Properties

Label 273.2.cg.a.19.6
Level $273$
Weight $2$
Character 273.19
Analytic conductor $2.180$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.cg (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(9\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 19.6
Character \(\chi\) \(=\) 273.19
Dual form 273.2.cg.a.115.6

$q$-expansion

\(f(q)\) \(=\) \(q+(0.562494 + 0.150720i) q^{2} -1.00000i q^{3} +(-1.43837 - 0.830442i) q^{4} +(-0.672922 + 0.180309i) q^{5} +(0.150720 - 0.562494i) q^{6} +(-2.49458 - 0.881516i) q^{7} +(-1.50746 - 1.50746i) q^{8} -1.00000 q^{9} +O(q^{10})\) \(q+(0.562494 + 0.150720i) q^{2} -1.00000i q^{3} +(-1.43837 - 0.830442i) q^{4} +(-0.672922 + 0.180309i) q^{5} +(0.150720 - 0.562494i) q^{6} +(-2.49458 - 0.881516i) q^{7} +(-1.50746 - 1.50746i) q^{8} -1.00000 q^{9} -0.405691 q^{10} +(-0.628957 - 0.628957i) q^{11} +(-0.830442 + 1.43837i) q^{12} +(-0.659853 - 3.54466i) q^{13} +(-1.27033 - 0.871831i) q^{14} +(0.180309 + 0.672922i) q^{15} +(1.04015 + 1.80159i) q^{16} +(-0.0230331 + 0.0398944i) q^{17} +(-0.562494 - 0.150720i) q^{18} +(-0.617410 - 0.617410i) q^{19} +(1.11765 + 0.299472i) q^{20} +(-0.881516 + 2.49458i) q^{21} +(-0.258989 - 0.448581i) q^{22} +(2.76363 - 1.59558i) q^{23} +(-1.50746 + 1.50746i) q^{24} +(-3.90981 + 2.25733i) q^{25} +(0.163087 - 2.09330i) q^{26} +1.00000i q^{27} +(2.85607 + 3.33955i) q^{28} +(4.08244 - 7.07099i) q^{29} +0.405691i q^{30} +(1.04511 - 3.90039i) q^{31} +(1.41708 + 5.28861i) q^{32} +(-0.628957 + 0.628957i) q^{33} +(-0.0189689 + 0.0189689i) q^{34} +(1.83760 + 0.143397i) q^{35} +(1.43837 + 0.830442i) q^{36} +(-1.82246 + 6.80150i) q^{37} +(-0.254234 - 0.440346i) q^{38} +(-3.54466 + 0.659853i) q^{39} +(1.28621 + 0.742594i) q^{40} +(8.56284 - 2.29441i) q^{41} +(-0.871831 + 1.27033i) q^{42} +(1.29226 - 0.746085i) q^{43} +(0.382359 + 1.42698i) q^{44} +(0.672922 - 0.180309i) q^{45} +(1.79501 - 0.480971i) q^{46} +(-3.24985 - 12.1286i) q^{47} +(1.80159 - 1.04015i) q^{48} +(5.44586 + 4.39802i) q^{49} +(-2.53947 + 0.680450i) q^{50} +(0.0398944 + 0.0230331i) q^{51} +(-1.99452 + 5.64649i) q^{52} +(4.89224 + 8.47362i) q^{53} +(-0.150720 + 0.562494i) q^{54} +(0.536646 + 0.309833i) q^{55} +(2.43163 + 5.08932i) q^{56} +(-0.617410 + 0.617410i) q^{57} +(3.36209 - 3.36209i) q^{58} +(-2.28980 - 8.54567i) q^{59} +(0.299472 - 1.11765i) q^{60} +1.01326i q^{61} +(1.17573 - 2.03643i) q^{62} +(2.49458 + 0.881516i) q^{63} -0.972206i q^{64} +(1.08316 + 2.26630i) q^{65} +(-0.448581 + 0.258989i) q^{66} +(-1.77192 + 1.77192i) q^{67} +(0.0662600 - 0.0382552i) q^{68} +(-1.59558 - 2.76363i) q^{69} +(1.01203 + 0.357623i) q^{70} +(-0.798336 - 0.213913i) q^{71} +(1.50746 + 1.50746i) q^{72} +(-15.2725 - 4.09226i) q^{73} +(-2.05024 + 3.55112i) q^{74} +(2.25733 + 3.90981i) q^{75} +(0.375340 + 1.40079i) q^{76} +(1.01455 + 2.12342i) q^{77} +(-2.09330 - 0.163087i) q^{78} +(-4.73655 + 8.20394i) q^{79} +(-1.02478 - 1.02478i) q^{80} +1.00000 q^{81} +5.16236 q^{82} +(3.50364 + 3.50364i) q^{83} +(3.33955 - 2.85607i) q^{84} +(0.00830614 - 0.0309989i) q^{85} +(0.839337 - 0.224900i) q^{86} +(-7.07099 - 4.08244i) q^{87} +1.89625i q^{88} +(-5.05100 - 1.35341i) q^{89} +0.405691 q^{90} +(-1.47861 + 9.42410i) q^{91} -5.30014 q^{92} +(-3.90039 - 1.04511i) q^{93} -7.31209i q^{94} +(0.526794 + 0.304145i) q^{95} +(5.28861 - 1.41708i) q^{96} +(0.288642 - 1.07723i) q^{97} +(2.40040 + 3.29466i) q^{98} +(0.628957 + 0.628957i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 4q^{7} - 36q^{9} + O(q^{10}) \) \( 36q + 4q^{7} - 36q^{9} + 4q^{11} + 16q^{12} + 42q^{14} + 12q^{16} - 4q^{17} - 24q^{19} - 14q^{20} + 4q^{22} - 12q^{23} - 24q^{25} - 28q^{26} - 12q^{28} + 8q^{29} - 6q^{31} + 46q^{32} + 4q^{33} + 24q^{34} - 10q^{35} - 20q^{37} + 8q^{38} - 2q^{39} - 30q^{40} - 34q^{41} + 24q^{42} + 30q^{43} - 32q^{44} - 26q^{46} + 4q^{47} - 24q^{48} - 20q^{50} + 24q^{51} + 98q^{52} - 8q^{53} + 30q^{55} - 10q^{56} - 24q^{57} - 96q^{58} - 14q^{59} - 46q^{60} + 48q^{62} - 4q^{63} + 28q^{65} + 18q^{66} + 62q^{67} - 54q^{68} - 4q^{69} - 148q^{70} + 42q^{71} - 52q^{73} - 20q^{74} - 10q^{75} - 12q^{76} - 24q^{77} - 16q^{78} + 76q^{80} + 36q^{81} + 48q^{82} + 60q^{83} + 50q^{84} + 2q^{85} + 12q^{86} + 18q^{87} + 50q^{89} + 40q^{91} - 100q^{92} - 6q^{93} + 24q^{95} - 4q^{96} - 36q^{97} + 16q^{98} - 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.562494 + 0.150720i 0.397744 + 0.106575i 0.452146 0.891944i \(-0.350659\pi\)
−0.0544022 + 0.998519i \(0.517325\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −1.43837 0.830442i −0.719184 0.415221i
\(5\) −0.672922 + 0.180309i −0.300940 + 0.0806367i −0.406129 0.913816i \(-0.633122\pi\)
0.105189 + 0.994452i \(0.466455\pi\)
\(6\) 0.150720 0.562494i 0.0615312 0.229637i
\(7\) −2.49458 0.881516i −0.942863 0.333182i
\(8\) −1.50746 1.50746i −0.532967 0.532967i
\(9\) −1.00000 −0.333333
\(10\) −0.405691 −0.128291
\(11\) −0.628957 0.628957i −0.189638 0.189638i 0.605902 0.795539i \(-0.292812\pi\)
−0.795539 + 0.605902i \(0.792812\pi\)
\(12\) −0.830442 + 1.43837i −0.239728 + 0.415221i
\(13\) −0.659853 3.54466i −0.183010 0.983111i
\(14\) −1.27033 0.871831i −0.339509 0.233007i
\(15\) 0.180309 + 0.672922i 0.0465556 + 0.173748i
\(16\) 1.04015 + 1.80159i 0.260038 + 0.450398i
\(17\) −0.0230331 + 0.0398944i −0.00558634 + 0.00967582i −0.868805 0.495154i \(-0.835112\pi\)
0.863219 + 0.504830i \(0.168445\pi\)
\(18\) −0.562494 0.150720i −0.132581 0.0355250i
\(19\) −0.617410 0.617410i −0.141644 0.141644i 0.632729 0.774373i \(-0.281935\pi\)
−0.774373 + 0.632729i \(0.781935\pi\)
\(20\) 1.11765 + 0.299472i 0.249913 + 0.0669640i
\(21\) −0.881516 + 2.49458i −0.192363 + 0.544362i
\(22\) −0.258989 0.448581i −0.0552165 0.0956379i
\(23\) 2.76363 1.59558i 0.576256 0.332701i −0.183388 0.983041i \(-0.558707\pi\)
0.759644 + 0.650339i \(0.225373\pi\)
\(24\) −1.50746 + 1.50746i −0.307709 + 0.307709i
\(25\) −3.90981 + 2.25733i −0.781963 + 0.451466i
\(26\) 0.163087 2.09330i 0.0319839 0.410530i
\(27\) 1.00000i 0.192450i
\(28\) 2.85607 + 3.33955i 0.539747 + 0.631115i
\(29\) 4.08244 7.07099i 0.758090 1.31305i −0.185734 0.982600i \(-0.559466\pi\)
0.943824 0.330450i \(-0.107200\pi\)
\(30\) 0.405691i 0.0740688i
\(31\) 1.04511 3.90039i 0.187707 0.700531i −0.806328 0.591468i \(-0.798548\pi\)
0.994035 0.109063i \(-0.0347849\pi\)
\(32\) 1.41708 + 5.28861i 0.250507 + 0.934903i
\(33\) −0.628957 + 0.628957i −0.109487 + 0.109487i
\(34\) −0.0189689 + 0.0189689i −0.00325313 + 0.00325313i
\(35\) 1.83760 + 0.143397i 0.310612 + 0.0242385i
\(36\) 1.43837 + 0.830442i 0.239728 + 0.138407i
\(37\) −1.82246 + 6.80150i −0.299610 + 1.11816i 0.637877 + 0.770138i \(0.279813\pi\)
−0.937487 + 0.348021i \(0.886854\pi\)
\(38\) −0.254234 0.440346i −0.0412422 0.0714335i
\(39\) −3.54466 + 0.659853i −0.567599 + 0.105661i
\(40\) 1.28621 + 0.742594i 0.203368 + 0.117414i
\(41\) 8.56284 2.29441i 1.33729 0.358326i 0.481863 0.876247i \(-0.339960\pi\)
0.855429 + 0.517921i \(0.173294\pi\)
\(42\) −0.871831 + 1.27033i −0.134526 + 0.196015i
\(43\) 1.29226 0.746085i 0.197067 0.113777i −0.398219 0.917290i \(-0.630372\pi\)
0.595287 + 0.803513i \(0.297038\pi\)
\(44\) 0.382359 + 1.42698i 0.0576428 + 0.215126i
\(45\) 0.672922 0.180309i 0.100313 0.0268789i
\(46\) 1.79501 0.480971i 0.264660 0.0709154i
\(47\) −3.24985 12.1286i −0.474039 1.76914i −0.625026 0.780604i \(-0.714912\pi\)
0.150987 0.988536i \(-0.451755\pi\)
\(48\) 1.80159 1.04015i 0.260038 0.150133i
\(49\) 5.44586 + 4.39802i 0.777980 + 0.628289i
\(50\) −2.53947 + 0.680450i −0.359136 + 0.0962301i
\(51\) 0.0398944 + 0.0230331i 0.00558634 + 0.00322527i
\(52\) −1.99452 + 5.64649i −0.276590 + 0.783027i
\(53\) 4.89224 + 8.47362i 0.672001 + 1.16394i 0.977336 + 0.211695i \(0.0678985\pi\)
−0.305334 + 0.952245i \(0.598768\pi\)
\(54\) −0.150720 + 0.562494i −0.0205104 + 0.0765458i
\(55\) 0.536646 + 0.309833i 0.0723613 + 0.0417778i
\(56\) 2.43163 + 5.08932i 0.324940 + 0.680090i
\(57\) −0.617410 + 0.617410i −0.0817780 + 0.0817780i
\(58\) 3.36209 3.36209i 0.441464 0.441464i
\(59\) −2.28980 8.54567i −0.298107 1.11255i −0.938718 0.344686i \(-0.887986\pi\)
0.640611 0.767866i \(-0.278681\pi\)
\(60\) 0.299472 1.11765i 0.0386617 0.144287i
\(61\) 1.01326i 0.129734i 0.997894 + 0.0648672i \(0.0206624\pi\)
−0.997894 + 0.0648672i \(0.979338\pi\)
\(62\) 1.17573 2.03643i 0.149318 0.258627i
\(63\) 2.49458 + 0.881516i 0.314288 + 0.111061i
\(64\) 0.972206i 0.121526i
\(65\) 1.08316 + 2.26630i 0.134350 + 0.281100i
\(66\) −0.448581 + 0.258989i −0.0552165 + 0.0318793i
\(67\) −1.77192 + 1.77192i −0.216474 + 0.216474i −0.807011 0.590537i \(-0.798916\pi\)
0.590537 + 0.807011i \(0.298916\pi\)
\(68\) 0.0662600 0.0382552i 0.00803521 0.00463913i
\(69\) −1.59558 2.76363i −0.192085 0.332701i
\(70\) 1.01203 + 0.357623i 0.120961 + 0.0427442i
\(71\) −0.798336 0.213913i −0.0947450 0.0253869i 0.211135 0.977457i \(-0.432284\pi\)
−0.305880 + 0.952070i \(0.598951\pi\)
\(72\) 1.50746 + 1.50746i 0.177656 + 0.177656i
\(73\) −15.2725 4.09226i −1.78751 0.478963i −0.795594 0.605830i \(-0.792841\pi\)
−0.991920 + 0.126867i \(0.959508\pi\)
\(74\) −2.05024 + 3.55112i −0.238336 + 0.412810i
\(75\) 2.25733 + 3.90981i 0.260654 + 0.451466i
\(76\) 0.375340 + 1.40079i 0.0430544 + 0.160681i
\(77\) 1.01455 + 2.12342i 0.115618 + 0.241986i
\(78\) −2.09330 0.163087i −0.237020 0.0184659i
\(79\) −4.73655 + 8.20394i −0.532903 + 0.923016i 0.466358 + 0.884596i \(0.345566\pi\)
−0.999262 + 0.0384199i \(0.987768\pi\)
\(80\) −1.02478 1.02478i −0.114574 0.114574i
\(81\) 1.00000 0.111111
\(82\) 5.16236 0.570088
\(83\) 3.50364 + 3.50364i 0.384574 + 0.384574i 0.872747 0.488173i \(-0.162336\pi\)
−0.488173 + 0.872747i \(0.662336\pi\)
\(84\) 3.33955 2.85607i 0.364374 0.311623i
\(85\) 0.00830614 0.0309989i 0.000900927 0.00336231i
\(86\) 0.839337 0.224900i 0.0905081 0.0242516i
\(87\) −7.07099 4.08244i −0.758090 0.437683i
\(88\) 1.89625i 0.202141i
\(89\) −5.05100 1.35341i −0.535405 0.143461i −0.0190218 0.999819i \(-0.506055\pi\)
−0.516383 + 0.856358i \(0.672722\pi\)
\(90\) 0.405691 0.0427636
\(91\) −1.47861 + 9.42410i −0.155001 + 0.987914i
\(92\) −5.30014 −0.552578
\(93\) −3.90039 1.04511i −0.404452 0.108373i
\(94\) 7.31209i 0.754185i
\(95\) 0.526794 + 0.304145i 0.0540479 + 0.0312046i
\(96\) 5.28861 1.41708i 0.539767 0.144630i
\(97\) 0.288642 1.07723i 0.0293071 0.109376i −0.949723 0.313092i \(-0.898635\pi\)
0.979030 + 0.203716i \(0.0653019\pi\)
\(98\) 2.40040 + 3.29466i 0.242477 + 0.332811i
\(99\) 0.628957 + 0.628957i 0.0632126 + 0.0632126i
\(100\) 7.49833 0.749833
\(101\) 14.6075 1.45350 0.726752 0.686900i \(-0.241029\pi\)
0.726752 + 0.686900i \(0.241029\pi\)
\(102\) 0.0189689 + 0.0189689i 0.00187820 + 0.00187820i
\(103\) 6.34652 10.9925i 0.625342 1.08312i −0.363133 0.931737i \(-0.618293\pi\)
0.988475 0.151386i \(-0.0483737\pi\)
\(104\) −4.34872 + 6.33812i −0.426427 + 0.621504i
\(105\) 0.143397 1.83760i 0.0139941 0.179332i
\(106\) 1.47472 + 5.50372i 0.143237 + 0.534569i
\(107\) −5.89611 10.2124i −0.569999 0.987267i −0.996565 0.0828108i \(-0.973610\pi\)
0.426566 0.904456i \(-0.359723\pi\)
\(108\) 0.830442 1.43837i 0.0799093 0.138407i
\(109\) −3.31627 0.888593i −0.317641 0.0851118i 0.0964758 0.995335i \(-0.469243\pi\)
−0.414117 + 0.910224i \(0.635910\pi\)
\(110\) 0.255162 + 0.255162i 0.0243288 + 0.0243288i
\(111\) 6.80150 + 1.82246i 0.645569 + 0.172980i
\(112\) −1.00661 5.41113i −0.0951152 0.511304i
\(113\) 7.53468 + 13.0504i 0.708803 + 1.22768i 0.965301 + 0.261138i \(0.0840978\pi\)
−0.256498 + 0.966545i \(0.582569\pi\)
\(114\) −0.440346 + 0.254234i −0.0412422 + 0.0238112i
\(115\) −1.57201 + 1.57201i −0.146591 + 0.146591i
\(116\) −11.7441 + 6.78045i −1.09041 + 0.629549i
\(117\) 0.659853 + 3.54466i 0.0610035 + 0.327704i
\(118\) 5.15201i 0.474281i
\(119\) 0.0926254 0.0792158i 0.00849096 0.00726170i
\(120\) 0.742594 1.28621i 0.0677893 0.117414i
\(121\) 10.2088i 0.928075i
\(122\) −0.152718 + 0.569952i −0.0138265 + 0.0516010i
\(123\) −2.29441 8.56284i −0.206880 0.772086i
\(124\) −4.74230 + 4.74230i −0.425871 + 0.425871i
\(125\) 4.68705 4.68705i 0.419223 0.419223i
\(126\) 1.27033 + 0.871831i 0.113170 + 0.0776689i
\(127\) −6.17582 3.56561i −0.548016 0.316397i 0.200306 0.979733i \(-0.435806\pi\)
−0.748321 + 0.663337i \(0.769140\pi\)
\(128\) 2.98069 11.1241i 0.263458 0.983239i
\(129\) −0.746085 1.29226i −0.0656891 0.113777i
\(130\) 0.267697 + 1.43804i 0.0234786 + 0.126124i
\(131\) −11.8790 6.85837i −1.03788 0.599219i −0.118646 0.992937i \(-0.537855\pi\)
−0.919231 + 0.393718i \(0.871189\pi\)
\(132\) 1.42698 0.382359i 0.124203 0.0332801i
\(133\) 0.995922 + 2.08444i 0.0863574 + 0.180744i
\(134\) −1.26376 + 0.729630i −0.109172 + 0.0630304i
\(135\) −0.180309 0.672922i −0.0155185 0.0579159i
\(136\) 0.0948606 0.0254178i 0.00813423 0.00217956i
\(137\) −11.2780 + 3.02192i −0.963541 + 0.258180i −0.706098 0.708114i \(-0.749546\pi\)
−0.257442 + 0.966294i \(0.582880\pi\)
\(138\) −0.480971 1.79501i −0.0409430 0.152801i
\(139\) 0.834941 0.482054i 0.0708188 0.0408873i −0.464172 0.885745i \(-0.653648\pi\)
0.534991 + 0.844858i \(0.320315\pi\)
\(140\) −2.52407 1.73228i −0.213323 0.146404i
\(141\) −12.1286 + 3.24985i −1.02141 + 0.273687i
\(142\) −0.416818 0.240650i −0.0349786 0.0201949i
\(143\) −1.81442 + 2.64446i −0.151729 + 0.221141i
\(144\) −1.04015 1.80159i −0.0866792 0.150133i
\(145\) −1.47220 + 5.49433i −0.122260 + 0.456279i
\(146\) −7.97393 4.60375i −0.659927 0.381009i
\(147\) 4.39802 5.44586i 0.362743 0.449167i
\(148\) 8.26961 8.26961i 0.679757 0.679757i
\(149\) 1.64140 1.64140i 0.134469 0.134469i −0.636669 0.771137i \(-0.719688\pi\)
0.771137 + 0.636669i \(0.219688\pi\)
\(150\) 0.680450 + 2.53947i 0.0555585 + 0.207347i
\(151\) 3.52700 13.1629i 0.287023 1.07118i −0.660325 0.750980i \(-0.729582\pi\)
0.947348 0.320205i \(-0.103752\pi\)
\(152\) 1.86144i 0.150983i
\(153\) 0.0230331 0.0398944i 0.00186211 0.00322527i
\(154\) 0.250636 + 1.34732i 0.0201968 + 0.108570i
\(155\) 2.81310i 0.225954i
\(156\) 5.64649 + 1.99452i 0.452081 + 0.159689i
\(157\) 3.81144 2.20054i 0.304186 0.175622i −0.340136 0.940376i \(-0.610473\pi\)
0.644322 + 0.764754i \(0.277140\pi\)
\(158\) −3.90078 + 3.90078i −0.310329 + 0.310329i
\(159\) 8.47362 4.89224i 0.672001 0.387980i
\(160\) −1.90717 3.30331i −0.150775 0.261150i
\(161\) −8.30061 + 1.54412i −0.654180 + 0.121694i
\(162\) 0.562494 + 0.150720i 0.0441937 + 0.0118417i
\(163\) 0.215757 + 0.215757i 0.0168994 + 0.0168994i 0.715506 0.698607i \(-0.246196\pi\)
−0.698607 + 0.715506i \(0.746196\pi\)
\(164\) −14.2219 3.81074i −1.11054 0.297569i
\(165\) 0.309833 0.536646i 0.0241204 0.0417778i
\(166\) 1.44271 + 2.49884i 0.111976 + 0.193948i
\(167\) −0.106108 0.396000i −0.00821087 0.0306434i 0.961699 0.274108i \(-0.0883826\pi\)
−0.969910 + 0.243465i \(0.921716\pi\)
\(168\) 5.08932 2.43163i 0.392650 0.187604i
\(169\) −12.1292 + 4.67791i −0.933014 + 0.359839i
\(170\) 0.00934431 0.0161848i 0.000716676 0.00124132i
\(171\) 0.617410 + 0.617410i 0.0472145 + 0.0472145i
\(172\) −2.47832 −0.188970
\(173\) −2.07593 −0.157830 −0.0789149 0.996881i \(-0.525146\pi\)
−0.0789149 + 0.996881i \(0.525146\pi\)
\(174\) −3.36209 3.36209i −0.254879 0.254879i
\(175\) 11.7432 2.18453i 0.887704 0.165135i
\(176\) 0.478915 1.78734i 0.0360996 0.134725i
\(177\) −8.54567 + 2.28980i −0.642332 + 0.172112i
\(178\) −2.63717 1.52257i −0.197664 0.114122i
\(179\) 13.4116i 1.00243i 0.865322 + 0.501216i \(0.167114\pi\)
−0.865322 + 0.501216i \(0.832886\pi\)
\(180\) −1.11765 0.299472i −0.0833044 0.0223213i
\(181\) 2.32661 0.172935 0.0864677 0.996255i \(-0.472442\pi\)
0.0864677 + 0.996255i \(0.472442\pi\)
\(182\) −2.25211 + 5.07815i −0.166938 + 0.376417i
\(183\) 1.01326 0.0749022
\(184\) −6.57132 1.76078i −0.484444 0.129806i
\(185\) 4.90548i 0.360658i
\(186\) −2.03643 1.17573i −0.149318 0.0862090i
\(187\) 0.0395787 0.0106051i 0.00289428 0.000775520i
\(188\) −5.39762 + 20.1442i −0.393662 + 1.46917i
\(189\) 0.881516 2.49458i 0.0641209 0.181454i
\(190\) 0.250478 + 0.250478i 0.0181716 + 0.0181716i
\(191\) 22.9951 1.66387 0.831934 0.554875i \(-0.187234\pi\)
0.831934 + 0.554875i \(0.187234\pi\)
\(192\) −0.972206 −0.0701629
\(193\) 4.77121 + 4.77121i 0.343439 + 0.343439i 0.857659 0.514220i \(-0.171918\pi\)
−0.514220 + 0.857659i \(0.671918\pi\)
\(194\) 0.324719 0.562430i 0.0233135 0.0403801i
\(195\) 2.26630 1.08316i 0.162293 0.0775670i
\(196\) −4.18084 10.8484i −0.298632 0.774889i
\(197\) 3.30495 + 12.3342i 0.235468 + 0.878778i 0.977937 + 0.208898i \(0.0669876\pi\)
−0.742470 + 0.669880i \(0.766346\pi\)
\(198\) 0.258989 + 0.448581i 0.0184055 + 0.0318793i
\(199\) 0.415227 0.719195i 0.0294347 0.0509824i −0.850933 0.525275i \(-0.823963\pi\)
0.880368 + 0.474292i \(0.157296\pi\)
\(200\) 9.29672 + 2.49105i 0.657377 + 0.176144i
\(201\) 1.77192 + 1.77192i 0.124981 + 0.124981i
\(202\) 8.21665 + 2.20165i 0.578122 + 0.154907i
\(203\) −16.4172 + 14.0404i −1.15226 + 0.985444i
\(204\) −0.0382552 0.0662600i −0.00267840 0.00463913i
\(205\) −5.34843 + 3.08792i −0.373550 + 0.215669i
\(206\) 5.22667 5.22667i 0.364160 0.364160i
\(207\) −2.76363 + 1.59558i −0.192085 + 0.110900i
\(208\) 5.69968 4.87576i 0.395202 0.338073i
\(209\) 0.776649i 0.0537220i
\(210\) 0.357623 1.01203i 0.0246784 0.0698367i
\(211\) 11.5683 20.0368i 0.796392 1.37939i −0.125560 0.992086i \(-0.540073\pi\)
0.921952 0.387305i \(-0.126594\pi\)
\(212\) 16.2509i 1.11612i
\(213\) −0.213913 + 0.798336i −0.0146571 + 0.0547011i
\(214\) −1.77732 6.63306i −0.121495 0.453427i
\(215\) −0.735063 + 0.735063i −0.0501309 + 0.0501309i
\(216\) 1.50746 1.50746i 0.102570 0.102570i
\(217\) −6.04536 + 8.80856i −0.410386 + 0.597964i
\(218\) −1.73146 0.999657i −0.117269 0.0677053i
\(219\) −4.09226 + 15.2725i −0.276529 + 1.03202i
\(220\) −0.514596 0.891307i −0.0346941 0.0600919i
\(221\) 0.156611 + 0.0553198i 0.0105348 + 0.00372121i
\(222\) 3.55112 + 2.05024i 0.238336 + 0.137603i
\(223\) 13.8755 3.71792i 0.929171 0.248971i 0.237670 0.971346i \(-0.423616\pi\)
0.691501 + 0.722375i \(0.256950\pi\)
\(224\) 1.12698 14.4420i 0.0752994 0.964949i
\(225\) 3.90981 2.25733i 0.260654 0.150489i
\(226\) 2.27125 + 8.47643i 0.151081 + 0.563844i
\(227\) −19.8561 + 5.32042i −1.31789 + 0.353129i −0.848188 0.529695i \(-0.822306\pi\)
−0.469705 + 0.882823i \(0.655640\pi\)
\(228\) 1.40079 0.375340i 0.0927693 0.0248575i
\(229\) 1.07018 + 3.99397i 0.0707196 + 0.263929i 0.992229 0.124428i \(-0.0397095\pi\)
−0.921509 + 0.388357i \(0.873043\pi\)
\(230\) −1.12118 + 0.647313i −0.0739283 + 0.0426826i
\(231\) 2.12342 1.01455i 0.139711 0.0667524i
\(232\) −16.8133 + 4.50512i −1.10385 + 0.295775i
\(233\) 1.72269 + 0.994594i 0.112857 + 0.0651580i 0.555366 0.831606i \(-0.312578\pi\)
−0.442509 + 0.896764i \(0.645912\pi\)
\(234\) −0.163087 + 2.09330i −0.0106613 + 0.136843i
\(235\) 4.37380 + 7.57564i 0.285315 + 0.494180i
\(236\) −3.80310 + 14.1934i −0.247561 + 0.923909i
\(237\) 8.20394 + 4.73655i 0.532903 + 0.307672i
\(238\) 0.0640407 0.0305980i 0.00415114 0.00198337i
\(239\) 10.1339 10.1339i 0.655510 0.655510i −0.298805 0.954314i \(-0.596588\pi\)
0.954314 + 0.298805i \(0.0965879\pi\)
\(240\) −1.02478 + 1.02478i −0.0661495 + 0.0661495i
\(241\) 7.15869 + 26.7166i 0.461132 + 1.72097i 0.669406 + 0.742896i \(0.266549\pi\)
−0.208275 + 0.978070i \(0.566785\pi\)
\(242\) 1.53867 5.74241i 0.0989097 0.369136i
\(243\) 1.00000i 0.0641500i
\(244\) 0.841452 1.45744i 0.0538684 0.0933029i
\(245\) −4.45764 1.97759i −0.284788 0.126344i
\(246\) 5.16236i 0.329140i
\(247\) −1.78111 + 2.59591i −0.113329 + 0.165174i
\(248\) −7.45513 + 4.30422i −0.473401 + 0.273318i
\(249\) 3.50364 3.50364i 0.222034 0.222034i
\(250\) 3.34287 1.93001i 0.211422 0.122064i
\(251\) 3.92297 + 6.79478i 0.247616 + 0.428883i 0.962864 0.269988i \(-0.0870197\pi\)
−0.715248 + 0.698871i \(0.753686\pi\)
\(252\) −2.85607 3.33955i −0.179916 0.210372i
\(253\) −2.74175 0.734651i −0.172373 0.0461871i
\(254\) −2.93646 2.93646i −0.184250 0.184250i
\(255\) −0.0309989 0.00830614i −0.00194123 0.000520151i
\(256\) 2.38104 4.12408i 0.148815 0.257755i
\(257\) −0.181903 0.315066i −0.0113468 0.0196533i 0.860296 0.509794i \(-0.170279\pi\)
−0.871643 + 0.490141i \(0.836945\pi\)
\(258\) −0.224900 0.839337i −0.0140017 0.0522549i
\(259\) 10.5419 15.3604i 0.655041 0.954446i
\(260\) 0.324044 4.15928i 0.0200964 0.257948i
\(261\) −4.08244 + 7.07099i −0.252697 + 0.437683i
\(262\) −5.64821 5.64821i −0.348947 0.348947i
\(263\) 22.3462 1.37793 0.688963 0.724797i \(-0.258066\pi\)
0.688963 + 0.724797i \(0.258066\pi\)
\(264\) 1.89625 0.116706
\(265\) −4.81997 4.81997i −0.296088 0.296088i
\(266\) 0.246035 + 1.32259i 0.0150854 + 0.0810932i
\(267\) −1.35341 + 5.05100i −0.0828274 + 0.309116i
\(268\) 4.02014 1.07719i 0.245569 0.0658000i
\(269\) 22.7714 + 13.1471i 1.38839 + 0.801590i 0.993134 0.116979i \(-0.0373210\pi\)
0.395260 + 0.918569i \(0.370654\pi\)
\(270\) 0.405691i 0.0246896i
\(271\) 0.228195 + 0.0611447i 0.0138619 + 0.00371427i 0.265743 0.964044i \(-0.414383\pi\)
−0.251881 + 0.967758i \(0.581049\pi\)
\(272\) −0.0958314 −0.00581063
\(273\) 9.42410 + 1.47861i 0.570373 + 0.0894898i
\(274\) −6.79925 −0.410758
\(275\) 3.87887 + 1.03934i 0.233905 + 0.0626746i
\(276\) 5.30014i 0.319031i
\(277\) −1.63409 0.943444i −0.0981831 0.0566860i 0.450104 0.892976i \(-0.351387\pi\)
−0.548288 + 0.836290i \(0.684720\pi\)
\(278\) 0.542305 0.145310i 0.0325253 0.00871513i
\(279\) −1.04511 + 3.90039i −0.0625689 + 0.233510i
\(280\) −2.55395 2.98628i −0.152628 0.178464i
\(281\) 14.2823 + 14.2823i 0.852011 + 0.852011i 0.990381 0.138370i \(-0.0441863\pi\)
−0.138370 + 0.990381i \(0.544186\pi\)
\(282\) −7.31209 −0.435429
\(283\) 17.1254 1.01800 0.509001 0.860766i \(-0.330015\pi\)
0.509001 + 0.860766i \(0.330015\pi\)
\(284\) 0.970657 + 0.970657i 0.0575979 + 0.0575979i
\(285\) 0.304145 0.526794i 0.0180160 0.0312046i
\(286\) −1.41917 + 1.21402i −0.0839174 + 0.0717867i
\(287\) −23.3833 1.82470i −1.38027 0.107709i
\(288\) −1.41708 5.28861i −0.0835022 0.311634i
\(289\) 8.49894 + 14.7206i 0.499938 + 0.865917i
\(290\) −1.65621 + 2.86864i −0.0972560 + 0.168452i
\(291\) −1.07723 0.288642i −0.0631481 0.0169205i
\(292\) 18.5691 + 18.5691i 1.08668 + 1.08668i
\(293\) 0.0551536 + 0.0147783i 0.00322210 + 0.000863360i 0.260430 0.965493i \(-0.416136\pi\)
−0.257208 + 0.966356i \(0.582802\pi\)
\(294\) 3.29466 2.40040i 0.192149 0.139994i
\(295\) 3.08172 + 5.33770i 0.179425 + 0.310773i
\(296\) 13.0002 7.50570i 0.755624 0.436260i
\(297\) 0.628957 0.628957i 0.0364958 0.0364958i
\(298\) 1.17067 0.675886i 0.0678150 0.0391530i
\(299\) −7.47937 8.74326i −0.432543 0.505636i
\(300\) 7.49833i 0.432916i
\(301\) −3.88133 + 0.722023i −0.223716 + 0.0416167i
\(302\) 3.96783 6.87249i 0.228323 0.395467i
\(303\) 14.6075i 0.839181i
\(304\) 0.470123 1.75452i 0.0269634 0.100629i
\(305\) −0.182700 0.681844i −0.0104613 0.0390423i
\(306\) 0.0189689 0.0189689i 0.00108438 0.00108438i
\(307\) −17.7169 + 17.7169i −1.01116 + 1.01116i −0.0112203 + 0.999937i \(0.503572\pi\)
−0.999937 + 0.0112203i \(0.996428\pi\)
\(308\) 0.304084 3.89678i 0.0173268 0.222040i
\(309\) −10.9925 6.34652i −0.625342 0.361041i
\(310\) −0.423991 + 1.58235i −0.0240811 + 0.0898717i
\(311\) 9.52232 + 16.4931i 0.539961 + 0.935240i 0.998905 + 0.0467749i \(0.0148944\pi\)
−0.458944 + 0.888465i \(0.651772\pi\)
\(312\) 6.33812 + 4.34872i 0.358826 + 0.246198i
\(313\) −2.59097 1.49590i −0.146450 0.0845530i 0.424984 0.905201i \(-0.360280\pi\)
−0.571435 + 0.820648i \(0.693613\pi\)
\(314\) 2.47558 0.663329i 0.139705 0.0374338i
\(315\) −1.83760 0.143397i −0.103537 0.00807949i
\(316\) 13.6258 7.86686i 0.766511 0.442545i
\(317\) −0.183258 0.683930i −0.0102928 0.0384133i 0.960588 0.277975i \(-0.0896631\pi\)
−0.970881 + 0.239561i \(0.922996\pi\)
\(318\) 5.50372 1.47472i 0.308633 0.0826980i
\(319\) −7.01503 + 1.87967i −0.392766 + 0.105241i
\(320\) 0.175298 + 0.654219i 0.00979943 + 0.0365720i
\(321\) −10.2124 + 5.89611i −0.569999 + 0.329089i
\(322\) −4.90178 0.382508i −0.273165 0.0213164i
\(323\) 0.0388521 0.0104104i 0.00216179 0.000579249i
\(324\) −1.43837 0.830442i −0.0799093 0.0461357i
\(325\) 10.5814 + 12.3694i 0.586949 + 0.686133i
\(326\) 0.0888434 + 0.153881i 0.00492058 + 0.00852269i
\(327\) −0.888593 + 3.31627i −0.0491393 + 0.183390i
\(328\) −16.3669 9.44941i −0.903708 0.521756i
\(329\) −2.58455 + 33.1206i −0.142491 + 1.82600i
\(330\) 0.255162 0.255162i 0.0140462 0.0140462i
\(331\) −6.71159 + 6.71159i −0.368903 + 0.368903i −0.867077 0.498174i \(-0.834004\pi\)
0.498174 + 0.867077i \(0.334004\pi\)
\(332\) −2.12995 7.94908i −0.116896 0.436263i
\(333\) 1.82246 6.80150i 0.0998699 0.372720i
\(334\) 0.238740i 0.0130633i
\(335\) 0.872869 1.51185i 0.0476899 0.0826014i
\(336\) −5.41113 + 1.00661i −0.295201 + 0.0549148i
\(337\) 28.3561i 1.54465i −0.635226 0.772327i \(-0.719093\pi\)
0.635226 0.772327i \(-0.280907\pi\)
\(338\) −7.52765 + 0.803187i −0.409450 + 0.0436876i
\(339\) 13.0504 7.53468i 0.708803 0.409228i
\(340\) −0.0376901 + 0.0376901i −0.00204403 + 0.00204403i
\(341\) −3.11051 + 1.79585i −0.168443 + 0.0972508i
\(342\) 0.254234 + 0.440346i 0.0137474 + 0.0238112i
\(343\) −9.70820 15.7718i −0.524194 0.851599i
\(344\) −3.07272 0.823332i −0.165670 0.0443911i
\(345\) 1.57201 + 1.57201i 0.0846341 + 0.0846341i
\(346\) −1.16770 0.312884i −0.0627758 0.0168207i
\(347\) 11.1898 19.3814i 0.600702 1.04045i −0.392013 0.919960i \(-0.628221\pi\)
0.992715 0.120487i \(-0.0384455\pi\)
\(348\) 6.78045 + 11.7441i 0.363470 + 0.629549i
\(349\) 2.36174 + 8.81412i 0.126421 + 0.471809i 0.999886 0.0150770i \(-0.00479935\pi\)
−0.873465 + 0.486886i \(0.838133\pi\)
\(350\) 6.93475 + 0.541150i 0.370678 + 0.0289257i
\(351\) 3.54466 0.659853i 0.189200 0.0352204i
\(352\) 2.43503 4.21759i 0.129787 0.224798i
\(353\) −2.03241 2.03241i −0.108174 0.108174i 0.650948 0.759122i \(-0.274372\pi\)
−0.759122 + 0.650948i \(0.774372\pi\)
\(354\) −5.15201 −0.273826
\(355\) 0.575789 0.0305597
\(356\) 6.14126 + 6.14126i 0.325486 + 0.325486i
\(357\) −0.0792158 0.0926254i −0.00419255 0.00490226i
\(358\) −2.02140 + 7.54396i −0.106834 + 0.398711i
\(359\) −7.79454 + 2.08854i −0.411380 + 0.110229i −0.458573 0.888657i \(-0.651639\pi\)
0.0471928 + 0.998886i \(0.484972\pi\)
\(360\) −1.28621 0.742594i −0.0677893 0.0391382i
\(361\) 18.2376i 0.959874i
\(362\) 1.30870 + 0.350666i 0.0687840 + 0.0184306i
\(363\) −10.2088 −0.535824
\(364\) 9.95296 12.3274i 0.521677 0.646132i
\(365\) 11.0151 0.576557
\(366\) 0.569952 + 0.152718i 0.0297919 + 0.00798271i
\(367\) 1.67913i 0.0876497i 0.999039 + 0.0438249i \(0.0139544\pi\)
−0.999039 + 0.0438249i \(0.986046\pi\)
\(368\) 5.74917 + 3.31929i 0.299696 + 0.173030i
\(369\) −8.56284 + 2.29441i −0.445764 + 0.119442i
\(370\) 0.739354 2.75931i 0.0384372 0.143450i
\(371\) −4.73447 25.4507i −0.245801 1.32133i
\(372\) 4.74230 + 4.74230i 0.245877 + 0.245877i
\(373\) −32.2757 −1.67117 −0.835587 0.549358i \(-0.814872\pi\)
−0.835587 + 0.549358i \(0.814872\pi\)
\(374\) 0.0238612 0.00123383
\(375\) −4.68705 4.68705i −0.242038 0.242038i
\(376\) −13.3844 + 23.1824i −0.690246 + 1.19554i
\(377\) −27.7580 9.80502i −1.42961 0.504984i
\(378\) 0.871831 1.27033i 0.0448421 0.0653385i
\(379\) 5.38351 + 20.0915i 0.276532 + 1.03203i 0.954808 + 0.297224i \(0.0960609\pi\)
−0.678276 + 0.734808i \(0.737272\pi\)
\(380\) −0.505149 0.874943i −0.0259136 0.0448837i
\(381\) −3.56561 + 6.17582i −0.182672 + 0.316397i
\(382\) 12.9346 + 3.46582i 0.661793 + 0.177327i
\(383\) −19.8878 19.8878i −1.01622 1.01622i −0.999866 0.0163519i \(-0.994795\pi\)
−0.0163519 0.999866i \(-0.505205\pi\)
\(384\) −11.1241 2.98069i −0.567673 0.152108i
\(385\) −1.06558 1.24596i −0.0543072 0.0635002i
\(386\) 1.96466 + 3.40289i 0.0999986 + 0.173203i
\(387\) −1.29226 + 0.746085i −0.0656891 + 0.0379256i
\(388\) −1.30975 + 1.30975i −0.0664923 + 0.0664923i
\(389\) 9.23904 5.33416i 0.468438 0.270453i −0.247148 0.968978i \(-0.579493\pi\)
0.715586 + 0.698525i \(0.246160\pi\)
\(390\) 1.43804 0.267697i 0.0728178 0.0135554i
\(391\) 0.147004i 0.00743433i
\(392\) −1.57957 14.8392i −0.0797801 0.749495i
\(393\) −6.85837 + 11.8790i −0.345959 + 0.599219i
\(394\) 7.43606i 0.374623i
\(395\) 1.70809 6.37466i 0.0859431 0.320744i
\(396\) −0.382359 1.42698i −0.0192143 0.0717086i
\(397\) 1.67763 1.67763i 0.0841976 0.0841976i −0.663754 0.747951i \(-0.731038\pi\)
0.747951 + 0.663754i \(0.231038\pi\)
\(398\) 0.341960 0.341960i 0.0171409 0.0171409i
\(399\) 2.08444 0.995922i 0.104352 0.0498585i
\(400\) −8.13359 4.69593i −0.406679 0.234797i
\(401\) 8.06712 30.1069i 0.402853 1.50347i −0.405129 0.914260i \(-0.632773\pi\)
0.807982 0.589208i \(-0.200560\pi\)
\(402\) 0.729630 + 1.26376i 0.0363906 + 0.0630304i
\(403\) −14.5152 1.13086i −0.723052 0.0563321i
\(404\) −21.0110 12.1307i −1.04534 0.603525i
\(405\) −0.672922 + 0.180309i −0.0334378 + 0.00895963i
\(406\) −11.3507 + 5.42326i −0.563327 + 0.269152i
\(407\) 5.42410 3.13160i 0.268862 0.155228i
\(408\) −0.0254178 0.0948606i −0.00125837 0.00469630i
\(409\) 22.2302 5.95656i 1.09921 0.294533i 0.336768 0.941588i \(-0.390666\pi\)
0.762444 + 0.647055i \(0.223999\pi\)
\(410\) −3.47387 + 0.930821i −0.171562 + 0.0459700i
\(411\) 3.02192 + 11.2780i 0.149060 + 0.556300i
\(412\) −18.2573 + 10.5408i −0.899471 + 0.519310i
\(413\) −1.82104 + 23.3364i −0.0896076 + 1.14831i
\(414\) −1.79501 + 0.480971i −0.0882199 + 0.0236385i
\(415\) −2.98941 1.72594i −0.146745 0.0847230i
\(416\) 17.8112 8.51277i 0.873268 0.417373i
\(417\) −0.482054 0.834941i −0.0236063 0.0408873i
\(418\) −0.117057 + 0.436861i −0.00572542 + 0.0213676i
\(419\) −15.0030 8.66198i −0.732944 0.423166i 0.0865540 0.996247i \(-0.472414\pi\)
−0.819498 + 0.573082i \(0.805748\pi\)
\(420\) −1.73228 + 2.52407i −0.0845266 + 0.123162i
\(421\) −28.4825 + 28.4825i −1.38815 + 1.38815i −0.558947 + 0.829203i \(0.688794\pi\)
−0.829203 + 0.558947i \(0.811206\pi\)
\(422\) 9.52703 9.52703i 0.463769 0.463769i
\(423\) 3.24985 + 12.1286i 0.158013 + 0.589713i
\(424\) 5.39877 20.1485i 0.262187 0.978497i
\(425\) 0.207973i 0.0100882i
\(426\) −0.240650 + 0.416818i −0.0116595 + 0.0201949i
\(427\) 0.893203 2.52765i 0.0432251 0.122322i
\(428\) 19.5855i 0.946702i
\(429\) 2.64446 + 1.81442i 0.127676 + 0.0876009i
\(430\) −0.524258 + 0.302680i −0.0252819 + 0.0145965i
\(431\) 23.9598 23.9598i 1.15410 1.15410i 0.168381 0.985722i \(-0.446146\pi\)
0.985722 0.168381i \(-0.0538539\pi\)
\(432\) −1.80159 + 1.04015i −0.0866792 + 0.0500443i
\(433\) −15.2303 26.3796i −0.731921 1.26772i −0.956061 0.293167i \(-0.905291\pi\)
0.224141 0.974557i \(-0.428042\pi\)
\(434\) −4.72811 + 4.04361i −0.226956 + 0.194099i
\(435\) 5.49433 + 1.47220i 0.263433 + 0.0705866i
\(436\) 4.03210 + 4.03210i 0.193102 + 0.193102i
\(437\) −2.69142 0.721163i −0.128748 0.0344979i
\(438\) −4.60375 + 7.97393i −0.219976 + 0.381009i
\(439\) −1.36285 2.36053i −0.0650455 0.112662i 0.831669 0.555272i \(-0.187386\pi\)
−0.896714 + 0.442610i \(0.854053\pi\)
\(440\) −0.341912 1.27603i −0.0163000 0.0608324i
\(441\) −5.44586 4.39802i −0.259327 0.209430i
\(442\) 0.0797547 + 0.0547214i 0.00379355 + 0.00260283i
\(443\) −17.3901 + 30.1206i −0.826229 + 1.43107i 0.0747467 + 0.997203i \(0.476185\pi\)
−0.900976 + 0.433869i \(0.857148\pi\)
\(444\) −8.26961 8.26961i −0.392458 0.392458i
\(445\) 3.64296 0.172693
\(446\) 8.36525 0.396106
\(447\) −1.64140 1.64140i −0.0776355 0.0776355i
\(448\) −0.857015 + 2.42525i −0.0404902 + 0.114582i
\(449\) 9.41298 35.1297i 0.444226 1.65787i −0.273746 0.961802i \(-0.588263\pi\)
0.717972 0.696072i \(-0.245070\pi\)
\(450\) 2.53947 0.680450i 0.119712 0.0320767i
\(451\) −6.82875 3.94258i −0.321553 0.185649i
\(452\) 25.0284i 1.17724i
\(453\) −13.1629 3.52700i −0.618448 0.165713i
\(454\) −11.9708 −0.561818
\(455\) −0.704257 6.60830i −0.0330161 0.309802i
\(456\) 1.86144 0.0871700
\(457\) −30.7526 8.24014i −1.43855 0.385457i −0.546522 0.837444i \(-0.684049\pi\)
−0.892025 + 0.451987i \(0.850715\pi\)
\(458\) 2.40789i 0.112513i
\(459\) −0.0398944 0.0230331i −0.00186211 0.00107509i
\(460\) 3.56659 0.955664i 0.166293 0.0445581i
\(461\) 4.67038 17.4301i 0.217521 0.811800i −0.767743 0.640758i \(-0.778620\pi\)
0.985264 0.171042i \(-0.0547133\pi\)
\(462\) 1.34732 0.250636i 0.0626832 0.0116606i
\(463\) 16.2446 + 16.2446i 0.754951 + 0.754951i 0.975399 0.220448i \(-0.0707518\pi\)
−0.220448 + 0.975399i \(0.570752\pi\)
\(464\) 16.9854 0.788527
\(465\) 2.81310 0.130455
\(466\) 0.819097 + 0.819097i 0.0379439 + 0.0379439i
\(467\) 18.7401 32.4588i 0.867188 1.50201i 0.00232895 0.999997i \(-0.499259\pi\)
0.864859 0.502016i \(-0.167408\pi\)
\(468\) 1.99452 5.64649i 0.0921967 0.261009i
\(469\) 5.98216 2.85821i 0.276230 0.131980i
\(470\) 1.31844 + 4.92047i 0.0608149 + 0.226964i
\(471\) −2.20054 3.81144i −0.101395 0.175622i
\(472\) −9.43045 + 16.3340i −0.434072 + 0.751834i
\(473\) −1.28203 0.343519i −0.0589478 0.0157950i
\(474\) 3.90078 + 3.90078i 0.179169 + 0.179169i
\(475\) 3.80766 + 1.02026i 0.174707 + 0.0468127i
\(476\) −0.199013 + 0.0370215i −0.00912177 + 0.00169688i
\(477\) −4.89224 8.47362i −0.224000 0.387980i
\(478\) 7.22767 4.17289i 0.330586 0.190864i
\(479\) 18.8991 18.8991i 0.863522 0.863522i −0.128224 0.991745i \(-0.540928\pi\)
0.991745 + 0.128224i \(0.0409275\pi\)
\(480\) −3.30331 + 1.90717i −0.150775 + 0.0870499i
\(481\) 25.3115 + 1.97199i 1.15411 + 0.0899149i
\(482\) 16.1069i 0.733649i
\(483\) 1.54412 + 8.30061i 0.0702600 + 0.377691i
\(484\) −8.47784 + 14.6840i −0.385356 + 0.667456i
\(485\) 0.776935i 0.0352788i
\(486\) 0.150720 0.562494i 0.00683679 0.0255153i
\(487\) −6.41427 23.9384i −0.290658 1.08475i −0.944605 0.328210i \(-0.893555\pi\)
0.653946 0.756541i \(-0.273112\pi\)
\(488\) 1.52744 1.52744i 0.0691442 0.0691442i
\(489\) 0.215757 0.215757i 0.00975689 0.00975689i
\(490\) −2.20934 1.78424i −0.0998077 0.0806038i
\(491\) 9.62086 + 5.55460i 0.434183 + 0.250676i 0.701127 0.713036i \(-0.252681\pi\)
−0.266944 + 0.963712i \(0.586014\pi\)
\(492\) −3.81074 + 14.2219i −0.171802 + 0.641172i
\(493\) 0.188062 + 0.325733i 0.00846989 + 0.0146703i
\(494\) −1.39312 + 1.19174i −0.0626794 + 0.0536187i
\(495\) −0.536646 0.309833i −0.0241204 0.0139259i
\(496\) 8.11399 2.17414i 0.364329 0.0976216i
\(497\) 1.80294 + 1.23737i 0.0808731 + 0.0555036i
\(498\) 2.49884 1.44271i 0.111976 0.0646493i
\(499\) 0.0481231 + 0.179598i 0.00215428 + 0.00803990i 0.966995 0.254797i \(-0.0820086\pi\)
−0.964840 + 0.262837i \(0.915342\pi\)
\(500\) −10.6340 + 2.84938i −0.475568 + 0.127428i
\(501\) −0.396000 + 0.106108i −0.0176920 + 0.00474055i
\(502\) 1.18254 + 4.41330i 0.0527793 + 0.196975i
\(503\) −0.488766 + 0.282189i −0.0217930 + 0.0125822i −0.510857 0.859666i \(-0.670672\pi\)
0.489064 + 0.872248i \(0.337338\pi\)
\(504\) −2.43163 5.08932i −0.108313 0.226697i
\(505\) −9.82973 + 2.63387i −0.437417 + 0.117206i
\(506\) −1.43149 0.826474i −0.0636377 0.0367412i
\(507\) 4.67791 + 12.1292i 0.207753 + 0.538676i
\(508\) 5.92207 + 10.2573i 0.262749 + 0.455095i
\(509\) −5.90635 + 22.0428i −0.261794 + 0.977029i 0.702389 + 0.711793i \(0.252117\pi\)
−0.964183 + 0.265236i \(0.914550\pi\)
\(510\) −0.0161848 0.00934431i −0.000716676 0.000413773i
\(511\) 34.4911 + 23.6714i 1.52580 + 1.04716i
\(512\) −14.3259 + 14.3259i −0.633121 + 0.633121i
\(513\) 0.617410 0.617410i 0.0272593 0.0272593i
\(514\) −0.0548329 0.204639i −0.00241858 0.00902625i
\(515\) −2.28867 + 8.54144i −0.100851 + 0.376381i
\(516\) 2.47832i 0.109102i
\(517\) −5.58436 + 9.67239i −0.245600 + 0.425391i
\(518\) 8.24486 7.05124i 0.362259 0.309814i
\(519\) 2.07593i 0.0911231i
\(520\) 1.78353 5.04918i 0.0782130 0.221421i
\(521\) 20.6918 11.9464i 0.906523 0.523381i 0.0272119 0.999630i \(-0.491337\pi\)
0.879311 + 0.476249i \(0.158004\pi\)
\(522\) −3.36209 + 3.36209i −0.147155 + 0.147155i
\(523\) −28.3525 + 16.3694i −1.23977 + 0.715782i −0.969047 0.246876i \(-0.920596\pi\)
−0.270723 + 0.962657i \(0.587263\pi\)
\(524\) 11.3910 + 19.7297i 0.497616 + 0.861897i
\(525\) −2.18453 11.7432i −0.0953408 0.512516i
\(526\) 12.5696 + 3.36802i 0.548061 + 0.146853i
\(527\) 0.131532 + 0.131532i 0.00572962 + 0.00572962i
\(528\) −1.78734 0.478915i −0.0777838 0.0208421i
\(529\) −6.40825 + 11.0994i −0.278620 + 0.482583i
\(530\) −1.98474 3.43767i −0.0862116 0.149323i
\(531\) 2.28980 + 8.54567i 0.0993691 + 0.370850i
\(532\) 0.298501 3.82524i 0.0129417 0.165845i
\(533\) −13.7831 28.8384i −0.597013 1.24913i
\(534\) −1.52257 + 2.63717i −0.0658881 + 0.114122i
\(535\) 5.80901 + 5.80901i 0.251145 + 0.251145i
\(536\) 5.34218 0.230747
\(537\) 13.4116 0.578754
\(538\) 10.8272 + 10.8272i 0.466796 + 0.466796i
\(539\) −0.659043 6.19138i −0.0283870 0.266682i
\(540\) −0.299472 + 1.11765i −0.0128872 + 0.0480958i
\(541\) 17.0583 4.57076i 0.733394 0.196512i 0.127254 0.991870i \(-0.459384\pi\)
0.606140 + 0.795358i \(0.292717\pi\)
\(542\) 0.119143 + 0.0687871i 0.00511762 + 0.00295466i
\(543\) 2.32661i 0.0998443i
\(544\) −0.243626 0.0652793i −0.0104454 0.00279883i
\(545\) 2.39182 0.102454
\(546\) 5.07815 + 2.25211i 0.217325 + 0.0963815i
\(547\) 24.8672 1.06324 0.531621 0.846982i \(-0.321583\pi\)
0.531621 + 0.846982i \(0.321583\pi\)
\(548\) 18.7314 + 5.01905i 0.800164 + 0.214403i
\(549\) 1.01326i 0.0432448i
\(550\) 2.02519 + 1.16925i 0.0863546 + 0.0498568i
\(551\) −6.88624 + 1.84516i −0.293364 + 0.0786066i
\(552\) −1.76078 + 6.57132i −0.0749438 + 0.279694i
\(553\) 19.0476 16.2901i 0.809987 0.692723i
\(554\) −0.776972 0.776972i −0.0330104 0.0330104i
\(555\) −4.90548 −0.208226
\(556\) −1.60127 −0.0679090
\(557\) 25.7600 + 25.7600i 1.09148 + 1.09148i 0.995370 + 0.0961140i \(0.0306413\pi\)
0.0961140 + 0.995370i \(0.469359\pi\)
\(558\) −1.17573 + 2.03643i −0.0497728 + 0.0862090i
\(559\) −3.49732 4.08830i −0.147921 0.172917i
\(560\) 1.65304 + 3.45977i 0.0698538 + 0.146202i
\(561\) −0.0106051 0.0395787i −0.000447747 0.00167101i
\(562\) 5.88109 + 10.1863i 0.248079 + 0.429685i
\(563\) −19.9769 + 34.6011i −0.841928 + 1.45826i 0.0463350 + 0.998926i \(0.485246\pi\)
−0.888263 + 0.459336i \(0.848087\pi\)
\(564\) 20.1442 + 5.39762i 0.848224 + 0.227281i
\(565\) −7.42337 7.42337i −0.312303 0.312303i
\(566\) 9.63296 + 2.58114i 0.404904 + 0.108494i
\(567\) −2.49458 0.881516i −0.104763 0.0370202i
\(568\) 0.880992 + 1.52592i 0.0369656 + 0.0640263i
\(569\) −22.6412 + 13.0719i −0.949167 + 0.548002i −0.892822 0.450409i \(-0.851278\pi\)
−0.0563450 + 0.998411i \(0.517945\pi\)
\(570\) 0.250478 0.250478i 0.0104914 0.0104914i
\(571\) −20.3089 + 11.7254i −0.849902 + 0.490691i −0.860618 0.509251i \(-0.829922\pi\)
0.0107157 + 0.999943i \(0.496589\pi\)
\(572\) 4.80587 2.29693i 0.200943 0.0960396i
\(573\) 22.9951i 0.960634i
\(574\) −12.8779 4.55071i −0.537514 0.189943i
\(575\) −7.20351 + 12.4768i −0.300407 + 0.520320i
\(576\) 0.972206i 0.0405086i
\(577\) 4.20645 15.6987i 0.175117 0.653544i −0.821415 0.570331i \(-0.806815\pi\)
0.996532 0.0832134i \(-0.0265183\pi\)
\(578\) 2.56192 + 9.56121i 0.106562 + 0.397694i
\(579\) 4.77121 4.77121i 0.198285 0.198285i
\(580\) 6.68028 6.68028i 0.277384 0.277384i
\(581\) −5.65159 11.8286i −0.234467 0.490734i
\(582\) −0.562430 0.324719i −0.0233135 0.0134600i
\(583\) 2.25253 8.40655i 0.0932902 0.348164i
\(584\) 16.8538 + 29.1916i 0.697415 + 1.20796i
\(585\) −1.08316 2.26630i −0.0447833 0.0937001i
\(586\) 0.0287962 + 0.0166255i 0.00118956 + 0.000686792i
\(587\) −25.3256 + 6.78596i −1.04530 + 0.280087i −0.740307 0.672269i \(-0.765320\pi\)
−0.304991 + 0.952355i \(0.598653\pi\)
\(588\) −10.8484 + 4.18084i −0.447382 + 0.172415i
\(589\) −3.05340 + 1.76288i −0.125813 + 0.0726383i
\(590\) 0.928954 + 3.46690i 0.0382444 + 0.142730i
\(591\) 12.3342 3.30495i 0.507362 0.135947i
\(592\) −14.1492 + 3.79126i −0.581527 + 0.155820i
\(593\) 2.65816 + 9.92038i 0.109157 + 0.407381i 0.998784 0.0493084i \(-0.0157017\pi\)
−0.889626 + 0.456690i \(0.849035\pi\)
\(594\) 0.448581 0.258989i 0.0184055 0.0106264i
\(595\) −0.0480464 + 0.0700073i −0.00196971 + 0.00287002i
\(596\) −3.72402 + 0.997848i −0.152542 + 0.0408734i
\(597\) −0.719195 0.415227i −0.0294347 0.0169941i
\(598\) −2.88932 6.04532i −0.118153 0.247212i
\(599\) 9.56265 + 16.5630i 0.390719 + 0.676746i 0.992545 0.121882i \(-0.0388930\pi\)
−0.601825 + 0.798628i \(0.705560\pi\)
\(600\) 2.49105 9.29672i 0.101697 0.379537i
\(601\) 38.9868 + 22.5091i 1.59031 + 0.918164i 0.993254 + 0.115961i \(0.0369948\pi\)
0.597052 + 0.802202i \(0.296339\pi\)
\(602\) −2.29205 0.178859i −0.0934169 0.00728975i
\(603\) 1.77192 1.77192i 0.0721580 0.0721580i
\(604\) −16.0042 + 16.0042i −0.651200 + 0.651200i
\(605\) 1.84074 + 6.86975i 0.0748369 + 0.279295i
\(606\) 2.20165 8.21665i 0.0894357 0.333779i
\(607\) 47.3844i 1.92328i −0.274323 0.961638i \(-0.588454\pi\)
0.274323 0.961638i \(-0.411546\pi\)
\(608\) 2.39032 4.14016i 0.0969404 0.167906i
\(609\) 14.0404 + 16.4172i 0.568946 + 0.665257i
\(610\) 0.411070i 0.0166437i
\(611\) −40.8473 + 19.5227i −1.65251 + 0.789804i
\(612\) −0.0662600 + 0.0382552i −0.00267840 + 0.00154638i
\(613\) 28.5133 28.5133i 1.15164 1.15164i 0.165420 0.986223i \(-0.447102\pi\)
0.986223 0.165420i \(-0.0528978\pi\)
\(614\) −12.6360 + 7.29537i −0.509946 + 0.294417i
\(615\) 3.08792 + 5.34843i 0.124517 + 0.215669i
\(616\) 1.67158 4.73036i 0.0673498 0.190591i
\(617\) −12.1180 3.24702i −0.487854 0.130720i 0.00650361 0.999979i \(-0.497930\pi\)
−0.494357 + 0.869259i \(0.664596\pi\)
\(618\) −5.22667 5.22667i −0.210248 0.210248i
\(619\) −8.09314 2.16855i −0.325291 0.0871614i 0.0924781 0.995715i \(-0.470521\pi\)
−0.417769 + 0.908553i \(0.637188\pi\)
\(620\) 2.33612 4.04628i 0.0938208 0.162502i
\(621\) 1.59558 + 2.76363i 0.0640284 + 0.110900i
\(622\) 2.87041 + 10.7125i 0.115093 + 0.429532i
\(623\) 11.4071 + 7.82873i 0.457014 + 0.313651i
\(624\) −4.87576 5.69968i −0.195187 0.228170i
\(625\) 8.97776 15.5499i 0.359110 0.621997i
\(626\) −1.23194 1.23194i −0.0492383 0.0492383i
\(627\) 0.776649 0.0310164
\(628\) −7.30967 −0.291688
\(629\) −0.229365 0.229365i −0.00914538 0.00914538i
\(630\) −1.01203 0.357623i −0.0403202 0.0142481i
\(631\) 3.60680 13.4608i 0.143584 0.535864i −0.856230 0.516595i \(-0.827199\pi\)
0.999814 0.0192694i \(-0.00613403\pi\)
\(632\) 19.5073 5.22695i 0.775957 0.207917i
\(633\) −20.0368 11.5683i −0.796392 0.459797i
\(634\) 0.412327i 0.0163756i
\(635\) 4.79876 + 1.28582i 0.190433 + 0.0510264i
\(636\) −16.2509 −0.644390
\(637\) 11.9960 22.2058i 0.475300 0.879824i
\(638\) −4.22922 −0.167436
\(639\) 0.798336 + 0.213913i 0.0315817 + 0.00846228i
\(640\) 8.02309i 0.317140i
\(641\) −41.8233 24.1467i −1.65192 0.953736i −0.976282 0.216503i \(-0.930535\pi\)
−0.675638 0.737234i \(-0.736132\pi\)
\(642\) −6.63306 + 1.77732i −0.261786 + 0.0701454i
\(643\) −4.25643 + 15.8852i −0.167857 + 0.626451i 0.829801 + 0.558059i \(0.188454\pi\)
−0.997658 + 0.0683924i \(0.978213\pi\)
\(644\) 13.2216 + 4.67216i 0.521005 + 0.184109i
\(645\) 0.735063 + 0.735063i 0.0289431 + 0.0289431i
\(646\) 0.0234231 0.000921571
\(647\) −14.2020 −0.558336 −0.279168 0.960242i \(-0.590059\pi\)
−0.279168 + 0.960242i \(0.590059\pi\)
\(648\) −1.50746 1.50746i −0.0592186 0.0592186i
\(649\) −3.93467 + 6.81505i −0.154449 + 0.267514i
\(650\) 4.08764 + 8.55256i 0.160330 + 0.335459i
\(651\) 8.80856 + 6.04536i 0.345235 + 0.236936i
\(652\) −0.131164 0.489512i −0.00513680 0.0191708i
\(653\) 4.99313 + 8.64836i 0.195396 + 0.338436i 0.947030 0.321144i \(-0.104067\pi\)
−0.751634 + 0.659580i \(0.770734\pi\)
\(654\) −0.999657 + 1.73146i −0.0390897 + 0.0677053i
\(655\) 9.23031 + 2.47325i 0.360658 + 0.0966380i
\(656\) 13.0402 + 13.0402i 0.509136 + 0.509136i
\(657\) 15.2725 + 4.09226i 0.595838 + 0.159654i
\(658\) −6.44573 + 18.2406i −0.251281 + 0.711093i
\(659\) 12.1444 + 21.0347i 0.473079 + 0.819397i 0.999525 0.0308117i \(-0.00980923\pi\)
−0.526446 + 0.850208i \(0.676476\pi\)
\(660\) −0.891307 + 0.514596i −0.0346941 + 0.0200306i
\(661\) 17.0003 17.0003i 0.661233 0.661233i −0.294437 0.955671i \(-0.595132\pi\)
0.955671 + 0.294437i \(0.0951323\pi\)
\(662\) −4.78681 + 2.76366i −0.186044 + 0.107413i
\(663\) 0.0553198 0.156611i 0.00214844 0.00608225i
\(664\) 10.5632i 0.409931i
\(665\) −1.04602 1.22309i −0.0405630 0.0474294i
\(666\) 2.05024 3.55112i 0.0794453 0.137603i
\(667\) 26.0554i 1.00887i
\(668\) −0.176233 + 0.657709i −0.00681865 + 0.0254475i
\(669\) −3.71792 13.8755i −0.143743 0.536457i
\(670\) 0.718851 0.718851i 0.0277716 0.0277716i
\(671\) 0.637296 0.637296i 0.0246025 0.0246025i
\(672\) −14.4420 1.12698i −0.557114 0.0434741i
\(673\) −18.1748 10.4933i −0.700589 0.404485i 0.106978 0.994261i \(-0.465883\pi\)
−0.807567 + 0.589776i \(0.799216\pi\)
\(674\) 4.27382 15.9501i 0.164622 0.614376i
\(675\) −2.25733 3.90981i −0.0868847 0.150489i
\(676\) 21.3310 + 3.34403i 0.820421 + 0.128617i
\(677\) 42.3269 + 24.4375i 1.62676 + 0.939208i 0.985052 + 0.172256i \(0.0551058\pi\)
0.641705 + 0.766952i \(0.278228\pi\)
\(678\) 8.47643 2.27125i 0.325535 0.0872269i
\(679\) −1.66963 + 2.43278i −0.0640746 + 0.0933617i
\(680\) −0.0592508 + 0.0342084i −0.00227216 + 0.00131183i
\(681\) 5.32042 + 19.8561i 0.203879 + 0.760886i
\(682\) −2.02031 + 0.541341i −0.0773618 + 0.0207290i
\(683\) −39.3645 + 10.5477i −1.50624 + 0.403596i −0.915184 0.403035i \(-0.867955\pi\)
−0.591055 + 0.806631i \(0.701288\pi\)
\(684\) −0.375340 1.40079i −0.0143515 0.0535604i
\(685\) 7.04431 4.06703i 0.269149 0.155393i
\(686\) −3.08368 10.3348i −0.117735 0.394584i
\(687\) 3.99397 1.07018i 0.152380 0.0408300i
\(688\) 2.68828 + 1.55208i 0.102490 + 0.0591726i
\(689\) 26.8079 22.9327i 1.02130 0.873665i
\(690\) 0.647313 + 1.12118i 0.0246428 + 0.0426826i
\(691\) −0.836048 + 3.12017i −0.0318048 + 0.118697i −0.980003 0.198982i \(-0.936237\pi\)
0.948198 + 0.317679i \(0.102903\pi\)
\(692\) 2.98595 + 1.72394i 0.113509 + 0.0655342i
\(693\) −1.01455 2.12342i −0.0385395 0.0806620i
\(694\) 9.21538 9.21538i 0.349811 0.349811i
\(695\) −0.474932 + 0.474932i −0.0180152 + 0.0180152i
\(696\) 4.50512 + 16.8133i 0.170766 + 0.637307i
\(697\) −0.105694 + 0.394457i −0.00400346 + 0.0149411i
\(698\) 5.31385i 0.201132i
\(699\) 0.994594 1.72269i 0.0376190 0.0651580i
\(700\) −18.7052 6.60990i −0.706990 0.249831i
\(701\) 8.12097i 0.306725i −0.988170 0.153362i \(-0.950990\pi\)
0.988170 0.153362i \(-0.0490102\pi\)
\(702\) 2.09330 + 0.163087i 0.0790066 + 0.00615531i
\(703\) 5.32452 3.07411i 0.200818 0.115942i
\(704\) −0.611476 + 0.611476i −0.0230459 + 0.0230459i
\(705\) 7.57564 4.37380i 0.285315 0.164727i
\(706\) −0.836893 1.44954i −0.0314969 0.0545542i
\(707\) −36.4396 12.8768i −1.37045 0.484281i
\(708\) 14.1934 + 3.80310i 0.533419 + 0.142929i
\(709\) −9.64349 9.64349i −0.362169 0.362169i 0.502442 0.864611i \(-0.332435\pi\)
−0.864611 + 0.502442i \(0.832435\pi\)
\(710\) 0.323878 + 0.0867828i 0.0121549 + 0.00325690i
\(711\) 4.73655 8.20394i 0.177634 0.307672i
\(712\) 5.57396 + 9.65438i 0.208893 + 0.361813i
\(713\) −3.33510 12.4468i −0.124901 0.466135i
\(714\) −0.0305980 0.0640407i −0.00114510 0.00239666i
\(715\) 0.744143 2.10667i 0.0278294 0.0787850i
\(716\) 11.1376 19.2908i 0.416230 0.720932i
\(717\) −10.1339 10.1339i −0.378459 0.378459i
\(718\) −4.69917 −0.175371
\(719\) −28.0584 −1.04640 −0.523200 0.852210i \(-0.675262\pi\)
−0.523200 + 0.852210i \(0.675262\pi\)
\(720\) 1.02478 + 1.02478i 0.0381915 + 0.0381915i
\(721\) −25.5220 + 21.8271i −0.950488 + 0.812884i
\(722\) 2.74877 10.2586i 0.102299 0.381784i
\(723\) 26.7166 7.15869i 0.993601 0.266234i
\(724\) −3.34652 1.93211i −0.124372 0.0718064i
\(725\) 36.8617i 1.36901i
\(726\) −5.74241 1.53867i −0.213121 0.0571055i
\(727\) 21.2410 0.787785 0.393893 0.919156i \(-0.371128\pi\)
0.393893 + 0.919156i \(0.371128\pi\)
\(728\) 16.4354 11.9775i 0.609136 0.443915i
\(729\) −1.00000 −0.0370370
\(730\) 6.19593 + 1.66019i 0.229322 + 0.0614466i
\(731\) 0.0687385i 0.00254239i
\(732\) −1.45744 0.841452i −0.0538684 0.0311010i
\(733\) −8.19585 + 2.19607i −0.302721 + 0.0811138i −0.406982 0.913436i \(-0.633419\pi\)
0.104261 + 0.994550i \(0.466752\pi\)
\(734\) −0.253078 + 0.944500i −0.00934128 + 0.0348621i
\(735\) −1.97759 + 4.45764i −0.0729446 + 0.164423i
\(736\) 12.3547 + 12.3547i 0.455399 + 0.455399i
\(737\) 2.22892 0.0821032
\(738\) −5.16236 −0.190029
\(739\) 15.6168 + 15.6168i 0.574475 + 0.574475i 0.933376 0.358901i \(-0.116848\pi\)
−0.358901 + 0.933376i \(0.616848\pi\)
\(740\) −4.07372 + 7.05589i −0.149753 + 0.259380i
\(741\) 2.59591 + 1.78111i 0.0953631 + 0.0654306i
\(742\) 1.17282 15.0295i 0.0430555 0.551749i
\(743\) −7.10193 26.5048i −0.260544 0.972365i −0.964921 0.262539i \(-0.915440\pi\)
0.704377 0.709826i \(-0.251226\pi\)
\(744\) 4.30422 + 7.45513i 0.157800 + 0.273318i
\(745\) −0.808575 + 1.40049i −0.0296239 + 0.0513101i
\(746\) −18.1549 4.86459i −0.664699 0.178105i
\(747\) −3.50364 3.50364i −0.128191 0.128191i
\(748\) −0.0657356 0.0176138i −0.00240353 0.000644024i
\(749\) 5.70596 + 30.6731i 0.208491 + 1.12077i
\(750\) −1.93001 3.34287i −0.0704739 0.122064i
\(751\) −7.00030 + 4.04163i −0.255445 + 0.147481i −0.622255 0.782815i \(-0.713783\pi\)
0.366810 + 0.930296i \(0.380450\pi\)
\(752\) 18.4705 18.4705i 0.673549 0.673549i
\(753\) 6.79478 3.92297i 0.247616 0.142961i
\(754\) −14.1359 9.69896i −0.514800 0.353215i
\(755\) 9.49358i 0.345507i
\(756\) −3.33955 + 2.85607i −0.121458 + 0.103874i
\(757\) −15.2508 + 26.4151i −0.554299 + 0.960074i 0.443659 + 0.896196i \(0.353680\pi\)
−0.997958 + 0.0638779i \(0.979653\pi\)
\(758\) 12.1128i 0.439956i
\(759\) −0.734651 + 2.74175i −0.0266661 + 0.0995194i
\(760\) −0.335635 1.25261i −0.0121747 0.0454368i
\(761\) 9.95454 9.95454i 0.360852 0.360852i −0.503275 0.864126i \(-0.667872\pi\)
0.864126 + 0.503275i \(0.167872\pi\)
\(762\) −2.93646 + 2.93646i −0.106377 + 0.106377i
\(763\) 7.48940 + 5.14001i 0.271135 + 0.186081i
\(764\) −33.0754 19.0961i −1.19663 0.690872i
\(765\) −0.00830614 + 0.0309989i −0.000300309 + 0.00112077i
\(766\) −8.18928 14.1843i −0.295891 0.512498i
\(767\) −28.7805 + 13.7555i −1.03920 + 0.496681i
\(768\) −4.12408 2.38104i −0.148815 0.0859182i
\(769\) 3.42800 0.918529i 0.123617 0.0331230i −0.196480 0.980508i \(-0.562951\pi\)
0.320097 + 0.947385i \(0.396285\pi\)
\(770\) −0.411593 0.861453i −0.0148328 0.0310446i
\(771\) −0.315066 + 0.181903i −0.0113468 + 0.00655109i
\(772\) −2.90054 10.8250i −0.104393 0.389599i
\(773\) −47.3633 + 12.6910i −1.70354 + 0.456462i −0.973827 &m