# Properties

 Label 273.2.cg.a.115.8 Level $273$ Weight $2$ Character 273.115 Analytic conductor $2.180$ Analytic rank $0$ Dimension $36$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$273 = 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 273.cg (of order $$12$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.17991597518$$ Analytic rank: $$0$$ Dimension: $$36$$ Relative dimension: $$9$$ over $$\Q(\zeta_{12})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 115.8 Character $$\chi$$ $$=$$ 273.115 Dual form 273.2.cg.a.19.8

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(2.02536 - 0.542694i) q^{2} +1.00000i q^{3} +(2.07553 - 1.19831i) q^{4} +(1.89270 + 0.507149i) q^{5} +(0.542694 + 2.02536i) q^{6} +(-1.04247 - 2.43172i) q^{7} +(0.588043 - 0.588043i) q^{8} -1.00000 q^{9} +O(q^{10})$$ $$q+(2.02536 - 0.542694i) q^{2} +1.00000i q^{3} +(2.07553 - 1.19831i) q^{4} +(1.89270 + 0.507149i) q^{5} +(0.542694 + 2.02536i) q^{6} +(-1.04247 - 2.43172i) q^{7} +(0.588043 - 0.588043i) q^{8} -1.00000 q^{9} +4.10864 q^{10} +(1.77246 - 1.77246i) q^{11} +(1.19831 + 2.07553i) q^{12} +(-3.33753 + 1.36415i) q^{13} +(-3.43106 - 4.35937i) q^{14} +(-0.507149 + 1.89270i) q^{15} +(-1.52474 + 2.64092i) q^{16} +(3.66044 + 6.34007i) q^{17} +(-2.02536 + 0.542694i) q^{18} +(0.681492 - 0.681492i) q^{19} +(4.53608 - 1.21544i) q^{20} +(2.43172 - 1.04247i) q^{21} +(2.62798 - 4.55179i) q^{22} +(-5.74884 - 3.31909i) q^{23} +(0.588043 + 0.588043i) q^{24} +(-1.00500 - 0.580235i) q^{25} +(-6.01939 + 4.57415i) q^{26} -1.00000i q^{27} +(-5.07762 - 3.79790i) q^{28} +(-5.21743 - 9.03685i) q^{29} +4.10864i q^{30} +(-0.782577 - 2.92062i) q^{31} +(-2.08541 + 7.78286i) q^{32} +(1.77246 + 1.77246i) q^{33} +(10.8544 + 10.8544i) q^{34} +(-0.739848 - 5.13121i) q^{35} +(-2.07553 + 1.19831i) q^{36} +(-0.356539 - 1.33062i) q^{37} +(1.01043 - 1.75011i) q^{38} +(-1.36415 - 3.33753i) q^{39} +(1.41122 - 0.814767i) q^{40} +(-0.710011 - 0.190247i) q^{41} +(4.35937 - 3.43106i) q^{42} +(10.1261 + 5.84633i) q^{43} +(1.55484 - 5.80275i) q^{44} +(-1.89270 - 0.507149i) q^{45} +(-13.4447 - 3.60251i) q^{46} +(-0.971849 + 3.62699i) q^{47} +(-2.64092 - 1.52474i) q^{48} +(-4.82651 + 5.06999i) q^{49} +(-2.35037 - 0.629781i) q^{50} +(-6.34007 + 3.66044i) q^{51} +(-5.29246 + 6.83071i) q^{52} +(-1.15862 + 2.00679i) q^{53} +(-0.542694 - 2.02536i) q^{54} +(4.25365 - 2.45585i) q^{55} +(-2.04297 - 0.816937i) q^{56} +(0.681492 + 0.681492i) q^{57} +(-15.4714 - 15.4714i) q^{58} +(1.22948 - 4.58848i) q^{59} +(1.21544 + 4.53608i) q^{60} +9.45408i q^{61} +(-3.17000 - 5.49061i) q^{62} +(1.04247 + 2.43172i) q^{63} +10.7959i q^{64} +(-7.00878 + 0.889307i) q^{65} +(4.55179 + 2.62798i) q^{66} +(4.43646 + 4.43646i) q^{67} +(15.1947 + 8.77265i) q^{68} +(3.31909 - 5.74884i) q^{69} +(-4.28314 - 9.99105i) q^{70} +(8.32895 - 2.23174i) q^{71} +(-0.588043 + 0.588043i) q^{72} +(7.50661 - 2.01139i) q^{73} +(-1.44424 - 2.50150i) q^{74} +(0.580235 - 1.00500i) q^{75} +(0.597819 - 2.23109i) q^{76} +(-6.15788 - 2.46239i) q^{77} +(-4.57415 - 6.01939i) q^{78} +(-2.31642 - 4.01217i) q^{79} +(-4.22522 + 4.22522i) q^{80} +1.00000 q^{81} -1.54128 q^{82} +(10.1090 - 10.1090i) q^{83} +(3.79790 - 5.07762i) q^{84} +(3.71277 + 13.8563i) q^{85} +(23.6819 + 6.34554i) q^{86} +(9.03685 - 5.21743i) q^{87} -2.08457i q^{88} +(-3.95954 + 1.06096i) q^{89} -4.10864 q^{90} +(6.79650 + 6.69384i) q^{91} -15.9091 q^{92} +(2.92062 - 0.782577i) q^{93} +7.87339i q^{94} +(1.63548 - 0.944245i) q^{95} +(-7.78286 - 2.08541i) q^{96} +(2.63968 + 9.85141i) q^{97} +(-7.02397 + 12.8879i) q^{98} +(-1.77246 + 1.77246i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$36q + 4q^{7} - 36q^{9} + O(q^{10})$$ $$36q + 4q^{7} - 36q^{9} + 4q^{11} + 16q^{12} + 42q^{14} + 12q^{16} - 4q^{17} - 24q^{19} - 14q^{20} + 4q^{22} - 12q^{23} - 24q^{25} - 28q^{26} - 12q^{28} + 8q^{29} - 6q^{31} + 46q^{32} + 4q^{33} + 24q^{34} - 10q^{35} - 20q^{37} + 8q^{38} - 2q^{39} - 30q^{40} - 34q^{41} + 24q^{42} + 30q^{43} - 32q^{44} - 26q^{46} + 4q^{47} - 24q^{48} - 20q^{50} + 24q^{51} + 98q^{52} - 8q^{53} + 30q^{55} - 10q^{56} - 24q^{57} - 96q^{58} - 14q^{59} - 46q^{60} + 48q^{62} - 4q^{63} + 28q^{65} + 18q^{66} + 62q^{67} - 54q^{68} - 4q^{69} - 148q^{70} + 42q^{71} - 52q^{73} - 20q^{74} - 10q^{75} - 12q^{76} - 24q^{77} - 16q^{78} + 76q^{80} + 36q^{81} + 48q^{82} + 60q^{83} + 50q^{84} + 2q^{85} + 12q^{86} + 18q^{87} + 50q^{89} + 40q^{91} - 100q^{92} - 6q^{93} + 24q^{95} - 4q^{96} - 36q^{97} + 16q^{98} - 4q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/273\mathbb{Z}\right)^\times$$.

 $$n$$ $$92$$ $$106$$ $$157$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 2.02536 0.542694i 1.43215 0.383743i 0.542371 0.840139i $$-0.317527\pi$$
0.889777 + 0.456396i $$0.150860\pi$$
$$3$$ 1.00000i 0.577350i
$$4$$ 2.07553 1.19831i 1.03776 0.599153i
$$5$$ 1.89270 + 0.507149i 0.846443 + 0.226804i 0.655874 0.754870i $$-0.272300\pi$$
0.190569 + 0.981674i $$0.438967\pi$$
$$6$$ 0.542694 + 2.02536i 0.221554 + 0.826851i
$$7$$ −1.04247 2.43172i −0.394017 0.919103i
$$8$$ 0.588043 0.588043i 0.207905 0.207905i
$$9$$ −1.00000 −0.333333
$$10$$ 4.10864 1.29927
$$11$$ 1.77246 1.77246i 0.534418 0.534418i −0.387466 0.921884i $$-0.626650\pi$$
0.921884 + 0.387466i $$0.126650\pi$$
$$12$$ 1.19831 + 2.07553i 0.345921 + 0.599153i
$$13$$ −3.33753 + 1.36415i −0.925664 + 0.378347i
$$14$$ −3.43106 4.35937i −0.916990 1.16509i
$$15$$ −0.507149 + 1.89270i −0.130945 + 0.488694i
$$16$$ −1.52474 + 2.64092i −0.381185 + 0.660231i
$$17$$ 3.66044 + 6.34007i 0.887787 + 1.53769i 0.842485 + 0.538719i $$0.181092\pi$$
0.0453018 + 0.998973i $$0.485575\pi$$
$$18$$ −2.02536 + 0.542694i −0.477383 + 0.127914i
$$19$$ 0.681492 0.681492i 0.156345 0.156345i −0.624600 0.780945i $$-0.714738\pi$$
0.780945 + 0.624600i $$0.214738\pi$$
$$20$$ 4.53608 1.21544i 1.01430 0.271780i
$$21$$ 2.43172 1.04247i 0.530644 0.227486i
$$22$$ 2.62798 4.55179i 0.560287 0.970445i
$$23$$ −5.74884 3.31909i −1.19872 0.692079i −0.238447 0.971156i $$-0.576638\pi$$
−0.960269 + 0.279077i $$0.909972\pi$$
$$24$$ 0.588043 + 0.588043i 0.120034 + 0.120034i
$$25$$ −1.00500 0.580235i −0.200999 0.116047i
$$26$$ −6.01939 + 4.57415i −1.18050 + 0.897065i
$$27$$ 1.00000i 0.192450i
$$28$$ −5.07762 3.79790i −0.959580 0.717735i
$$29$$ −5.21743 9.03685i −0.968852 1.67810i −0.698888 0.715232i $$-0.746321\pi$$
−0.269965 0.962870i $$-0.587012\pi$$
$$30$$ 4.10864i 0.750132i
$$31$$ −0.782577 2.92062i −0.140555 0.524558i −0.999913 0.0131839i $$-0.995803\pi$$
0.859358 0.511374i $$-0.170863\pi$$
$$32$$ −2.08541 + 7.78286i −0.368652 + 1.37583i
$$33$$ 1.77246 + 1.77246i 0.308546 + 0.308546i
$$34$$ 10.8544 + 10.8544i 1.86152 + 1.86152i
$$35$$ −0.739848 5.13121i −0.125057 0.867333i
$$36$$ −2.07553 + 1.19831i −0.345921 + 0.199718i
$$37$$ −0.356539 1.33062i −0.0586147 0.218753i 0.930406 0.366531i $$-0.119455\pi$$
−0.989021 + 0.147778i $$0.952788\pi$$
$$38$$ 1.01043 1.75011i 0.163913 0.283905i
$$39$$ −1.36415 3.33753i −0.218439 0.534432i
$$40$$ 1.41122 0.814767i 0.223133 0.128826i
$$41$$ −0.710011 0.190247i −0.110885 0.0297116i 0.202950 0.979189i $$-0.434947\pi$$
−0.313835 + 0.949478i $$0.601614\pi$$
$$42$$ 4.35937 3.43106i 0.672665 0.529424i
$$43$$ 10.1261 + 5.84633i 1.54422 + 0.891556i 0.998565 + 0.0535470i $$0.0170527\pi$$
0.545656 + 0.838009i $$0.316281\pi$$
$$44$$ 1.55484 5.80275i 0.234401 0.874798i
$$45$$ −1.89270 0.507149i −0.282148 0.0756012i
$$46$$ −13.4447 3.60251i −1.98232 0.531160i
$$47$$ −0.971849 + 3.62699i −0.141759 + 0.529051i 0.858120 + 0.513450i $$0.171633\pi$$
−0.999878 + 0.0156008i $$0.995034\pi$$
$$48$$ −2.64092 1.52474i −0.381185 0.220077i
$$49$$ −4.82651 + 5.06999i −0.689501 + 0.724285i
$$50$$ −2.35037 0.629781i −0.332393 0.0890645i
$$51$$ −6.34007 + 3.66044i −0.887787 + 0.512564i
$$52$$ −5.29246 + 6.83071i −0.733932 + 0.947249i
$$53$$ −1.15862 + 2.00679i −0.159149 + 0.275654i −0.934562 0.355800i $$-0.884208\pi$$
0.775413 + 0.631454i $$0.217542\pi$$
$$54$$ −0.542694 2.02536i −0.0738513 0.275617i
$$55$$ 4.25365 2.45585i 0.573563 0.331147i
$$56$$ −2.04297 0.816937i −0.273004 0.109168i
$$57$$ 0.681492 + 0.681492i 0.0902658 + 0.0902658i
$$58$$ −15.4714 15.4714i −2.03150 2.03150i
$$59$$ 1.22948 4.58848i 0.160065 0.597369i −0.838554 0.544819i $$-0.816598\pi$$
0.998618 0.0525503i $$-0.0167350\pi$$
$$60$$ 1.21544 + 4.53608i 0.156912 + 0.585605i
$$61$$ 9.45408i 1.21047i 0.796046 + 0.605236i $$0.206921\pi$$
−0.796046 + 0.605236i $$0.793079\pi$$
$$62$$ −3.17000 5.49061i −0.402591 0.697308i
$$63$$ 1.04247 + 2.43172i 0.131339 + 0.306368i
$$64$$ 10.7959i 1.34949i
$$65$$ −7.00878 + 0.889307i −0.869332 + 0.110305i
$$66$$ 4.55179 + 2.62798i 0.560287 + 0.323482i
$$67$$ 4.43646 + 4.43646i 0.542000 + 0.542000i 0.924115 0.382115i $$-0.124804\pi$$
−0.382115 + 0.924115i $$0.624804\pi$$
$$68$$ 15.1947 + 8.77265i 1.84263 + 1.06384i
$$69$$ 3.31909 5.74884i 0.399572 0.692079i
$$70$$ −4.28314 9.99105i −0.511933 1.19416i
$$71$$ 8.32895 2.23174i 0.988465 0.264858i 0.271859 0.962337i $$-0.412361\pi$$
0.716606 + 0.697479i $$0.245695\pi$$
$$72$$ −0.588043 + 0.588043i −0.0693016 + 0.0693016i
$$73$$ 7.50661 2.01139i 0.878583 0.235415i 0.208787 0.977961i $$-0.433048\pi$$
0.669795 + 0.742546i $$0.266382\pi$$
$$74$$ −1.44424 2.50150i −0.167890 0.290794i
$$75$$ 0.580235 1.00500i 0.0669998 0.116047i
$$76$$ 0.597819 2.23109i 0.0685745 0.255923i
$$77$$ −6.15788 2.46239i −0.701755 0.280615i
$$78$$ −4.57415 6.01939i −0.517921 0.681562i
$$79$$ −2.31642 4.01217i −0.260618 0.451404i 0.705788 0.708423i $$-0.250593\pi$$
−0.966406 + 0.257019i $$0.917260\pi$$
$$80$$ −4.22522 + 4.22522i −0.472394 + 0.472394i
$$81$$ 1.00000 0.111111
$$82$$ −1.54128 −0.170206
$$83$$ 10.1090 10.1090i 1.10961 1.10961i 0.116405 0.993202i $$-0.462863\pi$$
0.993202 0.116405i $$-0.0371372\pi$$
$$84$$ 3.79790 5.07762i 0.414384 0.554014i
$$85$$ 3.71277 + 13.8563i 0.402707 + 1.50292i
$$86$$ 23.6819 + 6.34554i 2.55368 + 0.684257i
$$87$$ 9.03685 5.21743i 0.968852 0.559367i
$$88$$ 2.08457i 0.222216i
$$89$$ −3.95954 + 1.06096i −0.419711 + 0.112461i −0.462492 0.886623i $$-0.653045\pi$$
0.0427815 + 0.999084i $$0.486378\pi$$
$$90$$ −4.10864 −0.433089
$$91$$ 6.79650 + 6.69384i 0.712467 + 0.701705i
$$92$$ −15.9091 −1.65864
$$93$$ 2.92062 0.782577i 0.302854 0.0811494i
$$94$$ 7.87339i 0.812078i
$$95$$ 1.63548 0.944245i 0.167797 0.0968775i
$$96$$ −7.78286 2.08541i −0.794335 0.212841i
$$97$$ 2.63968 + 9.85141i 0.268019 + 1.00026i 0.960377 + 0.278705i $$0.0899052\pi$$
−0.692358 + 0.721554i $$0.743428\pi$$
$$98$$ −7.02397 + 12.8879i −0.709528 + 1.30187i
$$99$$ −1.77246 + 1.77246i −0.178139 + 0.178139i
$$100$$ −2.78120 −0.278120
$$101$$ −3.80563 −0.378675 −0.189337 0.981912i $$-0.560634\pi$$
−0.189337 + 0.981912i $$0.560634\pi$$
$$102$$ −10.8544 + 10.8544i −1.07475 + 1.07475i
$$103$$ 4.75097 + 8.22892i 0.468127 + 0.810819i 0.999337 0.0364211i $$-0.0115958\pi$$
−0.531210 + 0.847240i $$0.678262\pi$$
$$104$$ −1.16043 + 2.76479i −0.113790 + 0.271110i
$$105$$ 5.13121 0.739848i 0.500755 0.0722018i
$$106$$ −1.25755 + 4.69325i −0.122144 + 0.455849i
$$107$$ 4.87752 8.44811i 0.471527 0.816709i −0.527942 0.849280i $$-0.677036\pi$$
0.999469 + 0.0325711i $$0.0103695\pi$$
$$108$$ −1.19831 2.07553i −0.115307 0.199718i
$$109$$ −5.75506 + 1.54206i −0.551235 + 0.147703i −0.523676 0.851917i $$-0.675440\pi$$
−0.0275585 + 0.999620i $$0.508773\pi$$
$$110$$ 7.28242 7.28242i 0.694351 0.694351i
$$111$$ 1.33062 0.356539i 0.126297 0.0338412i
$$112$$ 8.01148 + 0.954645i 0.757014 + 0.0902055i
$$113$$ 5.65861 9.80099i 0.532317 0.922000i −0.466971 0.884273i $$-0.654655\pi$$
0.999288 0.0377273i $$-0.0120118\pi$$
$$114$$ 1.75011 + 1.01043i 0.163913 + 0.0946351i
$$115$$ −9.19757 9.19757i −0.857678 0.857678i
$$116$$ −21.6578 12.5042i −2.01088 1.16098i
$$117$$ 3.33753 1.36415i 0.308555 0.126116i
$$118$$ 9.96057i 0.916945i
$$119$$ 11.6014 15.5105i 1.06349 1.42185i
$$120$$ 0.814767 + 1.41122i 0.0743777 + 0.128826i
$$121$$ 4.71674i 0.428795i
$$122$$ 5.13068 + 19.1479i 0.464510 + 1.73357i
$$123$$ 0.190247 0.710011i 0.0171540 0.0640196i
$$124$$ −5.12405 5.12405i −0.460153 0.460153i
$$125$$ −8.53568 8.53568i −0.763454 0.763454i
$$126$$ 3.43106 + 4.35937i 0.305663 + 0.388363i
$$127$$ 9.81199 5.66496i 0.870673 0.502684i 0.00310144 0.999995i $$-0.499013\pi$$
0.867572 + 0.497312i $$0.165679\pi$$
$$128$$ 1.68805 + 6.29990i 0.149204 + 0.556838i
$$129$$ −5.84633 + 10.1261i −0.514740 + 0.891556i
$$130$$ −13.7127 + 5.60479i −1.20268 + 0.491573i
$$131$$ −12.3925 + 7.15480i −1.08274 + 0.625118i −0.931633 0.363401i $$-0.881616\pi$$
−0.151102 + 0.988518i $$0.548282\pi$$
$$132$$ 5.80275 + 1.55484i 0.505065 + 0.135332i
$$133$$ −2.36763 0.946760i −0.205300 0.0820945i
$$134$$ 11.3931 + 6.57780i 0.984213 + 0.568235i
$$135$$ 0.507149 1.89270i 0.0436484 0.162898i
$$136$$ 5.88073 + 1.57574i 0.504269 + 0.135118i
$$137$$ 5.50160 + 1.47415i 0.470034 + 0.125945i 0.486058 0.873926i $$-0.338434\pi$$
−0.0160245 + 0.999872i $$0.505101\pi$$
$$138$$ 3.60251 13.4447i 0.306666 1.14449i
$$139$$ −9.38055 5.41586i −0.795648 0.459368i 0.0462992 0.998928i $$-0.485257\pi$$
−0.841947 + 0.539560i $$0.818591\pi$$
$$140$$ −7.68433 9.76340i −0.649445 0.825158i
$$141$$ −3.62699 0.971849i −0.305448 0.0818444i
$$142$$ 15.6580 9.04015i 1.31399 0.758633i
$$143$$ −3.49775 + 8.33356i −0.292496 + 0.696887i
$$144$$ 1.52474 2.64092i 0.127062 0.220077i
$$145$$ −5.29202 19.7501i −0.439479 1.64016i
$$146$$ 14.1120 8.14759i 1.16792 0.674300i
$$147$$ −5.06999 4.82651i −0.418166 0.398084i
$$148$$ −2.33450 2.33450i −0.191895 0.191895i
$$149$$ 6.30814 + 6.30814i 0.516783 + 0.516783i 0.916597 0.399813i $$-0.130925\pi$$
−0.399813 + 0.916597i $$0.630925\pi$$
$$150$$ 0.629781 2.35037i 0.0514214 0.191907i
$$151$$ 3.32882 + 12.4233i 0.270896 + 1.01100i 0.958542 + 0.284951i $$0.0919772\pi$$
−0.687647 + 0.726046i $$0.741356\pi$$
$$152$$ 0.801493i 0.0650097i
$$153$$ −3.66044 6.34007i −0.295929 0.512564i
$$154$$ −13.8083 1.64539i −1.11270 0.132589i
$$155$$ 5.92474i 0.475887i
$$156$$ −6.83071 5.29246i −0.546894 0.423736i
$$157$$ −3.95550 2.28371i −0.315683 0.182260i 0.333784 0.942650i $$-0.391675\pi$$
−0.649467 + 0.760390i $$0.725008\pi$$
$$158$$ −6.86898 6.86898i −0.546467 0.546467i
$$159$$ −2.00679 1.15862i −0.159149 0.0918846i
$$160$$ −7.89413 + 13.6730i −0.624086 + 1.08095i
$$161$$ −2.07810 + 17.4396i −0.163777 + 1.37443i
$$162$$ 2.02536 0.542694i 0.159128 0.0426381i
$$163$$ −1.81401 + 1.81401i −0.142084 + 0.142084i −0.774571 0.632487i $$-0.782034\pi$$
0.632487 + 0.774571i $$0.282034\pi$$
$$164$$ −1.70162 + 0.455948i −0.132874 + 0.0356036i
$$165$$ 2.45585 + 4.25365i 0.191188 + 0.331147i
$$166$$ 14.9883 25.9605i 1.16332 2.01493i
$$167$$ −1.90396 + 7.10569i −0.147333 + 0.549855i 0.852307 + 0.523041i $$0.175203\pi$$
−0.999640 + 0.0268134i $$0.991464\pi$$
$$168$$ 0.816937 2.04297i 0.0630281 0.157619i
$$169$$ 9.27820 9.10577i 0.713708 0.700444i
$$170$$ 15.0394 + 26.0491i 1.15347 + 1.99787i
$$171$$ −0.681492 + 0.681492i −0.0521150 + 0.0521150i
$$172$$ 28.0227 2.13671
$$173$$ −18.3415 −1.39448 −0.697241 0.716837i $$-0.745589\pi$$
−0.697241 + 0.716837i $$0.745589\pi$$
$$174$$ 15.4714 15.4714i 1.17289 1.17289i
$$175$$ −0.363288 + 3.04875i −0.0274620 + 0.230464i
$$176$$ 1.97840 + 7.38349i 0.149127 + 0.556551i
$$177$$ 4.58848 + 1.22948i 0.344891 + 0.0924134i
$$178$$ −7.44374 + 4.29764i −0.557932 + 0.322122i
$$179$$ 1.90952i 0.142724i 0.997450 + 0.0713620i $$0.0227345\pi$$
−0.997450 + 0.0713620i $$0.977265\pi$$
$$180$$ −4.53608 + 1.21544i −0.338099 + 0.0905934i
$$181$$ 18.9344 1.40738 0.703691 0.710506i $$-0.251534\pi$$
0.703691 + 0.710506i $$0.251534\pi$$
$$182$$ 17.3981 + 9.86904i 1.28963 + 0.731542i
$$183$$ −9.45408 −0.698866
$$184$$ −5.33234 + 1.42879i −0.393105 + 0.105332i
$$185$$ 2.69929i 0.198456i
$$186$$ 5.49061 3.17000i 0.402591 0.232436i
$$187$$ 17.7255 + 4.74955i 1.29622 + 0.347321i
$$188$$ 2.32914 + 8.69248i 0.169870 + 0.633965i
$$189$$ −2.43172 + 1.04247i −0.176881 + 0.0758286i
$$190$$ 2.80000 2.80000i 0.203134 0.203134i
$$191$$ 10.7890 0.780663 0.390331 0.920674i $$-0.372360\pi$$
0.390331 + 0.920674i $$0.372360\pi$$
$$192$$ −10.7959 −0.779127
$$193$$ 13.8977 13.8977i 1.00038 1.00038i 0.000375974 1.00000i $$-0.499880\pi$$
1.00000 0.000375974i $$-0.000119676\pi$$
$$194$$ 10.6926 + 18.5201i 0.767685 + 1.32967i
$$195$$ −0.889307 7.00878i −0.0636846 0.501909i
$$196$$ −3.94214 + 16.3065i −0.281581 + 1.16475i
$$197$$ −2.96842 + 11.0783i −0.211491 + 0.789295i 0.775881 + 0.630879i $$0.217306\pi$$
−0.987372 + 0.158417i $$0.949361\pi$$
$$198$$ −2.62798 + 4.55179i −0.186762 + 0.323482i
$$199$$ −2.77736 4.81053i −0.196882 0.341009i 0.750634 0.660718i $$-0.229748\pi$$
−0.947516 + 0.319709i $$0.896415\pi$$
$$200$$ −0.932185 + 0.249778i −0.0659155 + 0.0176620i
$$201$$ −4.43646 + 4.43646i −0.312924 + 0.312924i
$$202$$ −7.70779 + 2.06530i −0.542318 + 0.145314i
$$203$$ −16.5361 + 22.1080i −1.16060 + 1.55168i
$$204$$ −8.77265 + 15.1947i −0.614209 + 1.06384i
$$205$$ −1.24736 0.720162i −0.0871193 0.0502983i
$$206$$ 14.0882 + 14.0882i 0.981573 + 0.981573i
$$207$$ 5.74884 + 3.31909i 0.399572 + 0.230693i
$$208$$ 1.48625 10.8941i 0.103053 0.755372i
$$209$$ 2.41584i 0.167107i
$$210$$ 9.99105 4.28314i 0.689448 0.295565i
$$211$$ −8.06339 13.9662i −0.555106 0.961473i −0.997895 0.0648467i $$-0.979344\pi$$
0.442789 0.896626i $$-0.353989\pi$$
$$212$$ 5.55353i 0.381418i
$$213$$ 2.23174 + 8.32895i 0.152916 + 0.570690i
$$214$$ 5.29400 19.7575i 0.361890 1.35059i
$$215$$ 16.2008 + 16.2008i 1.10489 + 1.10489i
$$216$$ −0.588043 0.588043i −0.0400113 0.0400113i
$$217$$ −6.28630 + 4.94766i −0.426742 + 0.335869i
$$218$$ −10.8192 + 6.24648i −0.732770 + 0.423065i
$$219$$ 2.01139 + 7.50661i 0.135917 + 0.507250i
$$220$$ 5.88571 10.1944i 0.396815 0.687303i
$$221$$ −20.8656 16.1668i −1.40357 1.08750i
$$222$$ 2.50150 1.44424i 0.167890 0.0969313i
$$223$$ −25.6580 6.87505i −1.71819 0.460387i −0.740781 0.671747i $$-0.765544\pi$$
−0.977408 + 0.211359i $$0.932211\pi$$
$$224$$ 21.0997 3.04228i 1.40978 0.203271i
$$225$$ 1.00500 + 0.580235i 0.0669998 + 0.0386824i
$$226$$ 6.14179 22.9215i 0.408546 1.52471i
$$227$$ 1.71699 + 0.460067i 0.113961 + 0.0305357i 0.315349 0.948976i $$-0.397878\pi$$
−0.201388 + 0.979512i $$0.564545\pi$$
$$228$$ 2.23109 + 0.597819i 0.147757 + 0.0395915i
$$229$$ −2.32685 + 8.68390i −0.153762 + 0.573849i 0.845446 + 0.534061i $$0.179335\pi$$
−0.999208 + 0.0397875i $$0.987332\pi$$
$$230$$ −23.6199 13.6370i −1.55745 0.899194i
$$231$$ 2.46239 6.15788i 0.162013 0.405159i
$$232$$ −8.38214 2.24599i −0.550314 0.147456i
$$233$$ −0.891738 + 0.514845i −0.0584197 + 0.0337286i −0.528925 0.848668i $$-0.677405\pi$$
0.470506 + 0.882397i $$0.344072\pi$$
$$234$$ 6.01939 4.57415i 0.393500 0.299022i
$$235$$ −3.67884 + 6.37195i −0.239981 + 0.415660i
$$236$$ −2.94659 10.9968i −0.191806 0.715831i
$$237$$ 4.01217 2.31642i 0.260618 0.150468i
$$238$$ 15.0795 37.7104i 0.977458 2.44440i
$$239$$ −13.2347 13.2347i −0.856079 0.856079i 0.134795 0.990874i $$-0.456962\pi$$
−0.990874 + 0.134795i $$0.956962\pi$$
$$240$$ −4.22522 4.22522i −0.272737 0.272737i
$$241$$ −0.760109 + 2.83676i −0.0489629 + 0.182732i −0.986076 0.166293i $$-0.946820\pi$$
0.937114 + 0.349025i $$0.113487\pi$$
$$242$$ 2.55975 + 9.55311i 0.164547 + 0.614097i
$$243$$ 1.00000i 0.0641500i
$$244$$ 11.3289 + 19.6222i 0.725257 + 1.25618i
$$245$$ −11.7064 + 7.14824i −0.747894 + 0.456685i
$$246$$ 1.54128i 0.0982682i
$$247$$ −1.34484 + 3.20415i −0.0855703 + 0.203875i
$$248$$ −2.17764 1.25726i −0.138280 0.0798361i
$$249$$ 10.1090 + 10.1090i 0.640632 + 0.640632i
$$250$$ −21.9201 12.6556i −1.38635 0.800409i
$$251$$ −0.244838 + 0.424072i −0.0154540 + 0.0267672i −0.873649 0.486557i $$-0.838253\pi$$
0.858195 + 0.513324i $$0.171586\pi$$
$$252$$ 5.07762 + 3.79790i 0.319860 + 0.239245i
$$253$$ −16.0726 + 4.30664i −1.01047 + 0.270756i
$$254$$ 16.7985 16.7985i 1.05403 1.05403i
$$255$$ −13.8563 + 3.71277i −0.867713 + 0.232503i
$$256$$ −3.95806 6.85557i −0.247379 0.428473i
$$257$$ 9.35585 16.2048i 0.583602 1.01083i −0.411446 0.911434i $$-0.634976\pi$$
0.995048 0.0993941i $$-0.0316904\pi$$
$$258$$ −6.34554 + 23.6819i −0.395056 + 1.47437i
$$259$$ −2.86402 + 2.25414i −0.177961 + 0.140065i
$$260$$ −13.4812 + 10.2444i −0.836072 + 0.635333i
$$261$$ 5.21743 + 9.03685i 0.322951 + 0.559367i
$$262$$ −21.2164 + 21.2164i −1.31075 + 1.31075i
$$263$$ −3.44239 −0.212267 −0.106133 0.994352i $$-0.533847\pi$$
−0.106133 + 0.994352i $$0.533847\pi$$
$$264$$ 2.08457 0.128297
$$265$$ −3.21067 + 3.21067i −0.197230 + 0.197230i
$$266$$ −5.30911 0.632632i −0.325523 0.0387892i
$$267$$ −1.06096 3.95954i −0.0649295 0.242320i
$$268$$ 14.5242 + 3.89176i 0.887208 + 0.237727i
$$269$$ −7.83469 + 4.52336i −0.477689 + 0.275794i −0.719453 0.694541i $$-0.755607\pi$$
0.241764 + 0.970335i $$0.422274\pi$$
$$270$$ 4.10864i 0.250044i
$$271$$ −7.55815 + 2.02520i −0.459125 + 0.123022i −0.480966 0.876739i $$-0.659714\pi$$
0.0218411 + 0.999761i $$0.493047\pi$$
$$272$$ −22.3249 −1.35364
$$273$$ −6.69384 + 6.79650i −0.405130 + 0.411343i
$$274$$ 11.9428 0.721488
$$275$$ −2.80977 + 0.752875i −0.169435 + 0.0454001i
$$276$$ 15.9091i 0.957618i
$$277$$ 1.34157 0.774557i 0.0806072 0.0465386i −0.459155 0.888356i $$-0.651848\pi$$
0.539762 + 0.841818i $$0.318514\pi$$
$$278$$ −21.9382 5.87832i −1.31576 0.352558i
$$279$$ 0.782577 + 2.92062i 0.0468516 + 0.174853i
$$280$$ −3.45244 2.58231i −0.206323 0.154323i
$$281$$ 4.20181 4.20181i 0.250659 0.250659i −0.570582 0.821241i $$-0.693282\pi$$
0.821241 + 0.570582i $$0.193282\pi$$
$$282$$ −7.87339 −0.468853
$$283$$ −4.65614 −0.276779 −0.138389 0.990378i $$-0.544193\pi$$
−0.138389 + 0.990378i $$0.544193\pi$$
$$284$$ 14.6127 14.6127i 0.867102 0.867102i
$$285$$ 0.944245 + 1.63548i 0.0559322 + 0.0968775i
$$286$$ −2.56163 + 18.7767i −0.151473 + 1.11029i
$$287$$ 0.277540 + 1.92487i 0.0163826 + 0.113622i
$$288$$ 2.08541 7.78286i 0.122884 0.458609i
$$289$$ −18.2976 + 31.6925i −1.07633 + 1.86426i
$$290$$ −21.4365 37.1292i −1.25880 2.18030i
$$291$$ −9.85141 + 2.63968i −0.577500 + 0.154741i
$$292$$ 13.1699 13.1699i 0.770711 0.770711i
$$293$$ −10.8009 + 2.89410i −0.630997 + 0.169075i −0.560122 0.828410i $$-0.689246\pi$$
−0.0708751 + 0.997485i $$0.522579\pi$$
$$294$$ −12.8879 7.02397i −0.751637 0.409646i
$$295$$ 4.65408 8.06111i 0.270971 0.469336i
$$296$$ −0.992125 0.572804i −0.0576661 0.0332935i
$$297$$ −1.77246 1.77246i −0.102849 0.102849i
$$298$$ 16.1997 + 9.35289i 0.938422 + 0.541798i
$$299$$ 23.7146 + 3.23530i 1.37145 + 0.187102i
$$300$$ 2.78120i 0.160573i
$$301$$ 3.66041 30.7185i 0.210983 1.77059i
$$302$$ 13.4841 + 23.3552i 0.775925 + 1.34394i
$$303$$ 3.80563i 0.218628i
$$304$$ 0.760671 + 2.83886i 0.0436275 + 0.162820i
$$305$$ −4.79463 + 17.8938i −0.274539 + 1.02460i
$$306$$ −10.8544 10.8544i −0.620507 0.620507i
$$307$$ −2.63969 2.63969i −0.150655 0.150655i 0.627756 0.778411i $$-0.283974\pi$$
−0.778411 + 0.627756i $$0.783974\pi$$
$$308$$ −15.7315 + 2.26826i −0.896387 + 0.129246i
$$309$$ −8.22892 + 4.75097i −0.468127 + 0.270273i
$$310$$ −3.21533 11.9998i −0.182618 0.681540i
$$311$$ 16.2833 28.2035i 0.923341 1.59927i 0.129133 0.991627i $$-0.458780\pi$$
0.794208 0.607646i $$-0.207886\pi$$
$$312$$ −2.76479 1.16043i −0.156525 0.0656966i
$$313$$ −12.7123 + 7.33945i −0.718541 + 0.414850i −0.814216 0.580563i $$-0.802833\pi$$
0.0956743 + 0.995413i $$0.469499\pi$$
$$314$$ −9.25067 2.47871i −0.522046 0.139882i
$$315$$ 0.739848 + 5.13121i 0.0416857 + 0.289111i
$$316$$ −9.61560 5.55157i −0.540920 0.312300i
$$317$$ −2.65822 + 9.92063i −0.149301 + 0.557198i 0.850225 + 0.526419i $$0.176466\pi$$
−0.999526 + 0.0307793i $$0.990201\pi$$
$$318$$ −4.69325 1.25755i −0.263185 0.0705201i
$$319$$ −25.2652 6.76979i −1.41458 0.379036i
$$320$$ −5.47513 + 20.4335i −0.306069 + 1.14226i
$$321$$ 8.44811 + 4.87752i 0.471527 + 0.272236i
$$322$$ 5.25547 + 36.4493i 0.292876 + 2.03124i
$$323$$ 6.81526 + 1.82614i 0.379211 + 0.101609i
$$324$$ 2.07553 1.19831i 0.115307 0.0665725i
$$325$$ 4.14573 + 0.565587i 0.229964 + 0.0313731i
$$326$$ −2.68957 + 4.65848i −0.148962 + 0.258009i
$$327$$ −1.54206 5.75506i −0.0852763 0.318256i
$$328$$ −0.529391 + 0.305644i −0.0292307 + 0.0168764i
$$329$$ 9.83294 1.41777i 0.542108 0.0781642i
$$330$$ 7.28242 + 7.28242i 0.400884 + 0.400884i
$$331$$ −17.8973 17.8973i −0.983723 0.983723i 0.0161469 0.999870i $$-0.494860\pi$$
−0.999870 + 0.0161469i $$0.994860\pi$$
$$332$$ 8.86783 33.0952i 0.486685 1.81633i
$$333$$ 0.356539 + 1.33062i 0.0195382 + 0.0729177i
$$334$$ 15.4249i 0.844011i
$$335$$ 6.14696 + 10.6469i 0.335845 + 0.581700i
$$336$$ −0.954645 + 8.01148i −0.0520802 + 0.437062i
$$337$$ 0.741618i 0.0403985i 0.999796 + 0.0201993i $$0.00643006\pi$$
−0.999796 + 0.0201993i $$0.993570\pi$$
$$338$$ 13.8501 23.4777i 0.753344 1.27702i
$$339$$ 9.80099 + 5.65861i 0.532317 + 0.307333i
$$340$$ 24.3100 + 24.3100i 1.31839 + 1.31839i
$$341$$ −6.56378 3.78960i −0.355448 0.205218i
$$342$$ −1.01043 + 1.75011i −0.0546376 + 0.0946351i
$$343$$ 17.3603 + 6.45138i 0.937368 + 0.348342i
$$344$$ 9.39250 2.51671i 0.506410 0.135692i
$$345$$ 9.19757 9.19757i 0.495181 0.495181i
$$346$$ −37.1483 + 9.95385i −1.99710 + 0.535122i
$$347$$ −17.0886 29.5983i −0.917364 1.58892i −0.803402 0.595437i $$-0.796979\pi$$
−0.113962 0.993485i $$-0.536354\pi$$
$$348$$ 12.5042 21.6578i 0.670293 1.16098i
$$349$$ −7.26033 + 27.0959i −0.388636 + 1.45041i 0.443718 + 0.896167i $$0.353659\pi$$
−0.832354 + 0.554244i $$0.813007\pi$$
$$350$$ 0.918749 + 6.37198i 0.0491092 + 0.340596i
$$351$$ 1.36415 + 3.33753i 0.0728129 + 0.178144i
$$352$$ 10.0985 + 17.4912i 0.538253 + 0.932282i
$$353$$ 6.82751 6.82751i 0.363391 0.363391i −0.501668 0.865060i $$-0.667280\pi$$
0.865060 + 0.501668i $$0.167280\pi$$
$$354$$ 9.96057 0.529398
$$355$$ 16.8961 0.896750
$$356$$ −6.94679 + 6.94679i −0.368179 + 0.368179i
$$357$$ 15.5105 + 11.6014i 0.820903 + 0.614009i
$$358$$ 1.03628 + 3.86746i 0.0547693 + 0.204402i
$$359$$ −33.0271 8.84959i −1.74311 0.467064i −0.759973 0.649955i $$-0.774788\pi$$
−0.983133 + 0.182891i $$0.941454\pi$$
$$360$$ −1.41122 + 0.814767i −0.0743777 + 0.0429420i
$$361$$ 18.0711i 0.951113i
$$362$$ 38.3490 10.2756i 2.01558 0.540073i
$$363$$ −4.71674 −0.247565
$$364$$ 22.1276 + 5.74896i 1.15980 + 0.301327i
$$365$$ 15.2279 0.797063
$$366$$ −19.1479 + 5.13068i −1.00088 + 0.268185i
$$367$$ 26.7853i 1.39818i −0.715033 0.699090i $$-0.753588\pi$$
0.715033 0.699090i $$-0.246412\pi$$
$$368$$ 17.5309 10.1215i 0.913863 0.527619i
$$369$$ 0.710011 + 0.190247i 0.0369617 + 0.00990386i
$$370$$ −1.46489 5.46705i −0.0761561 0.284218i
$$371$$ 6.08777 + 0.725417i 0.316062 + 0.0376618i
$$372$$ 5.12405 5.12405i 0.265670 0.265670i
$$373$$ 3.66467 0.189749 0.0948747 0.995489i $$-0.469755\pi$$
0.0948747 + 0.995489i $$0.469755\pi$$
$$374$$ 38.4782 1.98966
$$375$$ 8.53568 8.53568i 0.440780 0.440780i
$$376$$ 1.56134 + 2.70432i 0.0805198 + 0.139464i
$$377$$ 29.7409 + 23.0434i 1.53174 + 1.18680i
$$378$$ −4.35937 + 3.43106i −0.224222 + 0.176475i
$$379$$ −6.16351 + 23.0025i −0.316598 + 1.18156i 0.605894 + 0.795545i $$0.292816\pi$$
−0.922492 + 0.386016i $$0.873851\pi$$
$$380$$ 2.26299 3.91961i 0.116089 0.201072i
$$381$$ 5.66496 + 9.81199i 0.290224 + 0.502684i
$$382$$ 21.8516 5.85511i 1.11802 0.299574i
$$383$$ −21.6378 + 21.6378i −1.10564 + 1.10564i −0.111923 + 0.993717i $$0.535701\pi$$
−0.993717 + 0.111923i $$0.964299\pi$$
$$384$$ −6.29990 + 1.68805i −0.321490 + 0.0861431i
$$385$$ −10.4062 7.78354i −0.530351 0.396686i
$$386$$ 20.6056 35.6900i 1.04880 1.81657i
$$387$$ −10.1261 5.84633i −0.514740 0.297185i
$$388$$ 17.2837 + 17.2837i 0.877448 + 0.877448i
$$389$$ 1.02102 + 0.589484i 0.0517676 + 0.0298880i 0.525660 0.850694i $$-0.323818\pi$$
−0.473893 + 0.880583i $$0.657152\pi$$
$$390$$ −5.60479 13.7127i −0.283810 0.694370i
$$391$$ 48.5974i 2.45767i
$$392$$ 0.143181 + 5.81957i 0.00723174 + 0.293933i
$$393$$ −7.15480 12.3925i −0.360912 0.625118i
$$394$$ 24.0485i 1.21155i
$$395$$ −2.34954 8.76861i −0.118218 0.441197i
$$396$$ −1.55484 + 5.80275i −0.0781338 + 0.291599i
$$397$$ 8.59230 + 8.59230i 0.431235 + 0.431235i 0.889048 0.457813i $$-0.151367\pi$$
−0.457813 + 0.889048i $$0.651367\pi$$
$$398$$ −8.23581 8.23581i −0.412824 0.412824i
$$399$$ 0.946760 2.36763i 0.0473973 0.118530i
$$400$$ 3.06471 1.76941i 0.153236 0.0884707i
$$401$$ −0.558206 2.08325i −0.0278755 0.104033i 0.950586 0.310460i $$-0.100483\pi$$
−0.978462 + 0.206427i $$0.933816\pi$$
$$402$$ −6.57780 + 11.3931i −0.328071 + 0.568235i
$$403$$ 6.59603 + 8.68009i 0.328571 + 0.432386i
$$404$$ −7.89869 + 4.56031i −0.392975 + 0.226884i
$$405$$ 1.89270 + 0.507149i 0.0940492 + 0.0252004i
$$406$$ −21.4936 + 53.7507i −1.06671 + 2.66760i
$$407$$ −2.99044 1.72653i −0.148230 0.0855809i
$$408$$ −1.57574 + 5.88073i −0.0780106 + 0.291140i
$$409$$ −4.63911 1.24305i −0.229389 0.0614647i 0.142293 0.989825i $$-0.454552\pi$$
−0.371683 + 0.928360i $$0.621219\pi$$
$$410$$ −2.91718 0.781656i −0.144069 0.0386032i
$$411$$ −1.47415 + 5.50160i −0.0727145 + 0.271374i
$$412$$ 19.7215 + 11.3862i 0.971609 + 0.560959i
$$413$$ −12.4396 + 1.79361i −0.612112 + 0.0882579i
$$414$$ 13.4447 + 3.60251i 0.660773 + 0.177053i
$$415$$ 24.2601 14.0066i 1.19088 0.687556i
$$416$$ −3.65686 28.8203i −0.179292 1.41303i
$$417$$ 5.41586 9.38055i 0.265216 0.459368i
$$418$$ −1.31106 4.89295i −0.0641262 0.239322i
$$419$$ 18.2738 10.5504i 0.892733 0.515420i 0.0178978 0.999840i $$-0.494303\pi$$
0.874836 + 0.484420i $$0.160969\pi$$
$$420$$ 9.76340 7.68433i 0.476405 0.374957i
$$421$$ 24.4128 + 24.4128i 1.18981 + 1.18981i 0.977120 + 0.212688i $$0.0682218\pi$$
0.212688 + 0.977120i $$0.431778\pi$$
$$422$$ −23.9107 23.9107i −1.16395 1.16395i
$$423$$ 0.971849 3.62699i 0.0472529 0.176350i
$$424$$ 0.498760 + 1.86140i 0.0242219 + 0.0903975i
$$425$$ 8.49567i 0.412100i
$$426$$ 9.04015 + 15.6580i 0.437997 + 0.758633i
$$427$$ 22.9897 9.85561i 1.11255 0.476947i
$$428$$ 23.3790i 1.13007i
$$429$$ −8.33356 3.49775i −0.402348 0.168873i
$$430$$ 41.6046 + 24.0204i 2.00635 + 1.15837i
$$431$$ 5.82798 + 5.82798i 0.280724 + 0.280724i 0.833398 0.552674i $$-0.186392\pi$$
−0.552674 + 0.833398i $$0.686392\pi$$
$$432$$ 2.64092 + 1.52474i 0.127062 + 0.0733590i
$$433$$ 13.2942 23.0262i 0.638878 1.10657i −0.346801 0.937939i $$-0.612732\pi$$
0.985679 0.168631i $$-0.0539346\pi$$
$$434$$ −10.0470 + 13.4324i −0.482270 + 0.644774i
$$435$$ 19.7501 5.29202i 0.946945 0.253733i
$$436$$ −10.0969 + 10.0969i −0.483555 + 0.483555i
$$437$$ −6.17972 + 1.65585i −0.295616 + 0.0792101i
$$438$$ 8.14759 + 14.1120i 0.389307 + 0.674300i
$$439$$ −8.93996 + 15.4845i −0.426681 + 0.739033i −0.996576 0.0826847i $$-0.973651\pi$$
0.569895 + 0.821718i $$0.306984\pi$$
$$440$$ 1.05719 3.94548i 0.0503994 0.188093i
$$441$$ 4.82651 5.06999i 0.229834 0.241428i
$$442$$ −51.0341 21.4199i −2.42744 1.01884i
$$443$$ 10.8928 + 18.8669i 0.517532 + 0.896392i 0.999793 + 0.0203640i $$0.00648252\pi$$
−0.482261 + 0.876028i $$0.660184\pi$$
$$444$$ 2.33450 2.33450i 0.110790 0.110790i
$$445$$ −8.03231 −0.380768
$$446$$ −55.6979 −2.63737
$$447$$ −6.30814 + 6.30814i −0.298365 + 0.298365i
$$448$$ 26.2526 11.2544i 1.24032 0.531721i
$$449$$ −0.850694 3.17483i −0.0401467 0.149830i 0.942943 0.332954i $$-0.108045\pi$$
−0.983090 + 0.183125i $$0.941379\pi$$
$$450$$ 2.35037 + 0.629781i 0.110798 + 0.0296882i
$$451$$ −1.59568 + 0.921264i −0.0751374 + 0.0433806i
$$452$$ 27.1230i 1.27576i
$$453$$ −12.4233 + 3.32882i −0.583699 + 0.156402i
$$454$$ 3.72721 0.174927
$$455$$ 9.46900 + 16.1163i 0.443913 + 0.755544i
$$456$$ 0.801493 0.0375334
$$457$$ −34.9035 + 9.35236i −1.63272 + 0.437485i −0.954702 0.297564i $$-0.903826\pi$$
−0.678014 + 0.735049i $$0.737159\pi$$
$$458$$ 18.8508i 0.880841i
$$459$$ 6.34007 3.66044i 0.295929 0.170855i
$$460$$ −30.1113 8.06830i −1.40395 0.376187i
$$461$$ −3.32485 12.4085i −0.154854 0.577922i −0.999118 0.0419948i $$-0.986629\pi$$
0.844264 0.535927i $$-0.180038\pi$$
$$462$$ 1.64539 13.8083i 0.0765504 0.642418i
$$463$$ 22.2200 22.2200i 1.03265 1.03265i 0.0332014 0.999449i $$-0.489430\pi$$
0.999449 0.0332014i $$-0.0105703\pi$$
$$464$$ 31.8209 1.47725
$$465$$ 5.92474 0.274753
$$466$$ −1.52669 + 1.52669i −0.0707225 + 0.0707225i
$$467$$ 17.1486 + 29.7023i 0.793543 + 1.37446i 0.923760 + 0.382972i $$0.125099\pi$$
−0.130217 + 0.991486i $$0.541567\pi$$
$$468$$ 5.29246 6.83071i 0.244644 0.315750i
$$469$$ 6.16334 15.4131i 0.284597 0.711711i
$$470$$ −3.99298 + 14.9020i −0.184182 + 0.687378i
$$471$$ 2.28371 3.95550i 0.105228 0.182260i
$$472$$ −1.97524 3.42121i −0.0909177 0.157474i
$$473$$ 28.3106 7.58581i 1.30172 0.348796i
$$474$$ 6.86898 6.86898i 0.315503 0.315503i
$$475$$ −1.08032 + 0.289472i −0.0495686 + 0.0132819i
$$476$$ 5.49260 46.0944i 0.251753 2.11273i
$$477$$ 1.15862 2.00679i 0.0530496 0.0918846i
$$478$$ −33.9873 19.6226i −1.55455 0.897517i
$$479$$ 1.69038 + 1.69038i 0.0772354 + 0.0772354i 0.744669 0.667434i $$-0.232607\pi$$
−0.667434 + 0.744669i $$0.732607\pi$$
$$480$$ −13.6730 7.89413i −0.624086 0.360316i
$$481$$ 3.00513 + 3.95462i 0.137022 + 0.180315i
$$482$$ 6.15798i 0.280489i
$$483$$ −17.4396 2.07810i −0.793530 0.0945568i
$$484$$ 5.65210 + 9.78972i 0.256913 + 0.444987i
$$485$$ 19.9845i 0.907450i
$$486$$ 0.542694 + 2.02536i 0.0246171 + 0.0918723i
$$487$$ −2.17213 + 8.10651i −0.0984288 + 0.367341i −0.997517 0.0704263i $$-0.977564\pi$$
0.899088 + 0.437768i $$0.144231\pi$$
$$488$$ 5.55941 + 5.55941i 0.251663 + 0.251663i
$$489$$ −1.81401 1.81401i −0.0820323 0.0820323i
$$490$$ −19.8304 + 20.8308i −0.895845 + 0.941039i
$$491$$ −5.46870 + 3.15735i −0.246799 + 0.142489i −0.618298 0.785944i $$-0.712177\pi$$
0.371499 + 0.928433i $$0.378844\pi$$
$$492$$ −0.455948 1.70162i −0.0205557 0.0767150i
$$493$$ 38.1962 66.1577i 1.72027 2.97959i
$$494$$ −0.984917 + 7.21941i −0.0443135 + 0.324817i
$$495$$ −4.25365 + 2.45585i −0.191188 + 0.110382i
$$496$$ 8.90635 + 2.38645i 0.399907 + 0.107155i
$$497$$ −14.1096 17.9271i −0.632904 0.804142i
$$498$$ 25.9605 + 14.9883i 1.16332 + 0.671642i
$$499$$ −9.09774 + 33.9532i −0.407271 + 1.51996i 0.392558 + 0.919727i $$0.371590\pi$$
−0.799829 + 0.600228i $$0.795077\pi$$
$$500$$ −27.9444 7.48767i −1.24971 0.334859i
$$501$$ −7.10569 1.90396i −0.317459 0.0850628i
$$502$$ −0.265744 + 0.991772i −0.0118608 + 0.0442649i
$$503$$ 8.32980 + 4.80921i 0.371408 + 0.214432i 0.674073 0.738665i $$-0.264543\pi$$
−0.302666 + 0.953097i $$0.597877\pi$$
$$504$$ 2.04297 + 0.816937i 0.0910013 + 0.0363893i
$$505$$ −7.20294 1.93002i −0.320527 0.0858849i
$$506$$ −30.2156 + 17.4450i −1.34325 + 0.775525i
$$507$$ 9.10577 + 9.27820i 0.404401 + 0.412059i
$$508$$ 13.5767 23.5155i 0.602369 1.04333i
$$509$$ 3.33616 + 12.4507i 0.147873 + 0.551868i 0.999611 + 0.0279003i $$0.00888209\pi$$
−0.851738 + 0.523968i $$0.824451\pi$$
$$510$$ −26.0491 + 15.0394i −1.15347 + 0.665957i
$$511$$ −12.7166 16.1571i −0.562548 0.714750i
$$512$$ −20.9607 20.9607i −0.926340 0.926340i
$$513$$ −0.681492 0.681492i −0.0300886 0.0300886i
$$514$$ 10.1547 37.8980i 0.447906 1.67161i
$$515$$ 4.81889 + 17.9844i 0.212346 + 0.792485i
$$516$$ 28.0227i 1.23363i
$$517$$ 4.70614 + 8.15128i 0.206976 + 0.358493i
$$518$$ −4.57737 + 6.11974i −0.201118 + 0.268886i
$$519$$ 18.3415i 0.805104i
$$520$$ −3.59852 + 4.64442i −0.157805 + 0.203671i
$$521$$ −9.09809 5.25278i −0.398594 0.230129i 0.287283 0.957846i $$-0.407248\pi$$
−0.685877 + 0.727717i $$0.740581\pi$$
$$522$$ 15.4714 + 15.4714i 0.677166 + 0.677166i
$$523$$ −0.494684 0.285606i −0.0216310 0.0124887i 0.489146 0.872202i $$-0.337309\pi$$
−0.510777 + 0.859714i $$0.670642\pi$$
$$524$$ −17.1473 + 29.6999i −0.749082 + 1.29745i
$$525$$ −3.04875 0.363288i −0.133058 0.0158552i
$$526$$ −6.97208 + 1.86816i −0.303997 + 0.0814558i
$$527$$ 15.6523 15.6523i 0.681826 0.681826i
$$528$$ −7.38349 + 1.97840i −0.321325 + 0.0860988i
$$529$$ 10.5327 + 18.2433i 0.457946 + 0.793185i
$$530$$ −4.76035 + 8.24517i −0.206777 + 0.358147i
$$531$$ −1.22948 + 4.58848i −0.0533549 + 0.199123i
$$532$$ −6.04859 + 0.872121i −0.262240 + 0.0378112i
$$533$$ 2.62921 0.333606i 0.113884 0.0144501i
$$534$$ −4.29764 7.44374i −0.185977 0.322122i
$$535$$ 13.5161 13.5161i 0.584354 0.584354i
$$536$$ 5.21766 0.225369
$$537$$ −1.90952 −0.0824017
$$538$$ −13.4133 + 13.4133i −0.578288 + 0.578288i
$$539$$ 0.431573 + 17.5412i 0.0185892 + 0.755553i
$$540$$ −1.21544 4.53608i −0.0523041 0.195202i
$$541$$ 11.9041 + 3.18970i 0.511798 + 0.137136i 0.505470 0.862844i $$-0.331319\pi$$
0.00632795 + 0.999980i $$0.497986\pi$$
$$542$$ −14.2089 + 8.20352i −0.610325 + 0.352372i
$$543$$ 18.9344i 0.812552i
$$544$$ −56.9774 + 15.2670i −2.44289 + 0.654569i
$$545$$ −11.6747 −0.500089
$$546$$ −9.86904 + 17.3981i −0.422356 + 0.744570i
$$547$$ −16.2110 −0.693132 −0.346566 0.938026i $$-0.612652\pi$$
−0.346566 + 0.938026i $$0.612652\pi$$
$$548$$ 13.1852 3.53296i 0.563244 0.150921i
$$549$$ 9.45408i 0.403490i
$$550$$ −5.28222 + 3.04969i −0.225235 + 0.130039i
$$551$$ −9.71418 2.60291i −0.413838 0.110887i
$$552$$ −1.42879 5.33234i −0.0608135 0.226959i
$$553$$ −7.34165 + 9.81546i −0.312199 + 0.417396i
$$554$$ 2.29682 2.29682i 0.0975826 0.0975826i
$$555$$ 2.69929 0.114579
$$556$$ −25.9594 −1.10093
$$557$$ 23.6805 23.6805i 1.00337 1.00337i 0.00338004 0.999994i $$-0.498924\pi$$
0.999994 0.00338004i $$-0.00107590\pi$$
$$558$$ 3.17000 + 5.49061i 0.134197 + 0.232436i
$$559$$ −41.7715 5.69873i −1.76675 0.241031i
$$560$$ 14.6792 + 5.86987i 0.620310 + 0.248047i
$$561$$ −4.74955 + 17.7255i −0.200526 + 0.748373i
$$562$$ 6.22989 10.7905i 0.262792 0.455170i
$$563$$ −0.0785071 0.135978i −0.00330868 0.00573080i 0.864366 0.502863i $$-0.167720\pi$$
−0.867675 + 0.497132i $$0.834387\pi$$
$$564$$ −8.69248 + 2.32914i −0.366020 + 0.0980747i
$$565$$ 15.6806 15.6806i 0.659689 0.659689i
$$566$$ −9.43036 + 2.52686i −0.396388 + 0.106212i
$$567$$ −1.04247 2.43172i −0.0437797 0.102123i
$$568$$ 3.58543 6.21014i 0.150441 0.260572i
$$569$$ −36.5944 21.1278i −1.53412 0.885724i −0.999166 0.0408418i $$-0.986996\pi$$
−0.534953 0.844882i $$-0.679671\pi$$
$$570$$ 2.80000 + 2.80000i 0.117279 + 0.117279i
$$571$$ −28.4747 16.4399i −1.19163 0.687987i −0.232952 0.972488i $$-0.574839\pi$$
−0.958676 + 0.284502i $$0.908172\pi$$
$$572$$ 2.72648 + 21.4879i 0.114000 + 0.898454i
$$573$$ 10.7890i 0.450716i
$$574$$ 1.60674 + 3.74795i 0.0670639 + 0.156436i
$$575$$ 3.85171 + 6.67136i 0.160627 + 0.278215i
$$576$$ 10.7959i 0.449829i
$$577$$ 11.1497 + 41.6112i 0.464167 + 1.73230i 0.659635 + 0.751586i $$0.270711\pi$$
−0.195467 + 0.980710i $$0.562622\pi$$
$$578$$ −19.8601 + 74.1187i −0.826070 + 3.08293i
$$579$$ 13.8977 + 13.8977i 0.577567 + 0.577567i
$$580$$ −34.6504 34.6504i −1.43878 1.43878i
$$581$$ −35.1206 14.0439i −1.45705 0.582639i
$$582$$ −18.5201 + 10.6926i −0.767685 + 0.443223i
$$583$$ 1.50335 + 5.61058i 0.0622624 + 0.232366i
$$584$$ 3.23143 5.59700i 0.133717 0.231605i
$$585$$ 7.00878 0.889307i 0.289777 0.0367683i
$$586$$ −20.3052 + 11.7232i −0.838800 + 0.484281i
$$587$$ 15.3441 + 4.11144i 0.633318 + 0.169697i 0.561175 0.827697i $$-0.310349\pi$$
0.0721432 + 0.997394i $$0.477016\pi$$
$$588$$ −16.3065 3.94214i −0.672470 0.162571i
$$589$$ −2.52369 1.45706i −0.103987 0.0600369i
$$590$$ 5.05149 18.8524i 0.207967 0.776142i
$$591$$ −11.0783 2.96842i −0.455700 0.122104i
$$592$$ 4.05770 + 1.08726i 0.166771 + 0.0446861i
$$593$$ 5.02665 18.7597i 0.206420 0.770369i −0.782592 0.622534i $$-0.786103\pi$$
0.989012 0.147834i $$-0.0472302\pi$$
$$594$$ −4.55179 2.62798i −0.186762 0.107827i
$$595$$ 29.8241 23.4732i 1.22267 0.962307i
$$596$$ 20.6518 + 5.53363i 0.845931 + 0.226666i
$$597$$ 4.81053 2.77736i 0.196882 0.113670i
$$598$$ 49.7865 6.31715i 2.03592 0.258327i
$$599$$ 22.3885 38.7780i 0.914770 1.58443i 0.107531 0.994202i $$-0.465705\pi$$
0.807238 0.590226i $$-0.200961\pi$$
$$600$$ −0.249778 0.932185i −0.0101972 0.0380563i
$$601$$ 33.7722 19.4984i 1.37760 0.795355i 0.385726 0.922613i $$-0.373951\pi$$
0.991870 + 0.127258i $$0.0406176\pi$$
$$602$$ −9.25711 64.2027i −0.377292 2.61671i
$$603$$ −4.43646 4.43646i −0.180667 0.180667i
$$604$$ 21.7960 + 21.7960i 0.886867 + 0.886867i
$$605$$ −2.39209 + 8.92739i −0.0972522 + 0.362950i
$$606$$ −2.06530 7.70779i −0.0838969 0.313108i
$$607$$ 31.9789i 1.29798i −0.760795 0.648992i $$-0.775191\pi$$
0.760795 0.648992i $$-0.224809\pi$$
$$608$$ 3.88276 + 6.72514i 0.157467 + 0.272741i
$$609$$ −22.1080 16.5361i −0.895861 0.670075i
$$610$$ 38.8434i 1.57272i
$$611$$ −1.70418 13.4309i −0.0689437 0.543357i
$$612$$ −15.1947 8.77265i −0.614209 0.354613i
$$613$$ 15.6835 + 15.6835i 0.633452 + 0.633452i 0.948932 0.315480i $$-0.102166\pi$$
−0.315480 + 0.948932i $$0.602166\pi$$
$$614$$ −6.77887 3.91378i −0.273573 0.157947i
$$615$$ 0.720162 1.24736i 0.0290398 0.0502983i
$$616$$ −5.06909 + 2.17311i −0.204239 + 0.0875570i
$$617$$ 19.7363 5.28833i 0.794554 0.212900i 0.161363 0.986895i $$-0.448411\pi$$
0.633192 + 0.773995i $$0.281744\pi$$
$$618$$ −14.0882 + 14.0882i −0.566711 + 0.566711i
$$619$$ −27.8712 + 7.46806i −1.12024 + 0.300167i −0.770980 0.636860i $$-0.780233\pi$$
−0.349258 + 0.937027i $$0.613566\pi$$
$$620$$ −7.09966 12.2970i −0.285129 0.493858i
$$621$$ −3.31909 + 5.74884i −0.133191 + 0.230693i
$$622$$ 17.6737 65.9592i 0.708651 2.64472i
$$623$$ 6.70766 + 8.52248i 0.268737 + 0.341446i
$$624$$ 10.8941 + 1.48625i 0.436114 + 0.0594974i
$$625$$ −8.92548 15.4594i −0.357019 0.618375i
$$626$$ −21.7639 + 21.7639i −0.869862 + 0.869862i
$$627$$ 2.41584 0.0964793
$$628$$ −10.9463 −0.436806
$$629$$ 7.13115 7.13115i 0.284338 0.284338i
$$630$$ 4.28314 + 9.99105i 0.170644 + 0.398053i
$$631$$ −0.897330 3.34888i −0.0357221 0.133317i 0.945762 0.324860i $$-0.105317\pi$$
−0.981484 + 0.191544i $$0.938651\pi$$
$$632$$ −3.72148 0.997169i −0.148033 0.0396652i
$$633$$ 13.9662 8.06339i 0.555106 0.320491i
$$634$$ 21.5355i 0.855283i
$$635$$ 21.4442 5.74595i 0.850986 0.228021i
$$636$$ −5.55353 −0.220212
$$637$$ 9.19238 23.5053i 0.364215 0.931315i
$$638$$ −54.8451 −2.17134
$$639$$ −8.32895 + 2.23174i −0.329488 + 0.0882861i
$$640$$ 12.7799i 0.505172i
$$641$$ 5.79715 3.34699i 0.228974 0.132198i −0.381125 0.924524i $$-0.624463\pi$$
0.610098 + 0.792326i $$0.291130\pi$$
$$642$$ 19.7575 + 5.29400i 0.779766 + 0.208938i
$$643$$ 11.3176 + 42.2380i 0.446324 + 1.66570i 0.712416 + 0.701757i $$0.247601\pi$$
−0.266092 + 0.963948i $$0.585732\pi$$
$$644$$ 16.5848 + 38.6866i 0.653534 + 1.52446i
$$645$$ −16.2008 + 16.2008i −0.637907 + 0.637907i
$$646$$ 14.7944 0.582079
$$647$$ 2.42484 0.0953303 0.0476652 0.998863i $$-0.484822\pi$$
0.0476652 + 0.998863i $$0.484822\pi$$
$$648$$ 0.588043 0.588043i 0.0231005 0.0231005i
$$649$$ −5.95371 10.3121i −0.233704 0.404787i
$$650$$ 8.70356 1.10435i 0.341382 0.0433161i
$$651$$ −4.94766 6.28630i −0.193914 0.246380i
$$652$$ −1.59129 + 5.93876i −0.0623196 + 0.232580i
$$653$$ −9.48737 + 16.4326i −0.371269 + 0.643058i −0.989761 0.142734i $$-0.954411\pi$$
0.618492 + 0.785791i $$0.287744\pi$$
$$654$$ −6.24648 10.8192i −0.244257 0.423065i
$$655$$ −27.0838 + 7.25709i −1.05825 + 0.283558i
$$656$$ 1.58501 1.58501i 0.0618842 0.0618842i
$$657$$ −7.50661 + 2.01139i −0.292861 + 0.0784718i
$$658$$ 19.1459 8.20778i 0.746383 0.319973i
$$659$$ −1.16446 + 2.01691i −0.0453610 + 0.0785676i −0.887814 0.460202i $$-0.847777\pi$$
0.842453 + 0.538769i $$0.181110\pi$$
$$660$$ 10.1944 + 5.88571i 0.396815 + 0.229101i
$$661$$ −18.1901 18.1901i −0.707514 0.707514i 0.258498 0.966012i $$-0.416773\pi$$
−0.966012 + 0.258498i $$0.916773\pi$$
$$662$$ −45.9612 26.5357i −1.78633 1.03134i
$$663$$ 16.1668 20.8656i 0.627866 0.810354i
$$664$$ 11.8891i 0.461385i
$$665$$ −4.00108 2.99268i −0.155155 0.116051i
$$666$$ 1.44424 + 2.50150i 0.0559633 + 0.0969313i
$$667$$ 69.2685i 2.68209i
$$668$$ 4.56306 + 17.0296i 0.176550 + 0.658894i
$$669$$ 6.87505 25.6580i 0.265805 0.991997i
$$670$$ 18.2278 + 18.2278i 0.704202 + 0.704202i
$$671$$ 16.7570 + 16.7570i 0.646898 + 0.646898i
$$672$$ 3.04228 + 21.0997i 0.117358 + 0.813939i
$$673$$ −24.9952 + 14.4310i −0.963493 + 0.556273i −0.897246 0.441530i $$-0.854436\pi$$
−0.0662467 + 0.997803i $$0.521102\pi$$
$$674$$ 0.402472 + 1.50205i 0.0155026 + 0.0578566i
$$675$$ −0.580235 + 1.00500i −0.0223333 + 0.0386824i
$$676$$ 8.34565 30.0174i 0.320987 1.15451i
$$677$$ 13.4814 7.78352i 0.518134 0.299145i −0.218037 0.975941i $$-0.569965\pi$$
0.736171 + 0.676796i $$0.236632\pi$$
$$678$$ 22.9215 + 6.14179i 0.880293 + 0.235874i
$$679$$ 21.2041 16.6888i 0.813737 0.640456i
$$680$$ 10.3314 + 5.96481i 0.396189 + 0.228740i
$$681$$ −0.460067 + 1.71699i −0.0176298 + 0.0657954i
$$682$$ −15.3506 4.11319i −0.587806 0.157502i
$$683$$ 40.6350 + 10.8881i 1.55486 + 0.416622i 0.931031 0.364941i $$-0.118911\pi$$
0.623825 + 0.781564i $$0.285578\pi$$
$$684$$ −0.597819 + 2.23109i −0.0228582 + 0.0853078i
$$685$$ 9.66529 + 5.58026i 0.369292 + 0.213211i
$$686$$ 38.6620 + 3.64505i 1.47612 + 0.139169i
$$687$$ −8.68390 2.32685i −0.331312 0.0887747i
$$688$$ −30.8794 + 17.8282i −1.17727 + 0.679695i
$$689$$ 1.12937 8.27825i 0.0430256 0.315376i
$$690$$ 13.6370 23.6199i 0.519150 0.899194i
$$691$$ −5.66969 21.1596i −0.215685 0.804948i −0.985924 0.167193i $$-0.946530\pi$$
0.770239 0.637755i $$-0.220137\pi$$
$$692$$ −38.0684 + 21.9788i −1.44714 + 0.835508i
$$693$$ 6.15788 + 2.46239i 0.233918 + 0.0935385i
$$694$$ −50.6735 50.6735i −1.92354 1.92354i
$$695$$ −15.0080 15.0080i −0.569284 0.569284i
$$696$$ 2.24599 8.38214i 0.0851339 0.317724i
$$697$$ −1.39278 5.19791i −0.0527551 0.196885i
$$698$$ 58.8192i 2.22634i
$$699$$ −0.514845 0.891738i −0.0194732 0.0337286i
$$700$$ 2.89932 + 6.76309i 0.109584 + 0.255621i
$$701$$ 15.8478i 0.598564i 0.954165 + 0.299282i $$0.0967471\pi$$
−0.954165 + 0.299282i $$0.903253\pi$$
$$702$$ 4.57415 + 6.01939i 0.172640 + 0.227187i
$$703$$ −1.14979 0.663830i −0.0433650 0.0250368i
$$704$$ 19.1354 + 19.1354i 0.721191 + 0.721191i
$$705$$ −6.37195 3.67884i −0.239981 0.138553i
$$706$$ 10.1229 17.5334i 0.380981 0.659879i
$$707$$ 3.96727 + 9.25423i 0.149204 + 0.348041i
$$708$$ 10.9968 2.94659i 0.413285 0.110739i
$$709$$ 34.1644 34.1644i 1.28307 1.28307i 0.344160 0.938911i $$-0.388164\pi$$
0.938911 0.344160i $$-0.111836\pi$$
$$710$$ 34.2207 9.16940i 1.28428 0.344121i
$$711$$ 2.31642 + 4.01217i 0.0868727 + 0.150468i
$$712$$ −1.70449 + 2.95227i −0.0638786 + 0.110641i
$$713$$ −5.19489 + 19.3876i −0.194550 + 0.726071i
$$714$$ 37.7104 + 15.0795i 1.41128 + 0.564336i
$$715$$ −10.8466 + 13.9991i −0.405638 + 0.523536i
$$716$$ 2.28818 + 3.96325i 0.0855134 + 0.148114i
$$717$$ 13.2347 13.2347i 0.494257 0.494257i
$$718$$ −71.6946 −2.67562
$$719$$ 10.6433 0.396927 0.198463 0.980108i $$-0.436405\pi$$
0.198463 + 0.980108i $$0.436405\pi$$
$$720$$ 4.22522 4.22522i 0.157465 0.157465i
$$721$$ 15.0577 20.1314i 0.560776 0.749733i
$$722$$ 9.80710 + 36.6006i 0.364983 + 1.36213i
$$723$$ −2.83676 0.760109i −0.105500 0.0282688i
$$724$$ 39.2988 22.6892i 1.46053 0.843237i
$$725$$ 12.1093i 0.449730i
$$726$$ −9.55311 + 2.55975i −0.354549 + 0.0950012i
$$727$$ −5.89296 −0.218558 −0.109279 0.994011i $$-0.534854\pi$$
−0.109279 + 0.994011i $$0.534854\pi$$
$$728$$ 7.93291 0.0603683i 0.294013 0.00223740i
$$729$$ −1.00000 −0.0370370
$$730$$ 30.8420 8.26408i 1.14151 0.305867i
$$731$$ 85.6005i 3.16605i
$$732$$ −19.6222 + 11.3289i −0.725257 + 0.418728i
$$733$$ 37.0791 + 9.93532i 1.36955 + 0.366970i 0.867314 0.497762i $$-0.165845\pi$$
0.502235 + 0.864731i $$0.332511\pi$$
$$734$$ −14.5362 54.2499i −0.536542 2.00240i
$$735$$ −7.14824 11.7064i −0.263667 0.431797i
$$736$$ 37.8207 37.8207i 1.39409 1.39409i
$$737$$ 15.7269 0.579309
$$738$$ 1.54128 0.0567352
$$739$$ −14.6029 + 14.6029i −0.537176 + 0.537176i −0.922699 0.385522i $$-0.874021\pi$$
0.385522 + 0.922699i $$0.374021\pi$$
$$740$$ −3.23458 5.60246i −0.118906 0.205950i
$$741$$ −3.20415 1.34484i −0.117708 0.0494040i
$$742$$ 12.7236 1.83457i 0.467099 0.0673491i
$$743$$ 8.72671 32.5685i 0.320152 1.19482i −0.598945 0.800790i $$-0.704413\pi$$
0.919097 0.394033i $$-0.128920\pi$$
$$744$$ 1.25726 2.17764i 0.0460934 0.0798361i
$$745$$ 8.74028 + 15.1386i 0.320219 + 0.554636i
$$746$$ 7.42228 1.98879i 0.271749 0.0728150i
$$747$$ −10.1090 + 10.1090i −0.369869 + 0.369869i
$$748$$ 42.4812 11.3828i 1.55327 0.416197i
$$749$$ −25.6281 3.05384i −0.936430 0.111585i
$$750$$ 12.6556 21.9201i 0.462116 0.800409i
$$751$$ 27.5178 + 15.8874i 1.00414 + 0.579741i 0.909471 0.415768i $$-0.136487\pi$$
0.0946696 + 0.995509i $$0.469821\pi$$
$$752$$ −8.09679 8.09679i −0.295259 0.295259i
$$753$$ −0.424072 0.244838i −0.0154540 0.00892240i
$$754$$ 72.7417 + 30.5310i 2.64910 + 1.11187i
$$755$$ 25.2019i 0.917191i
$$756$$ −3.79790 + 5.07762i −0.138128 + 0.184671i
$$757$$ −13.6215 23.5930i −0.495080 0.857504i 0.504904 0.863176i $$-0.331528\pi$$
−0.999984 + 0.00567171i $$0.998195\pi$$
$$758$$ 49.9334i 1.81366i
$$759$$ −4.30664 16.0726i −0.156321 0.583398i
$$760$$ 0.406476 1.51699i 0.0147444 0.0550270i
$$761$$ −20.1667 20.1667i −0.731042 0.731042i 0.239784 0.970826i $$-0.422923\pi$$
−0.970826 + 0.239784i $$0.922923\pi$$
$$762$$ 16.7985 + 16.7985i 0.608546 + 0.608546i
$$763$$ 9.74935 + 12.3871i 0.352950 + 0.448444i
$$764$$ 22.3928 12.9285i 0.810143 0.467736i
$$765$$ −3.71277 13.8563i −0.134236 0.500974i
$$766$$ −32.0817 + 55.5671i −1.15916 + 2.00772i
$$767$$ 2.15595 + 16.9914i 0.0778467 + 0.613523i
$$768$$ 6.85557 3.95806i 0.247379 0.142824i
$$769$$ 27.2629 + 7.30506i 0.983124 + 0.263427i 0.714360 0.699779i $$-0.246718\pi$$
0.268764 + 0.963206i $$0.413385\pi$$
$$770$$ −25.3005 10.1171i −0.911767 0.364594i
$$771$$ 16.2048 + 9.35585i 0.583602 + 0.336943i
$$772$$ 12.1913 45.4986i 0.438775 1.63753i
$$773$$ 11.7186 + 3.13999i 0.421488 + 0.112937i 0.463328 0.886187i $$-0.346655\pi$$
−0.0418396 + 0.999124i $$0.513322\pi$$
$$774$$