\) −0.816657 + 1.41449i −0.0441598 + 0.0764869i
\(343\) −8.57168 16.4173i −0.462827 0.886449i
\(344\) 7.69732 2.06249i 0.415012 0.111202i
\(345\) 0.387437 0.387437i 0.0208589 0.0208589i
\(346\) 5.95167 1.59475i 0.319964 0.0857340i
\(347\) 7.18342 + 12.4421i 0.385626 + 0.667925i 0.991856 0.127365i \(-0.0406520\pi\)
−0.606229 + 0.795290i \(0.707319\pi\)
\(348\) −1.02551 + 1.77623i −0.0549729 + 0.0952159i
\(349\) 7.51762 28.0561i 0.402409 1.50181i −0.406376 0.913706i \(-0.633208\pi\)
0.808785 0.588105i \(-0.200126\pi\)
\(350\) −0.494801 + 4.86270i −0.0264482 + 0.259922i
\(351\) −3.23075 1.60070i −0.172445 0.0854390i
\(352\) −3.58314 6.20618i −0.190982 0.330790i
\(353\) −2.64326 + 2.64326i −0.140686 + 0.140686i −0.773942 0.633256i \(-0.781718\pi\)
0.633256 + 0.773942i \(0.281718\pi\)
\(354\) −0.937145 −0.0498087
\(355\) 11.1456 0.591549
\(356\) 19.6237 19.6237i 1.04005 1.04005i
\(357\) 5.59004 + 6.85653i 0.295856 + 0.362886i
\(358\) −0.581415 2.16987i −0.0307287 0.114681i
\(359\) 2.82335 + 0.756515i 0.149011 + 0.0399273i 0.332553 0.943084i \(-0.392090\pi\)
−0.183543 + 0.983012i \(0.558757\pi\)
\(360\) 3.08311 1.78003i 0.162494 0.0938160i
\(361\) 20.3723i 1.07223i
\(362\) −4.47762 + 1.19977i −0.235338 + 0.0630587i
\(363\) 5.23132 0.274573
\(364\) 17.9720 4.09418i 0.941988 0.214593i
\(365\) 26.5245 1.38835
\(366\) −3.14054 + 0.841505i −0.164159 + 0.0439862i
\(367\) 6.18703i 0.322960i 0.986876 + 0.161480i \(0.0516268\pi\)
−0.986876 + 0.161480i \(0.948373\pi\)
\(368\) 0.490875 0.283407i 0.0255886 0.0147736i
\(369\) 11.0466 + 2.95993i 0.575064 + 0.154088i
\(370\) −0.575600 2.14817i −0.0299240 0.111678i
\(371\) −15.8226 6.01365i −0.821470 0.312213i
\(372\) 7.27329 7.27329i 0.377103 0.377103i
\(373\) −11.9743 −0.620007 −0.310004 0.950735i \(-0.600330\pi\)
−0.310004 + 0.950735i \(0.600330\pi\)
\(374\) 2.09043 0.108093
\(375\) 5.15799 5.15799i 0.266357 0.266357i
\(376\) −4.03175 6.98320i −0.207922 0.360131i
\(377\) −3.81944 + 0.243215i −0.196711 + 0.0125262i
\(378\) −0.628217 + 0.282199i −0.0323120 + 0.0145147i
\(379\) −6.93204 + 25.8707i −0.356075 + 1.32889i 0.523051 + 0.852301i \(0.324794\pi\)
−0.879126 + 0.476589i \(0.841873\pi\)
\(380\) −21.0849 + 36.5201i −1.08163 + 1.87344i
\(381\) −2.89237 5.00974i −0.148181 0.256657i
\(382\) 2.88327 0.772571i 0.147521 0.0395281i
\(383\) 14.8154 14.8154i 0.757030 0.757030i −0.218751 0.975781i \(-0.570198\pi\)
0.975781 + 0.218751i \(0.0701981\pi\)
\(384\) 7.37811 1.97696i 0.376513 0.100886i
\(385\) 13.9661 + 17.1303i 0.711777 + 0.873039i
\(386\) −2.09656 + 3.63136i −0.106712 + 0.184831i
\(387\) 6.74236 + 3.89270i 0.342733 + 0.197877i
\(388\) 7.42554 + 7.42554i 0.376975 + 0.376975i
\(389\) 21.0324 + 12.1431i 1.06639 + 0.615678i 0.927192 0.374587i \(-0.122216\pi\)
0.139194 + 0.990265i \(0.455549\pi\)
\(390\) 2.92497 + 1.44920i 0.148112 + 0.0733829i
\(391\) 0.526739i 0.0266383i
\(392\) 3.21043 6.40543i 0.162151 0.323523i
\(393\) 4.21763 + 7.30515i 0.212751 + 0.368496i
\(394\) 5.11076i 0.257476i
\(395\) 5.71002 + 21.3101i 0.287302 + 1.07223i
\(396\) 1.20115 4.48275i 0.0603600 0.225266i
\(397\) −19.4197 19.4197i −0.974646 0.974646i 0.0250400 0.999686i \(-0.492029\pi\)
−0.999686 + 0.0250400i \(0.992029\pi\)
\(398\) −0.111898 0.111898i −0.00560894 0.00560894i
\(399\) 9.71349 13.4631i 0.486282 0.673997i
\(400\) 22.1151 12.7682i 1.10576 0.638408i
\(401\) 4.98067 + 18.5881i 0.248723 + 0.928246i 0.971476 + 0.237139i \(0.0762098\pi\)
−0.722753 + 0.691107i \(0.757124\pi\)
\(402\) 0.555260 0.961739i 0.0276939 0.0479672i
\(403\) 18.8178 + 3.77944i 0.937380 + 0.188267i
\(404\) 0.276950 0.159897i 0.0137788 0.00795520i
\(405\) 3.35960 + 0.900201i 0.166940 + 0.0447314i
\(406\) −0.427721 + 0.592829i −0.0212274 + 0.0294216i
\(407\) −5.10947 2.94995i −0.253267 0.146224i
\(408\) −0.885795 + 3.30583i −0.0438534 + 0.163663i
\(409\) 20.6525 + 5.53381i 1.02120 + 0.273629i 0.730302 0.683125i \(-0.239380\pi\)
0.290897 + 0.956754i \(0.406046\pi\)
\(410\) −10.0011 2.67978i −0.493918 0.132345i
\(411\) −0.693549 + 2.58836i −0.0342103 + 0.127674i
\(412\) 28.4800 + 16.4430i 1.40311 + 0.810086i
\(413\) 9.47643 + 0.964269i 0.466305 + 0.0474486i
\(414\) −0.0396087 0.0106131i −0.00194666 0.000521607i
\(415\) 44.7065 25.8113i 2.19456 1.26703i
\(416\) 8.07502 + 7.10818i 0.395910 + 0.348507i
\(417\) −3.64531 + 6.31386i −0.178511 + 0.309191i
\(418\) −1.01532 3.78924i −0.0496611 0.185338i
\(419\) −14.3006 + 8.25644i −0.698629 + 0.403354i −0.806837 0.590775i \(-0.798822\pi\)
0.108208 + 0.994128i \(0.465489\pi\)
\(420\) −16.2196 + 7.28595i −0.791437 + 0.355518i
\(421\) 21.1398 + 21.1398i 1.03029 + 1.03029i 0.999527 + 0.0307644i \(0.00979416\pi\)
0.0307644 + 0.999527i \(0.490206\pi\)
\(422\) −2.18516 2.18516i −0.106372 0.106372i
\(423\) 2.03894 7.60944i 0.0991368 0.369984i
\(424\) −1.69488 6.32538i −0.0823107 0.307188i
\(425\) 23.7308i 1.15111i
\(426\) −0.417067 0.722381i −0.0202070 0.0349995i
\(427\) 32.6230 5.27788i 1.57874 0.255414i
\(428\) 27.7836i 1.34297i
\(429\) 8.20542 2.76838i 0.396162 0.133659i
\(430\) −6.10421 3.52427i −0.294371 0.169955i
\(431\) −17.3835 17.3835i −0.837332 0.837332i 0.151175 0.988507i \(-0.451694\pi\)
−0.988507 + 0.151175i \(0.951694\pi\)
\(432\) 3.11601 + 1.79903i 0.149919 + 0.0865557i
\(433\) −3.46814 + 6.00699i −0.166668 + 0.288677i −0.937246 0.348668i \(-0.886634\pi\)
0.770578 + 0.637345i \(0.219967\pi\)
\(434\) 2.84145 2.31660i 0.136394 0.111200i
\(435\) 3.56610 0.955534i 0.170981 0.0458143i
\(436\) −4.99842 + 4.99842i −0.239381 + 0.239381i
\(437\) 0.954799 0.255838i 0.0456742 0.0122384i
\(438\) −0.992539 1.71913i −0.0474254 0.0821431i
\(439\) 13.2444 22.9400i 0.632122 1.09487i −0.354995 0.934868i \(-0.615517\pi\)
0.987117 0.159999i \(-0.0511492\pi\)
\(440\) −2.21306 + 8.25925i −0.105503 + 0.393744i
\(441\) 6.64291 2.20720i 0.316329 0.105105i
\(442\) −2.97344 + 1.00319i −0.141432 + 0.0477169i
\(443\) 1.55904 + 2.70033i 0.0740721 + 0.128297i 0.900682 0.434478i \(-0.143067\pi\)
−0.826610 + 0.562775i \(0.809734\pi\)
\(444\) 3.35624 3.35624i 0.159280 0.159280i
\(445\) −49.9548 −2.36809
\(446\) −3.68548 −0.174513
\(447\) 15.6641 15.6641i 0.740885 0.740885i
\(448\) −16.7663 + 2.71251i −0.792132 + 0.128154i
\(449\) 5.83960 + 21.7937i 0.275588 + 1.02851i 0.955447 + 0.295164i \(0.0953743\pi\)
−0.679859 + 0.733343i \(0.737959\pi\)
\(450\) −1.78447 0.478147i −0.0841206 0.0225401i
\(451\) −23.7878 + 13.7339i −1.12012 + 0.646704i
\(452\) 3.93413i 0.185046i
\(453\) 0.227821 0.0610444i 0.0107040 0.00286811i
\(454\) −7.18889 −0.337391
\(455\) −28.0862 17.6639i −1.31670 0.828098i
\(456\) 6.42259 0.300765
\(457\) 8.91713 2.38934i 0.417126 0.111769i −0.0441508 0.999025i \(-0.514058\pi\)
0.461277 + 0.887256i \(0.347392\pi\)
\(458\) 3.58652i 0.167587i
\(459\) −2.89570 + 1.67183i −0.135160 + 0.0780344i
\(460\) −1.02264 0.274015i −0.0476808 0.0127760i
\(461\) 3.09228 + 11.5406i 0.144022 + 0.537497i 0.999797 + 0.0201490i \(0.00641406\pi\)
−0.855775 + 0.517348i \(0.826919\pi\)
\(462\) 0.587655 1.54619i 0.0273402 0.0719353i
\(463\) −22.7391 + 22.7391i −1.05678 + 1.05678i −0.0584872 + 0.998288i \(0.518628\pi\)
−0.998288 + 0.0584872i \(0.981372\pi\)
\(464\) 3.81921 0.177303
\(465\) −18.5152 −0.858620
\(466\) 3.56813 3.56813i 0.165290 0.165290i
\(467\) 13.7877 + 23.8810i 0.638018 + 1.10508i 0.985867 + 0.167529i \(0.0535787\pi\)
−0.347849 + 0.937550i \(0.613088\pi\)
\(468\) 0.442737 + 6.95272i 0.0204655 + 0.321390i
\(469\) −6.60438 + 9.15379i −0.304962 + 0.422683i
\(470\) −1.84596 + 6.88923i −0.0851479 + 0.317776i
\(471\) 4.29314 7.43594i 0.197817 0.342630i
\(472\) 1.84254 + 3.19137i 0.0848098 + 0.146895i
\(473\) −18.0619 + 4.83967i −0.830487 + 0.222528i
\(474\) 1.16750 1.16750i 0.0536251 0.0536251i
\(475\) 43.0160 11.5261i 1.97371 0.528854i
\(476\) 6.07287 15.9785i 0.278350 0.732371i
\(477\) 3.19888 5.54063i 0.146467 0.253688i
\(478\) 0.728978 + 0.420876i 0.0333427 + 0.0192504i
\(479\) −25.4680 25.4680i −1.16366 1.16366i −0.983668 0.179995i \(-0.942392\pi\)
−0.179995 0.983668i \(-0.557608\pi\)
\(480\) −8.98730 5.18882i −0.410212 0.236836i
\(481\) 8.68342 + 1.74401i 0.395930 + 0.0795202i
\(482\) 0.549965i 0.0250502i
\(483\) 0.389604 + 0.148075i 0.0177276 + 0.00673766i
\(484\) −5.05409 8.75394i −0.229731 0.397906i
\(485\) 18.9027i 0.858329i
\(486\) −0.0673706 0.251431i −0.00305599 0.0114051i
\(487\) −3.81057 + 14.2212i −0.172673 + 0.644426i 0.824263 + 0.566207i \(0.191590\pi\)
−0.996936 + 0.0782187i \(0.975077\pi\)
\(488\) 9.04036 + 9.04036i 0.409238 + 0.409238i
\(489\) −9.69493 9.69493i −0.438420 0.438420i
\(490\) −6.01418 + 1.99829i −0.271693 + 0.0902737i
\(491\) −16.5448 + 9.55215i −0.746657 + 0.431082i −0.824485 0.565884i \(-0.808535\pi\)
0.0778279 + 0.996967i \(0.475202\pi\)
\(492\) −5.71931 21.3448i −0.257846 0.962296i
\(493\) −1.77459 + 3.07368i −0.0799236 + 0.138432i
\(494\) 3.26265 + 4.90259i 0.146794 + 0.220578i
\(495\) −7.23457 + 4.17688i −0.325170 + 0.187737i
\(496\) −18.5010 4.95733i −0.830720 0.222591i
\(497\) 3.47410 + 7.73387i 0.155835 + 0.346912i
\(498\) −3.34581 1.93171i −0.149930 0.0865618i
\(499\) −3.67959 + 13.7324i −0.164721 + 0.614747i 0.833355 + 0.552739i \(0.186417\pi\)
−0.998076 + 0.0620086i \(0.980249\pi\)
\(500\) −13.6145 3.64799i −0.608858 0.163143i
\(501\) 23.0316 + 6.17130i 1.02898 + 0.275713i
\(502\) −0.531463 + 1.98345i −0.0237203 + 0.0885255i
\(503\) −9.55709 5.51779i −0.426130 0.246026i 0.271567 0.962420i \(-0.412458\pi\)
−0.697696 + 0.716394i \(0.745792\pi\)
\(504\) 2.19616 + 1.58451i 0.0978246 + 0.0705796i
\(505\) −0.556028 0.148987i −0.0247429 0.00662985i
\(506\) 0.0852935 0.0492442i 0.00379176 0.00218917i
\(507\) −10.3429 + 7.87553i −0.459345 + 0.349765i
\(508\) −5.58877 + 9.68003i −0.247962 + 0.429482i
\(509\) −0.0752460 0.280822i −0.00333522 0.0124472i 0.964238 0.265037i \(-0.0853843\pi\)
−0.967573 + 0.252590i \(0.918718\pi\)
\(510\) 2.62163 1.51360i 0.116088 0.0670232i
\(511\) 8.26769 + 18.4051i 0.365741 + 0.814195i
\(512\) −12.7995 12.7995i −0.565662 0.565662i
\(513\) 4.43691 + 4.43691i 0.195894 + 0.195894i
\(514\) −1.66339 + 6.20785i −0.0733689 + 0.273817i
\(515\) −15.3210 57.1788i −0.675125 2.51960i
\(516\) 15.0433i 0.662244i
\(517\) 9.46057 + 16.3862i 0.416075 + 0.720664i
\(518\) 1.31118 1.06899i 0.0576100 0.0469687i
\(519\) 23.6712i 1.03905i
\(520\) −0.815722 12.8101i −0.0357718 0.561758i
\(521\) −20.5614 11.8711i −0.900811 0.520084i −0.0233479 0.999727i \(-0.507433\pi\)
−0.877463 + 0.479644i \(0.840766\pi\)
\(522\) −0.195374 0.195374i −0.00855127 0.00855127i
\(523\) −12.3304 7.11898i −0.539172 0.311291i 0.205571 0.978642i \(-0.434095\pi\)
−0.744743 + 0.667351i \(0.767428\pi\)
\(524\) 8.14949 14.1153i 0.356012 0.616631i
\(525\) 17.5526 + 6.67115i 0.766058 + 0.291153i
\(526\) 0.0723380 0.0193829i 0.00315408 0.000845134i
\(527\) 12.5861 12.5861i 0.548259 0.548259i
\(528\) −8.34737 + 2.23667i −0.363273 + 0.0973387i
\(529\) −11.4876 19.8971i −0.499461 0.865091i
\(530\) −2.89612 + 5.01622i −0.125799 + 0.217891i
\(531\) −0.931813 + 3.47757i −0.0404372 + 0.150914i
\(532\) −31.9131 3.24731i −1.38361 0.140789i
\(533\) 27.2451 30.9509i 1.18012 1.34063i
\(534\) 1.86930 + 3.23772i 0.0808924 + 0.140110i
\(535\) 35.3635 35.3635i 1.52890 1.52890i
\(536\) −4.36684 −0.188619
\(537\) −8.63009 −0.372416
\(538\) 0.470574 0.470574i 0.0202879 0.0202879i
\(539\) −7.53332 + 15.0305i −0.324483 + 0.647407i
\(540\) −1.73941 6.49156i −0.0748522 0.279352i
\(541\) −12.5925 3.37414i −0.541392 0.145066i −0.0222483 0.999752i \(-0.507082\pi\)
−0.519144 + 0.854687i \(0.673749\pi\)
\(542\) 4.78080 2.76020i 0.205353 0.118561i
\(543\) 17.8086i 0.764239i
\(544\) 9.63654 2.58210i 0.413163 0.110707i
\(545\) 12.7242 0.545043
\(546\) −0.0938715 + 2.48133i −0.00401733 + 0.106191i
\(547\) −23.0077 −0.983737 −0.491868 0.870670i \(-0.663686\pi\)
−0.491868 + 0.870670i \(0.663686\pi\)
\(548\) 5.00134 1.34011i 0.213647 0.0572465i
\(549\) 12.4907i 0.533089i
\(550\) 3.84268 2.21857i 0.163852 0.0946002i
\(551\) 6.43347 + 1.72384i 0.274075 + 0.0734382i
\(552\) 0.0417334 + 0.155751i 0.00177629 + 0.00662921i
\(553\) −13.0071 + 10.6045i −0.553118 + 0.450949i
\(554\) 1.53299 1.53299i 0.0651306 0.0651306i
\(555\) −8.54378 −0.362663
\(556\) 14.0872 0.597432
\(557\) −29.3023 + 29.3023i −1.24158 + 1.24158i −0.282234 + 0.959346i \(0.591076\pi\)
−0.959346 + 0.282234i \(0.908924\pi\)
\(558\) 0.692833 + 1.20002i 0.0293299 + 0.0508009i
\(559\) 23.3688 15.5519i 0.988397 0.657773i
\(560\) 26.8510 + 19.3727i 1.13466 + 0.818647i
\(561\) 2.07853 7.75719i 0.0877557 0.327509i
\(562\) −1.14369 + 1.98092i −0.0482434 + 0.0835601i
\(563\) 18.4739 + 31.9978i 0.778583 + 1.34855i 0.932758 + 0.360502i \(0.117395\pi\)
−0.154175 + 0.988044i \(0.549272\pi\)
\(564\) −14.7033 + 3.93974i −0.619120 + 0.165893i
\(565\) 5.00743 5.00743i 0.210664 0.210664i
\(566\) −0.728225 + 0.195127i −0.0306096 + 0.00820181i
\(567\) 0.422545 + 2.61179i 0.0177452 + 0.109685i
\(568\) −1.64001 + 2.84058i −0.0688132 + 0.119188i
\(569\) 21.0406 + 12.1478i 0.882067 + 0.509261i 0.871339 0.490681i \(-0.163252\pi\)
0.0107274 + 0.999942i \(0.496585\pi\)
\(570\) −4.01697 4.01697i −0.168252 0.168252i
\(571\) −6.47289 3.73712i −0.270882 0.156394i 0.358406 0.933566i \(-0.383320\pi\)
−0.629288 + 0.777172i \(0.716654\pi\)
\(572\) −12.5600 11.0561i −0.525159 0.462280i
\(573\) 11.4675i 0.479060i
\(574\) −1.25786 7.77496i −0.0525021 0.324521i
\(575\) 0.559028 + 0.968265i 0.0233131 + 0.0403794i
\(576\) 6.41945i 0.267477i
\(577\) −4.77469 17.8194i −0.198773 0.741830i −0.991258 0.131939i \(-0.957880\pi\)
0.792485 0.609891i \(-0.208787\pi\)
\(578\) 0.392092 1.46331i 0.0163089 0.0608656i
\(579\) 11.3907 + 11.3907i 0.473380 + 0.473380i
\(580\) −5.04425 5.04425i −0.209451 0.209451i
\(581\) 31.8453 + 22.9761i 1.32117 + 0.953210i
\(582\) −1.22514 + 0.707336i −0.0507837 + 0.0293200i
\(583\) 3.97707 + 14.8426i 0.164713 + 0.614718i
\(584\) −3.90291 + 6.76003i −0.161503 + 0.279732i
\(585\) 8.28603 9.41308i 0.342585 0.389183i
\(586\) 1.17303 0.677247i 0.0484573 0.0279768i
\(587\) −2.00759 0.537933i −0.0828622 0.0222029i 0.217150 0.976138i \(-0.430324\pi\)
−0.300012 + 0.953935i \(0.596991\pi\)
\(588\) −10.1113 8.98364i −0.416984 0.370479i
\(589\) −28.9274 16.7013i −1.19193 0.688164i
\(590\) 0.843619 3.14843i 0.0347312 0.129619i
\(591\) 18.9651 + 5.08168i 0.780120 + 0.209032i
\(592\) −8.53725 2.28755i −0.350879 0.0940177i
\(593\) 1.90912 7.12495i 0.0783983 0.292587i −0.915584 0.402127i \(-0.868271\pi\)
0.993982 + 0.109540i \(0.0349378\pi\)
\(594\) 0.541431 + 0.312595i 0.0222152 + 0.0128259i
\(595\) −28.0673 + 12.6080i −1.15065 + 0.516878i
\(596\) −41.3452 11.0784i −1.69357 0.453790i
\(597\) −0.526495 + 0.303972i −0.0215480 + 0.0124407i
\(598\) −0.0976900 + 0.110978i −0.00399484 + 0.00453821i
\(599\) 10.3977 18.0094i 0.424840 0.735844i −0.571565 0.820556i \(-0.693664\pi\)
0.996405 + 0.0847120i \(0.0269970\pi\)
\(600\) 1.88019 + 7.01696i 0.0767584 + 0.286466i
\(601\) 30.7195 17.7359i 1.25308 0.723464i 0.281357 0.959603i \(-0.409216\pi\)
0.971719 + 0.236140i \(0.0758822\pi\)
\(602\) 0.542777 5.33418i 0.0221219 0.217405i
\(603\) −3.01674 3.01674i −0.122851 0.122851i
\(604\) −0.322253 0.322253i −0.0131123 0.0131123i
\(605\) −4.70924 + 17.5751i −0.191458 + 0.714530i
\(606\) 0.0111501 + 0.0416129i 0.000452943 + 0.00169041i
\(607\) 20.5742i 0.835081i 0.908658 + 0.417541i \(0.137108\pi\)
−0.908658 + 0.417541i \(0.862892\pi\)
\(608\) −9.36097 16.2137i −0.379637 0.657551i
\(609\) 1.77459 + 2.17665i 0.0719101 + 0.0882023i
\(610\) 11.3085i 0.457866i
\(611\) −21.3205 18.7677i −0.862535 0.759261i
\(612\) 5.59519 + 3.23038i 0.226172 + 0.130581i
\(613\) 23.4668 + 23.4668i 0.947815 + 0.947815i 0.998704 0.0508891i \(-0.0162055\pi\)
−0.0508891 + 0.998704i \(0.516206\pi\)
\(614\) 0.352179 + 0.203331i 0.0142128 + 0.00820577i
\(615\) −19.8884 + 34.4476i −0.801976 + 1.38906i
\(616\) −6.42084 + 1.03879i −0.258703 + 0.0418539i
\(617\) 9.94015 2.66346i 0.400175 0.107227i −0.0531176 0.998588i \(-0.516916\pi\)
0.453293 + 0.891362i \(0.350249\pi\)
\(618\) −3.13262 + 3.13262i −0.126012 + 0.126012i
\(619\) −27.1353 + 7.27087i −1.09066 + 0.292241i −0.758955 0.651143i \(-0.774290\pi\)
−0.331703 + 0.943384i \(0.607623\pi\)
\(620\) 17.8879 + 30.9828i 0.718395 + 1.24430i
\(621\) −0.0787667 + 0.136428i −0.00316080 + 0.00547467i
\(622\) −1.97806 + 7.38222i −0.0793130 + 0.296000i
\(623\) −15.5709 34.6633i −0.623837 1.38875i
\(624\) 10.8000 7.18735i 0.432346 0.287724i
\(625\) −5.05761 8.76003i −0.202304 0.350401i
\(626\) −0.540342 + 0.540342i −0.0215964 + 0.0215964i
\(627\) −15.0707 −0.601866
\(628\) −16.5908 −0.662045
\(629\) 5.80783 5.80783i 0.231573 0.231573i
\(630\) −0.382552 2.36459i −0.0152413 0.0942076i
\(631\) −6.77392 25.2806i −0.269666 1.00641i −0.959332 0.282279i \(-0.908910\pi\)
0.689667 0.724127i \(-0.257757\pi\)
\(632\) −6.27128 1.68039i −0.249458 0.0668421i
\(633\) −10.2814 + 5.93600i −0.408651 + 0.235935i
\(634\) 4.90194i 0.194681i
\(635\) 19.4344 5.20744i 0.771231 0.206651i
\(636\) −12.3620 −0.490187
\(637\) 3.50238 24.9947i 0.138769 0.990325i
\(638\) 0.663619 0.0262729
\(639\) −3.09532 + 0.829388i −0.122449 + 0.0328101i
\(640\) 26.5672i 1.05016i
\(641\) 8.61071 4.97140i 0.340103 0.196358i −0.320215 0.947345i \(-0.603755\pi\)
0.660317 + 0.750987i \(0.270422\pi\)
\(642\) −3.61530 0.968717i −0.142685 0.0382322i
\(643\) 6.52451 + 24.3498i 0.257302 + 0.960263i 0.966796 + 0.255551i \(0.0822569\pi\)
−0.709494 + 0.704712i \(0.751076\pi\)
\(644\) −0.128620 0.795011i −0.00506833 0.0313278i
\(645\) −19.1474 + 19.1474i −0.753928 + 0.753928i
\(646\) 5.46125 0.214870
\(647\) 34.0333 1.33799 0.668993 0.743269i \(-0.266726\pi\)
0.668993 + 0.743269i \(0.266726\pi\)
\(648\) −0.723769 + 0.723769i −0.0284323 + 0.0284323i
\(649\) −4.32355 7.48861i −0.169714 0.293954i
\(650\) −4.40117 + 4.99981i −0.172628 + 0.196109i
\(651\) −5.77118 12.8475i −0.226190 0.503534i
\(652\) −6.85674 + 25.5897i −0.268531 + 1.00217i
\(653\) 16.5582 28.6797i 0.647973 1.12232i −0.335634 0.941993i \(-0.608950\pi\)
0.983606 0.180329i \(-0.0577163\pi\)
\(654\) −0.476135 0.824689i −0.0186183 0.0322479i
\(655\) −28.3391 + 7.59343i −1.10730 + 0.296700i
\(656\) −29.0963 + 29.0963i −1.13602 + 1.13602i
\(657\) −7.36626 + 1.97378i −0.287385 + 0.0770046i
\(658\) −5.35577 + 0.866476i −0.208790 + 0.0337787i
\(659\) −11.0690 + 19.1721i −0.431188 + 0.746839i −0.996976 0.0777114i \(-0.975239\pi\)
0.565788 + 0.824551i \(0.308572\pi\)
\(660\) 13.9789 + 8.07075i 0.544130 + 0.314153i
\(661\) −24.7801 24.7801i −0.963832 0.963832i 0.0355361 0.999368i \(-0.488686\pi\)
−0.999368 + 0.0355361i \(0.988686\pi\)
\(662\) 0.747707 + 0.431689i 0.0290605 + 0.0167781i
\(663\) 0.766137 + 12.0314i 0.0297543 + 0.467260i
\(664\) 15.1919i 0.589559i
\(665\) 36.4864 + 44.7529i 1.41488 + 1.73544i
\(666\) 0.319706 + 0.553747i 0.0123884 + 0.0214573i
\(667\) 0.167217i 0.00647465i
\(668\) −11.9244 44.5026i −0.461371 1.72186i
\(669\) −3.66451 + 13.6762i −0.141678 + 0.528751i
\(670\) 2.73121 + 2.73121i 0.105516 + 0.105516i
\(671\) −21.2134 21.2134i −0.818933 0.818933i
\(672\) 0.799137 7.85358i 0.0308274 0.302958i
\(673\) 15.2041 8.77811i 0.586076 0.338371i −0.177468 0.984127i \(-0.556791\pi\)
0.763544 + 0.645755i \(0.223457\pi\)
\(674\) 0.733407 + 2.73711i 0.0282498 + 0.105430i
\(675\) −3.54863 + 6.14641i −0.136587 + 0.236575i
\(676\) 23.1712 + 9.69884i 0.891201 + 0.373032i
\(677\) 30.5661 17.6473i 1.17475 0.678242i 0.219956 0.975510i \(-0.429409\pi\)
0.954794 + 0.297268i \(0.0960754\pi\)
\(678\) −0.511923 0.137169i −0.0196603 0.00526796i
\(679\) 13.1165 5.89199i 0.503364 0.226114i
\(680\) −10.3089 5.95183i −0.395327 0.228242i
\(681\) −7.14799 + 26.6767i −0.273911 + 1.02225i
\(682\) −3.21470 0.861376i −0.123097 0.0329838i
\(683\) −5.83032 1.56223i −0.223091 0.0597770i 0.145542 0.989352i \(-0.453507\pi\)
−0.368633 + 0.929575i \(0.620174\pi\)
\(684\) 3.13800 11.7112i 0.119985 0.447789i
\(685\) −8.07152 4.66009i −0.308397 0.178053i
\(686\) −3.26122 3.55032i −0.124514 0.135552i
\(687\) 13.3089 + 3.56611i 0.507767 + 0.136056i
\(688\) −24.2594 + 14.0062i −0.924880 + 0.533980i
\(689\) −12.7800 19.2037i −0.486877 0.731602i
\(690\) 0.0713117 0.123515i 0.00271479 0.00470215i
\(691\) 11.3044 + 42.1885i 0.430039 + 1.60493i 0.752668 + 0.658401i \(0.228767\pi\)
−0.322629 + 0.946526i \(0.604567\pi\)
\(692\) −39.6108 + 22.8693i −1.50578 + 0.869360i
\(693\) −5.15332 3.71807i −0.195758 0.141238i
\(694\) 2.64436 + 2.64436i 0.100379 + 0.100379i
\(695\) −17.9305 17.9305i −0.680143 0.680143i
\(696\) −0.281201 + 1.04946i −0.0106589 + 0.0397796i
\(697\) −9.89701 36.9361i −0.374876 1.39906i
\(698\) 7.56064i 0.286174i
\(699\) −9.69285 16.7885i −0.366617 0.635000i
\(700\) −5.79463 35.8172i −0.219016 1.35376i
\(701\) 39.4595i 1.49036i −0.666862 0.745182i \(-0.732363\pi\)
0.666862 0.745182i \(-0.267637\pi\)
\(702\) −0.920150 0.184807i −0.0347288 0.00697508i
\(703\) −13.3485 7.70676i −0.503449 0.290666i
\(704\) 10.9024 + 10.9024i 0.410899 + 0.410899i
\(705\) 23.7292 + 13.7001i 0.893693 + 0.515974i
\(706\) −0.486518 + 0.842674i −0.0183103 + 0.0317145i
\(707\) −0.0699331 0.432263i −0.00263010 0.0162569i
\(708\) 6.71952 1.80049i 0.252535 0.0676665i
\(709\) −13.0923 + 13.0923i −0.491690 + 0.491690i −0.908838 0.417148i \(-0.863030\pi\)
0.417148 + 0.908838i \(0.363030\pi\)
\(710\) 2.80235 0.750888i 0.105170 0.0281803i
\(711\) −3.17152 5.49324i −0.118941 0.206013i
\(712\) 7.35053 12.7315i 0.275473 0.477133i
\(713\) 0.217047 0.810029i 0.00812846 0.0303358i
\(714\) 1.86743 + 1.34734i 0.0698870 + 0.0504228i
\(715\) 1.91411 + 30.0590i 0.0715835 + 1.12414i
\(716\) 8.33772 + 14.4414i 0.311595 + 0.539699i
\(717\) 2.28662 2.28662i 0.0853955 0.0853955i
\(718\) 0.760844 0.0283944
\(719\) −14.2700 −0.532181 −0.266091 0.963948i \(-0.585732\pi\)
−0.266091 + 0.963948i \(0.585732\pi\)
\(720\) −8.84904 + 8.84904i −0.329784 + 0.329784i
\(721\) 34.9004 28.4538i 1.29976 1.05967i
\(722\) −1.37249 5.12222i −0.0510790 0.190629i
\(723\) −2.04082 0.546836i −0.0758989 0.0203371i
\(724\) 29.8004 17.2052i 1.10752 0.639428i
\(725\) 7.53350i 0.279787i
\(726\) 1.31531 0.352437i 0.0488158 0.0130802i
\(727\) −5.10921 −0.189490 −0.0947450 0.995502i \(-0.530204\pi\)
−0.0947450 + 0.995502i \(0.530204\pi\)
\(728\) 8.63454 4.55892i 0.320017 0.168965i
\(729\) −1.00000 −0.0370370
\(730\) 6.66906 1.78697i 0.246833 0.0661387i
\(731\) 26.0318i 0.962819i
\(732\) 20.9016 12.0675i 0.772544 0.446028i
\(733\) −3.50556 0.939312i −0.129481 0.0346943i 0.193497 0.981101i \(-0.438017\pi\)
−0.322977 + 0.946407i \(0.604684\pi\)
\(734\) 0.416824 + 1.55561i 0.0153853 + 0.0574186i
\(735\) 1.43535 + 24.3044i 0.0529435 + 0.896483i
\(736\) 0.332363 0.332363i 0.0122511 0.0122511i
\(737\) 10.2469 0.377448
\(738\) 2.97687 0.109580
\(739\) 17.1660 17.1660i 0.631462 0.631462i −0.316973 0.948435i \(-0.602666\pi\)
0.948435 + 0.316973i \(0.102666\pi\)
\(740\) 8.25434 + 14.2969i 0.303435 + 0.525566i
\(741\) 21.4367 7.23240i 0.787497 0.265689i
\(742\) −4.38344 0.446035i −0.160921 0.0163744i
\(743\) 11.3003 42.1733i 0.414568 1.54719i −0.371132 0.928580i \(-0.621030\pi\)
0.785700 0.618608i \(-0.212303\pi\)
\(744\) 2.72439 4.71878i 0.0998809 0.172999i
\(745\) 38.5241 + 66.7258i 1.41142 + 2.44464i
\(746\) −3.01071 + 0.806718i −0.110230 + 0.0295360i
\(747\) −10.4950 + 10.4950i −0.383991 + 0.383991i
\(748\) −14.9888 + 4.01623i −0.548044 + 0.146848i
\(749\) 35.5612 + 13.5156i 1.29938 + 0.493850i
\(750\) 0.949379 1.64437i 0.0346664 0.0600440i
\(751\) 32.5542 + 18.7952i 1.18792 + 0.685846i 0.957833 0.287325i \(-0.0927658\pi\)
0.230086 + 0.973170i \(0.426099\pi\)
\(752\) 20.0429 + 20.0429i 0.730891 + 0.730891i
\(753\) 6.83176 + 3.94432i 0.248963 + 0.143739i
\(754\) −0.943938 + 0.318469i −0.0343762 + 0.0115980i
\(755\) 0.820338i 0.0298552i
\(756\) 3.96227 3.23038i 0.144106 0.117488i
\(757\) 9.14499 + 15.8396i 0.332380 + 0.575700i 0.982978 0.183723i \(-0.0588149\pi\)
−0.650598 + 0.759423i \(0.725482\pi\)
\(758\) 6.97171i 0.253224i
\(759\) −0.0979281 0.365473i −0.00355457 0.0132658i
\(760\) −5.78162 + 21.5773i −0.209722 + 0.782692i
\(761\) −21.0000 21.0000i −0.761249 0.761249i 0.215300 0.976548i \(-0.430927\pi\)
−0.976548 + 0.215300i \(0.930927\pi\)
\(762\) −1.06474 1.06474i −0.0385715 0.0385715i
\(763\) 3.96612 + 8.82919i 0.143583 + 0.319638i
\(764\) −19.1893 + 11.0790i −0.694246 + 0.400823i
\(765\) −3.00997 11.2334i −0.108826 0.406143i
\(766\) 2.72692 4.72316i 0.0985275 0.170655i
\(767\) 9.74363 + 8.57700i 0.351822 + 0.309698i
\(768\) −9.39692 + 5.42531i −0.339082 + 0.195769i
\(769\) 2.58003 + 0.691317i 0.0930382 + 0.0249295i 0.305038 0.952340i \(-0.401331\pi\)
−0.212000 + 0.977270i \(0.567998\pi\)
\(770\) 4.66557 + 3.36617i 0.168136 + 0.121308i
\(771\) 21.3823 + 12.3451i 0.770064 + 0.444596i
\(772\) 8.05605 30.0656i 0.289944 1.08208i
\(773\) 15.6867 + 4.20324i 0.564212 + 0.151180i 0.529641 0.848222i \(-0.322327\pi\)