# Properties

 Label 273.2.cd.e.44.7 Level $273$ Weight $2$ Character 273.44 Analytic conductor $2.180$ Analytic rank $0$ Dimension $112$ CM no Inner twists $8$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$273 = 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 273.cd (of order $$12$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.17991597518$$ Analytic rank: $$0$$ Dimension: $$112$$ Relative dimension: $$28$$ over $$\Q(\zeta_{12})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 44.7 Character $$\chi$$ $$=$$ 273.44 Dual form 273.2.cd.e.242.7

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.87036 + 0.501163i) q^{2} +(1.45895 + 0.933521i) q^{3} +(1.51505 - 0.874714i) q^{4} +(-1.33892 + 0.358762i) q^{5} +(-3.19662 - 1.01485i) q^{6} +(1.90555 - 1.83545i) q^{7} +(0.343083 - 0.343083i) q^{8} +(1.25708 + 2.72392i) q^{9} +O(q^{10})$$ $$q+(-1.87036 + 0.501163i) q^{2} +(1.45895 + 0.933521i) q^{3} +(1.51505 - 0.874714i) q^{4} +(-1.33892 + 0.358762i) q^{5} +(-3.19662 - 1.01485i) q^{6} +(1.90555 - 1.83545i) q^{7} +(0.343083 - 0.343083i) q^{8} +(1.25708 + 2.72392i) q^{9} +(2.32447 - 1.34203i) q^{10} +(2.28763 + 0.612968i) q^{11} +(3.02695 + 0.138165i) q^{12} +(2.20676 + 2.85135i) q^{13} +(-2.64421 + 4.38795i) q^{14} +(-2.28833 - 0.726491i) q^{15} +(-2.21918 + 3.84373i) q^{16} +(1.10119 + 1.90732i) q^{17} +(-3.71632 - 4.46473i) q^{18} +(-1.11846 - 4.17416i) q^{19} +(-1.71471 + 1.71471i) q^{20} +(4.49354 - 0.898964i) q^{21} -4.58590 q^{22} +(-0.362760 + 0.628318i) q^{23} +(0.820816 - 0.180266i) q^{24} +(-2.66614 + 1.53929i) q^{25} +(-5.55644 - 4.22712i) q^{26} +(-0.708822 + 5.14758i) q^{27} +(1.28151 - 4.44761i) q^{28} +4.61440i q^{29} +(4.64410 + 0.211979i) q^{30} +(5.52871 + 1.48141i) q^{31} +(1.97318 - 7.36403i) q^{32} +(2.76532 + 3.02984i) q^{33} +(-3.01551 - 3.01551i) q^{34} +(-1.89288 + 3.14116i) q^{35} +(4.28719 + 3.02729i) q^{36} +(-4.96920 + 1.33149i) q^{37} +(4.18386 + 7.24666i) q^{38} +(0.557758 + 6.22004i) q^{39} +(-0.336275 + 0.582445i) q^{40} +(6.19631 + 6.19631i) q^{41} +(-7.95402 + 3.93338i) q^{42} -1.48686i q^{43} +(4.00204 - 1.07234i) q^{44} +(-2.66036 - 3.19612i) q^{45} +(0.363603 - 1.35699i) q^{46} +(-1.11365 - 4.15620i) q^{47} +(-6.82587 + 3.53617i) q^{48} +(0.262239 - 6.99509i) q^{49} +(4.21521 - 4.21521i) q^{50} +(-0.173938 + 3.81068i) q^{51} +(5.83747 + 2.38966i) q^{52} +(10.3415 - 5.97064i) q^{53} +(-1.25402 - 9.98309i) q^{54} -3.28286 q^{55} +(0.0240496 - 1.28347i) q^{56} +(2.26488 - 7.13400i) q^{57} +(-2.31257 - 8.63061i) q^{58} +(-7.06192 - 1.89224i) q^{59} +(-4.10240 + 0.900963i) q^{60} +(4.17980 - 7.23963i) q^{61} -11.0831 q^{62} +(7.39505 + 2.88326i) q^{63} +5.88559i q^{64} +(-3.97763 - 3.02603i) q^{65} +(-6.69060 - 4.28103i) q^{66} +(0.579944 + 0.155395i) q^{67} +(3.33672 + 1.92646i) q^{68} +(-1.11580 + 0.578042i) q^{69} +(1.96615 - 6.82375i) q^{70} +(-10.8703 - 10.8703i) q^{71} +(1.36581 + 0.503249i) q^{72} +(-2.05058 + 7.65287i) q^{73} +(8.62693 - 4.98076i) q^{74} +(-5.32673 - 0.243137i) q^{75} +(-5.34572 - 5.34572i) q^{76} +(5.48426 - 3.03079i) q^{77} +(-4.16046 - 11.3542i) q^{78} +(3.29571 - 5.70834i) q^{79} +(1.59231 - 5.94260i) q^{80} +(-5.83951 + 6.84837i) q^{81} +(-14.6947 - 8.48400i) q^{82} +(-1.03740 - 1.03740i) q^{83} +(6.02159 - 5.29253i) q^{84} +(-2.15868 - 2.15868i) q^{85} +(0.745157 + 2.78097i) q^{86} +(-4.30764 + 6.73219i) q^{87} +(0.995145 - 0.574547i) q^{88} +(-2.90393 - 10.8376i) q^{89} +(6.57763 + 4.64463i) q^{90} +(9.43861 + 1.38300i) q^{91} +1.26924i q^{92} +(6.68319 + 7.32247i) q^{93} +(4.16587 + 7.21549i) q^{94} +(2.99506 + 5.18759i) q^{95} +(9.75325 - 8.90175i) q^{96} +(-0.431627 + 0.431627i) q^{97} +(3.01519 + 13.2148i) q^{98} +(1.20605 + 7.00187i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$112 q - 12 q^{3} - 8 q^{6} - 4 q^{7} + 8 q^{9}+O(q^{10})$$ 112 * q - 12 * q^3 - 8 * q^6 - 4 * q^7 + 8 * q^9 $$112 q - 12 q^{3} - 8 q^{6} - 4 q^{7} + 8 q^{9} - 48 q^{13} - 12 q^{15} + 40 q^{16} - 26 q^{18} + 40 q^{19} - 10 q^{21} + 16 q^{22} + 32 q^{24} - 24 q^{27} - 52 q^{28} - 12 q^{31} - 44 q^{33} + 16 q^{34} - 8 q^{37} - 42 q^{39} - 160 q^{40} - 80 q^{42} + 6 q^{45} + 32 q^{46} + 72 q^{48} - 12 q^{52} + 34 q^{54} - 48 q^{55} - 24 q^{57} - 28 q^{58} + 44 q^{60} + 78 q^{63} + 4 q^{66} + 24 q^{67} - 12 q^{70} - 26 q^{72} - 40 q^{73} + 112 q^{76} + 32 q^{78} + 48 q^{79} + 128 q^{81} - 150 q^{84} + 160 q^{85} - 48 q^{87} + 24 q^{91} + 10 q^{93} - 8 q^{94} - 106 q^{96} + 56 q^{97} - 36 q^{99}+O(q^{100})$$ 112 * q - 12 * q^3 - 8 * q^6 - 4 * q^7 + 8 * q^9 - 48 * q^13 - 12 * q^15 + 40 * q^16 - 26 * q^18 + 40 * q^19 - 10 * q^21 + 16 * q^22 + 32 * q^24 - 24 * q^27 - 52 * q^28 - 12 * q^31 - 44 * q^33 + 16 * q^34 - 8 * q^37 - 42 * q^39 - 160 * q^40 - 80 * q^42 + 6 * q^45 + 32 * q^46 + 72 * q^48 - 12 * q^52 + 34 * q^54 - 48 * q^55 - 24 * q^57 - 28 * q^58 + 44 * q^60 + 78 * q^63 + 4 * q^66 + 24 * q^67 - 12 * q^70 - 26 * q^72 - 40 * q^73 + 112 * q^76 + 32 * q^78 + 48 * q^79 + 128 * q^81 - 150 * q^84 + 160 * q^85 - 48 * q^87 + 24 * q^91 + 10 * q^93 - 8 * q^94 - 106 * q^96 + 56 * q^97 - 36 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/273\mathbb{Z}\right)^\times$$.

 $$n$$ $$92$$ $$106$$ $$157$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{3}{4}\right)$$ $$e\left(\frac{1}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.87036 + 0.501163i −1.32255 + 0.354376i −0.849932 0.526893i $$-0.823357\pi$$
−0.472616 + 0.881268i $$0.656690\pi$$
$$3$$ 1.45895 + 0.933521i 0.842326 + 0.538968i
$$4$$ 1.51505 0.874714i 0.757525 0.437357i
$$5$$ −1.33892 + 0.358762i −0.598782 + 0.160443i −0.545464 0.838134i $$-0.683647\pi$$
−0.0533184 + 0.998578i $$0.516980\pi$$
$$6$$ −3.19662 1.01485i −1.30501 0.414312i
$$7$$ 1.90555 1.83545i 0.720230 0.693735i
$$8$$ 0.343083 0.343083i 0.121298 0.121298i
$$9$$ 1.25708 + 2.72392i 0.419026 + 0.907974i
$$10$$ 2.32447 1.34203i 0.735061 0.424388i
$$11$$ 2.28763 + 0.612968i 0.689746 + 0.184817i 0.586633 0.809853i $$-0.300453\pi$$
0.103113 + 0.994670i $$0.467120\pi$$
$$12$$ 3.02695 + 0.138165i 0.873805 + 0.0398847i
$$13$$ 2.20676 + 2.85135i 0.612045 + 0.790823i
$$14$$ −2.64421 + 4.38795i −0.706696 + 1.17273i
$$15$$ −2.28833 0.726491i −0.590844 0.187579i
$$16$$ −2.21918 + 3.84373i −0.554795 + 0.960932i
$$17$$ 1.10119 + 1.90732i 0.267078 + 0.462593i 0.968106 0.250541i $$-0.0806084\pi$$
−0.701028 + 0.713134i $$0.747275\pi$$
$$18$$ −3.71632 4.46473i −0.875946 1.05235i
$$19$$ −1.11846 4.17416i −0.256593 0.957617i −0.967197 0.254026i $$-0.918245\pi$$
0.710605 0.703591i $$-0.248421\pi$$
$$20$$ −1.71471 + 1.71471i −0.383421 + 0.383421i
$$21$$ 4.49354 0.898964i 0.980570 0.196170i
$$22$$ −4.58590 −0.977716
$$23$$ −0.362760 + 0.628318i −0.0756406 + 0.131013i −0.901365 0.433061i $$-0.857434\pi$$
0.825724 + 0.564074i $$0.190767\pi$$
$$24$$ 0.820816 0.180266i 0.167548 0.0367967i
$$25$$ −2.66614 + 1.53929i −0.533227 + 0.307859i
$$26$$ −5.55644 4.22712i −1.08971 0.829007i
$$27$$ −0.708822 + 5.14758i −0.136413 + 0.990652i
$$28$$ 1.28151 4.44761i 0.242182 0.840519i
$$29$$ 4.61440i 0.856873i 0.903572 + 0.428436i $$0.140935\pi$$
−0.903572 + 0.428436i $$0.859065\pi$$
$$30$$ 4.64410 + 0.211979i 0.847893 + 0.0387019i
$$31$$ 5.52871 + 1.48141i 0.992985 + 0.266070i 0.718504 0.695523i $$-0.244827\pi$$
0.274481 + 0.961592i $$0.411494\pi$$
$$32$$ 1.97318 7.36403i 0.348813 1.30179i
$$33$$ 2.76532 + 3.02984i 0.481380 + 0.527427i
$$34$$ −3.01551 3.01551i −0.517156 0.517156i
$$35$$ −1.89288 + 3.14116i −0.319956 + 0.530952i
$$36$$ 4.28719 + 3.02729i 0.714532 + 0.504549i
$$37$$ −4.96920 + 1.33149i −0.816932 + 0.218896i −0.643005 0.765862i $$-0.722312\pi$$
−0.173927 + 0.984758i $$0.555646\pi$$
$$38$$ 4.18386 + 7.24666i 0.678712 + 1.17556i
$$39$$ 0.557758 + 6.22004i 0.0893127 + 0.996004i
$$40$$ −0.336275 + 0.582445i −0.0531697 + 0.0920926i
$$41$$ 6.19631 + 6.19631i 0.967701 + 0.967701i 0.999494 0.0317931i $$-0.0101218\pi$$
−0.0317931 + 0.999494i $$0.510122\pi$$
$$42$$ −7.95402 + 3.93338i −1.22733 + 0.606934i
$$43$$ 1.48686i 0.226744i −0.993553 0.113372i $$-0.963835\pi$$
0.993553 0.113372i $$-0.0361651\pi$$
$$44$$ 4.00204 1.07234i 0.603331 0.161662i
$$45$$ −2.66036 3.19612i −0.396584 0.476449i
$$46$$ 0.363603 1.35699i 0.0536104 0.200077i
$$47$$ −1.11365 4.15620i −0.162443 0.606244i −0.998353 0.0573775i $$-0.981726\pi$$
0.835910 0.548867i $$-0.184941\pi$$
$$48$$ −6.82587 + 3.53617i −0.985230 + 0.510402i
$$49$$ 0.262239 6.99509i 0.0374627 0.999298i
$$50$$ 4.21521 4.21521i 0.596121 0.596121i
$$51$$ −0.173938 + 3.81068i −0.0243561 + 0.533601i
$$52$$ 5.83747 + 2.38966i 0.809511 + 0.331386i
$$53$$ 10.3415 5.97064i 1.42051 0.820130i 0.424166 0.905585i $$-0.360567\pi$$
0.996342 + 0.0854542i $$0.0272341\pi$$
$$54$$ −1.25402 9.98309i −0.170650 1.35853i
$$55$$ −3.28286 −0.442660
$$56$$ 0.0240496 1.28347i 0.00321377 0.171511i
$$57$$ 2.26488 7.13400i 0.299991 0.944921i
$$58$$ −2.31257 8.63061i −0.303655 1.13326i
$$59$$ −7.06192 1.89224i −0.919384 0.246348i −0.232062 0.972701i $$-0.574547\pi$$
−0.687322 + 0.726353i $$0.741214\pi$$
$$60$$ −4.10240 + 0.900963i −0.529618 + 0.116314i
$$61$$ 4.17980 7.23963i 0.535169 0.926939i −0.463987 0.885842i $$-0.653581\pi$$
0.999155 0.0410969i $$-0.0130852\pi$$
$$62$$ −11.0831 −1.40756
$$63$$ 7.39505 + 2.88326i 0.931689 + 0.363257i
$$64$$ 5.88559i 0.735699i
$$65$$ −3.97763 3.02603i −0.493364 0.375332i
$$66$$ −6.69060 4.28103i −0.823556 0.526958i
$$67$$ 0.579944 + 0.155395i 0.0708514 + 0.0189846i 0.294071 0.955784i $$-0.404990\pi$$
−0.223219 + 0.974768i $$0.571657\pi$$
$$68$$ 3.33672 + 1.92646i 0.404637 + 0.233617i
$$69$$ −1.11580 + 0.578042i −0.134326 + 0.0695881i
$$70$$ 1.96615 6.82375i 0.235000 0.815595i
$$71$$ −10.8703 10.8703i −1.29007 1.29007i −0.934743 0.355324i $$-0.884371\pi$$
−0.355324 0.934743i $$-0.615629\pi$$
$$72$$ 1.36581 + 0.503249i 0.160963 + 0.0593085i
$$73$$ −2.05058 + 7.65287i −0.240002 + 0.895701i 0.735828 + 0.677169i $$0.236793\pi$$
−0.975830 + 0.218532i $$0.929873\pi$$
$$74$$ 8.62693 4.98076i 1.00286 0.579002i
$$75$$ −5.32673 0.243137i −0.615077 0.0280751i
$$76$$ −5.34572 5.34572i −0.613196 0.613196i
$$77$$ 5.48426 3.03079i 0.624990 0.345390i
$$78$$ −4.16046 11.3542i −0.471080 1.28561i
$$79$$ 3.29571 5.70834i 0.370797 0.642239i −0.618892 0.785476i $$-0.712418\pi$$
0.989688 + 0.143238i $$0.0457513\pi$$
$$80$$ 1.59231 5.94260i 0.178026 0.664402i
$$81$$ −5.83951 + 6.84837i −0.648834 + 0.760930i
$$82$$ −14.6947 8.48400i −1.62276 0.936901i
$$83$$ −1.03740 1.03740i −0.113869 0.113869i 0.647876 0.761746i $$-0.275657\pi$$
−0.761746 + 0.647876i $$0.775657\pi$$
$$84$$ 6.02159 5.29253i 0.657010 0.577463i
$$85$$ −2.15868 2.15868i −0.234142 0.234142i
$$86$$ 0.745157 + 2.78097i 0.0803524 + 0.299879i
$$87$$ −4.30764 + 6.73219i −0.461827 + 0.721766i
$$88$$ 0.995145 0.574547i 0.106083 0.0612469i
$$89$$ −2.90393 10.8376i −0.307816 1.14879i −0.930494 0.366308i $$-0.880622\pi$$
0.622677 0.782479i $$-0.286045\pi$$
$$90$$ 6.57763 + 4.64463i 0.693343 + 0.489587i
$$91$$ 9.43861 + 1.38300i 0.989435 + 0.144977i
$$92$$ 1.26924i 0.132328i
$$93$$ 6.68319 + 7.32247i 0.693014 + 0.759305i
$$94$$ 4.16587 + 7.21549i 0.429676 + 0.744221i
$$95$$ 2.99506 + 5.18759i 0.307286 + 0.532236i
$$96$$ 9.75325 8.90175i 0.995437 0.908531i
$$97$$ −0.431627 + 0.431627i −0.0438250 + 0.0438250i −0.728680 0.684855i $$-0.759866\pi$$
0.684855 + 0.728680i $$0.259866\pi$$
$$98$$ 3.01519 + 13.2148i 0.304581 + 1.33490i
$$99$$ 1.20605 + 7.00187i 0.121213 + 0.703715i
$$100$$ −2.69289 + 4.66421i −0.269289 + 0.466421i
$$101$$ −9.65337 16.7201i −0.960546 1.66371i −0.721133 0.692797i $$-0.756378\pi$$
−0.239413 0.970918i $$-0.576955\pi$$
$$102$$ −1.58444 7.21453i −0.156883 0.714344i
$$103$$ 16.9974 + 9.81345i 1.67480 + 0.966948i 0.964888 + 0.262662i $$0.0846003\pi$$
0.709916 + 0.704287i $$0.248733\pi$$
$$104$$ 1.73535 + 0.221149i 0.170165 + 0.0216854i
$$105$$ −5.69396 + 2.81575i −0.555674 + 0.274789i
$$106$$ −16.3500 + 16.3500i −1.58805 + 1.58805i
$$107$$ −4.79758 2.76988i −0.463800 0.267775i 0.249841 0.968287i $$-0.419622\pi$$
−0.713641 + 0.700512i $$0.752955\pi$$
$$108$$ 3.42876 + 8.41885i 0.329933 + 0.810105i
$$109$$ −11.6405 3.11906i −1.11496 0.298752i −0.346117 0.938192i $$-0.612500\pi$$
−0.768842 + 0.639439i $$0.779167\pi$$
$$110$$ 6.14014 1.64525i 0.585439 0.156868i
$$111$$ −8.49281 2.69627i −0.806101 0.255919i
$$112$$ 2.82622 + 11.3976i 0.267053 + 1.07697i
$$113$$ 13.5251i 1.27234i 0.771549 + 0.636169i $$0.219482\pi$$
−0.771549 + 0.636169i $$0.780518\pi$$
$$114$$ −0.660857 + 14.4783i −0.0618950 + 1.35601i
$$115$$ 0.260289 0.971411i 0.0242721 0.0905846i
$$116$$ 4.03628 + 6.99105i 0.374759 + 0.649102i
$$117$$ −4.99280 + 9.59542i −0.461584 + 0.887096i
$$118$$ 14.1567 1.30323
$$119$$ 5.59917 + 1.61331i 0.513275 + 0.147892i
$$120$$ −1.03433 + 0.535839i −0.0944212 + 0.0489152i
$$121$$ −4.66877 2.69551i −0.424433 0.245047i
$$122$$ −4.18952 + 15.6355i −0.379301 + 1.41557i
$$123$$ 3.25573 + 14.8245i 0.293560 + 1.33668i
$$124$$ 9.67208 2.59163i 0.868579 0.232735i
$$125$$ 7.91828 7.91828i 0.708232 0.708232i
$$126$$ −15.2764 1.68663i −1.36093 0.150257i
$$127$$ 4.52614i 0.401630i 0.979629 + 0.200815i $$0.0643590\pi$$
−0.979629 + 0.200815i $$0.935641\pi$$
$$128$$ 0.996732 + 3.71985i 0.0880995 + 0.328792i
$$129$$ 1.38801 2.16925i 0.122208 0.190992i
$$130$$ 8.95615 + 3.66633i 0.785506 + 0.321559i
$$131$$ 9.71563 + 5.60932i 0.848859 + 0.490089i 0.860266 0.509846i $$-0.170298\pi$$
−0.0114069 + 0.999935i $$0.503631\pi$$
$$132$$ 6.83984 + 2.17149i 0.595332 + 0.189004i
$$133$$ −9.79274 5.90118i −0.849139 0.511697i
$$134$$ −1.16258 −0.100432
$$135$$ −0.897701 7.14649i −0.0772618 0.615072i
$$136$$ 1.03217 + 0.276569i 0.0885078 + 0.0237156i
$$137$$ −9.90799 2.65484i −0.846497 0.226818i −0.190599 0.981668i $$-0.561043\pi$$
−0.655898 + 0.754850i $$0.727710\pi$$
$$138$$ 1.79725 1.64035i 0.152992 0.139636i
$$139$$ −1.90381 −0.161479 −0.0807397 0.996735i $$-0.525728\pi$$
−0.0807397 + 0.996735i $$0.525728\pi$$
$$140$$ −0.120199 + 6.41474i −0.0101587 + 0.542145i
$$141$$ 2.25514 7.10331i 0.189917 0.598207i
$$142$$ 25.7792 + 14.8836i 2.16334 + 1.24901i
$$143$$ 3.30046 + 7.87551i 0.275998 + 0.658583i
$$144$$ −13.2597 1.21300i −1.10498 0.101083i
$$145$$ −1.65547 6.17831i −0.137479 0.513080i
$$146$$ 15.3413i 1.26966i
$$147$$ 6.91265 9.96069i 0.570146 0.821543i
$$148$$ −6.36391 + 6.36391i −0.523111 + 0.523111i
$$149$$ −0.697277 + 0.186835i −0.0571231 + 0.0153061i −0.287267 0.957850i $$-0.592747\pi$$
0.230144 + 0.973157i $$0.426080\pi$$
$$150$$ 10.0848 2.21480i 0.823418 0.180838i
$$151$$ 4.72655 17.6397i 0.384641 1.43550i −0.454090 0.890956i $$-0.650035\pi$$
0.838731 0.544545i $$-0.183298\pi$$
$$152$$ −1.81581 1.04836i −0.147281 0.0850329i
$$153$$ −3.81111 + 5.39722i −0.308110 + 0.436339i
$$154$$ −8.73865 + 8.41719i −0.704181 + 0.678276i
$$155$$ −7.93396 −0.637271
$$156$$ 6.28579 + 8.93579i 0.503266 + 0.715436i
$$157$$ −4.40329 7.62673i −0.351421 0.608679i 0.635078 0.772448i $$-0.280968\pi$$
−0.986499 + 0.163769i $$0.947635\pi$$
$$158$$ −3.30338 + 12.3284i −0.262803 + 0.980793i
$$159$$ 20.6614 + 0.943086i 1.63855 + 0.0747916i
$$160$$ 10.5677i 0.835453i
$$161$$ 0.461991 + 1.86312i 0.0364100 + 0.146834i
$$162$$ 7.48986 15.7355i 0.588459 1.23630i
$$163$$ −8.96152 + 2.40123i −0.701921 + 0.188079i −0.592091 0.805871i $$-0.701697\pi$$
−0.109830 + 0.993950i $$0.535031\pi$$
$$164$$ 14.8077 + 3.96772i 1.15629 + 0.309827i
$$165$$ −4.78953 3.06461i −0.372864 0.238580i
$$166$$ 2.46022 + 1.42041i 0.190950 + 0.110245i
$$167$$ 5.66815 5.66815i 0.438614 0.438614i −0.452931 0.891545i $$-0.649622\pi$$
0.891545 + 0.452931i $$0.149622\pi$$
$$168$$ 1.23324 1.85007i 0.0951462 0.142736i
$$169$$ −3.26043 + 12.5845i −0.250802 + 0.968038i
$$170$$ 5.11937 + 2.95567i 0.392638 + 0.226690i
$$171$$ 9.96408 8.29384i 0.761973 0.634246i
$$172$$ −1.30058 2.25266i −0.0991679 0.171764i
$$173$$ −5.32380 + 9.22110i −0.404761 + 0.701067i −0.994294 0.106678i $$-0.965979\pi$$
0.589532 + 0.807745i $$0.299312\pi$$
$$174$$ 4.68294 14.7505i 0.355012 1.11823i
$$175$$ −2.25515 + 7.82676i −0.170474 + 0.591648i
$$176$$ −7.43274 + 7.43274i −0.560264 + 0.560264i
$$177$$ −8.53656 9.35313i −0.641647 0.703024i
$$178$$ 10.8628 + 18.8150i 0.814204 + 1.41024i
$$179$$ −6.40516 11.0941i −0.478744 0.829210i 0.520959 0.853582i $$-0.325575\pi$$
−0.999703 + 0.0243724i $$0.992241\pi$$
$$180$$ −6.82627 2.51522i −0.508800 0.187473i
$$181$$ 3.09288i 0.229892i −0.993372 0.114946i $$-0.963330\pi$$
0.993372 0.114946i $$-0.0366695\pi$$
$$182$$ −18.3467 + 2.14357i −1.35995 + 0.158892i
$$183$$ 12.8565 6.66033i 0.950377 0.492346i
$$184$$ 0.0911086 + 0.340022i 0.00671661 + 0.0250667i
$$185$$ 6.17567 3.56552i 0.454044 0.262143i
$$186$$ −16.1698 10.3463i −1.18562 0.758630i
$$187$$ 1.34999 + 5.03824i 0.0987212 + 0.368433i
$$188$$ −5.32272 5.32272i −0.388200 0.388200i
$$189$$ 8.09743 + 11.1100i 0.589002 + 0.808132i
$$190$$ −8.20168 8.20168i −0.595012 0.595012i
$$191$$ −10.7534 6.20849i −0.778091 0.449231i 0.0576626 0.998336i $$-0.481635\pi$$
−0.835753 + 0.549105i $$0.814969\pi$$
$$192$$ −5.49432 + 8.58679i −0.396518 + 0.619698i
$$193$$ −5.49136 + 20.4940i −0.395277 + 1.47519i 0.426032 + 0.904708i $$0.359911\pi$$
−0.821309 + 0.570484i $$0.806756\pi$$
$$194$$ 0.590984 1.02361i 0.0424302 0.0734912i
$$195$$ −2.97831 8.12802i −0.213281 0.582060i
$$196$$ −5.72140 10.8273i −0.408671 0.773378i
$$197$$ −5.64266 5.64266i −0.402023 0.402023i 0.476922 0.878945i $$-0.341752\pi$$
−0.878945 + 0.476922i $$0.841752\pi$$
$$198$$ −5.76483 12.4916i −0.409689 0.887741i
$$199$$ 12.3618 7.13709i 0.876305 0.505935i 0.00686693 0.999976i $$-0.497814\pi$$
0.869438 + 0.494041i $$0.164481\pi$$
$$200$$ −0.386600 + 1.44281i −0.0273367 + 0.102022i
$$201$$ 0.701045 + 0.768104i 0.0494479 + 0.0541779i
$$202$$ 26.4348 + 26.4348i 1.85995 + 1.85995i
$$203$$ 8.46951 + 8.79297i 0.594443 + 0.617146i
$$204$$ 3.06973 + 5.92551i 0.214924 + 0.414869i
$$205$$ −10.5194 6.07335i −0.734704 0.424181i
$$206$$ −36.7095 9.83627i −2.55767 0.685326i
$$207$$ −2.16751 0.198284i −0.150652 0.0137817i
$$208$$ −15.8570 + 2.15453i −1.09949 + 0.149389i
$$209$$ 10.2345i 0.707935i
$$210$$ 9.23864 8.12008i 0.637527 0.560339i
$$211$$ −28.0505 −1.93108 −0.965538 0.260260i $$-0.916192\pi$$
−0.965538 + 0.260260i $$0.916192\pi$$
$$212$$ 10.4452 18.0916i 0.717380 1.24254i
$$213$$ −5.71159 26.0069i −0.391352 1.78196i
$$214$$ 10.3614 + 2.77633i 0.708290 + 0.189786i
$$215$$ 0.533428 + 1.99078i 0.0363795 + 0.135770i
$$216$$ 1.52286 + 2.00923i 0.103618 + 0.136711i
$$217$$ 13.2543 7.32477i 0.899760 0.497238i
$$218$$ 23.3351 1.58046
$$219$$ −10.1358 + 9.25091i −0.684915 + 0.625118i
$$220$$ −4.97369 + 2.87156i −0.335326 + 0.193601i
$$221$$ −3.00838 + 7.34889i −0.202366 + 0.494340i
$$222$$ 17.2359 + 0.786730i 1.15680 + 0.0528019i
$$223$$ 11.4761 11.4761i 0.768500 0.768500i −0.209343 0.977842i $$-0.567132\pi$$
0.977842 + 0.209343i $$0.0671324\pi$$
$$224$$ −9.75631 17.6542i −0.651871 1.17957i
$$225$$ −7.54446 5.32733i −0.502964 0.355156i
$$226$$ −6.77830 25.2970i −0.450886 1.68273i
$$227$$ −5.05250 + 18.8562i −0.335346 + 1.25153i 0.568147 + 0.822927i $$0.307661\pi$$
−0.903493 + 0.428602i $$0.859006\pi$$
$$228$$ −2.80880 12.7895i −0.186018 0.847004i
$$229$$ −1.05919 + 0.283809i −0.0699932 + 0.0187546i −0.293646 0.955914i $$-0.594869\pi$$
0.223652 + 0.974669i $$0.428202\pi$$
$$230$$ 1.94734i 0.128404i
$$231$$ 10.8306 + 0.697899i 0.712600 + 0.0459184i
$$232$$ 1.58312 + 1.58312i 0.103937 + 0.103937i
$$233$$ −9.18559 + 15.9099i −0.601768 + 1.04229i 0.390785 + 0.920482i $$0.372204\pi$$
−0.992553 + 0.121811i $$0.961130\pi$$
$$234$$ 4.52948 20.4491i 0.296102 1.33680i
$$235$$ 2.98217 + 5.16528i 0.194536 + 0.336946i
$$236$$ −12.3543 + 3.31033i −0.804198 + 0.215484i
$$237$$ 10.1371 5.25158i 0.658478 0.341127i
$$238$$ −11.2810 0.211383i −0.731240 0.0137019i
$$239$$ 19.7676 + 19.7676i 1.27866 + 1.27866i 0.941418 + 0.337242i $$0.109494\pi$$
0.337242 + 0.941418i $$0.390506\pi$$
$$240$$ 7.87064 7.18350i 0.508048 0.463693i
$$241$$ 1.80299 6.72886i 0.116141 0.433444i −0.883229 0.468942i $$-0.844635\pi$$
0.999370 + 0.0354985i $$0.0113019\pi$$
$$242$$ 10.0832 + 2.70178i 0.648172 + 0.173677i
$$243$$ −14.9127 + 4.54013i −0.956647 + 0.291250i
$$244$$ 14.6245i 0.936239i
$$245$$ 2.15845 + 9.45993i 0.137899 + 0.604373i
$$246$$ −13.5189 26.0956i −0.861933 1.66379i
$$247$$ 9.43382 12.4005i 0.600259 0.789024i
$$248$$ 2.40505 1.38856i 0.152721 0.0881735i
$$249$$ −0.545081 2.48195i −0.0345431 0.157287i
$$250$$ −10.8417 + 18.7784i −0.685691 + 1.18765i
$$251$$ 12.8536 0.811313 0.405657 0.914026i $$-0.367043\pi$$
0.405657 + 0.914026i $$0.367043\pi$$
$$252$$ 13.7259 2.10027i 0.864651 0.132305i
$$253$$ −1.21500 + 1.21500i −0.0763863 + 0.0763863i
$$254$$ −2.26833 8.46553i −0.142328 0.531175i
$$255$$ −1.13424 5.16458i −0.0710287 0.323419i
$$256$$ −9.61409 16.6521i −0.600881 1.04076i
$$257$$ 5.02416 8.70211i 0.313399 0.542822i −0.665697 0.746222i $$-0.731866\pi$$
0.979096 + 0.203400i $$0.0651991\pi$$
$$258$$ −1.50894 + 4.75291i −0.0939425 + 0.295903i
$$259$$ −7.02517 + 11.6580i −0.436523 + 0.724390i
$$260$$ −8.67321 1.10529i −0.537890 0.0685474i
$$261$$ −12.5693 + 5.80066i −0.778018 + 0.359052i
$$262$$ −20.9830 5.62237i −1.29633 0.347351i
$$263$$ 10.5483 6.09009i 0.650439 0.375531i −0.138186 0.990406i $$-0.544127\pi$$
0.788624 + 0.614875i $$0.210794\pi$$
$$264$$ 1.98822 + 0.0907520i 0.122366 + 0.00558540i
$$265$$ −11.7043 + 11.7043i −0.718991 + 0.718991i
$$266$$ 21.2735 + 6.12960i 1.30436 + 0.375830i
$$267$$ 5.88045 18.5225i 0.359878 1.13356i
$$268$$ 1.01457 0.271853i 0.0619747 0.0166061i
$$269$$ 2.20753 1.27452i 0.134596 0.0777088i −0.431190 0.902261i $$-0.641906\pi$$
0.565786 + 0.824552i $$0.308573\pi$$
$$270$$ 5.26058 + 12.9166i 0.320149 + 0.786082i
$$271$$ −14.0283 + 3.75888i −0.852161 + 0.228336i −0.658358 0.752705i $$-0.728749\pi$$
−0.193802 + 0.981041i $$0.562082\pi$$
$$272$$ −9.77497 −0.592695
$$273$$ 12.4794 + 10.8289i 0.755289 + 0.655392i
$$274$$ 19.8621 1.19991
$$275$$ −7.04267 + 1.88708i −0.424689 + 0.113795i
$$276$$ −1.18487 + 1.85177i −0.0713206 + 0.111463i
$$277$$ −10.7355 + 6.19815i −0.645035 + 0.372411i −0.786551 0.617525i $$-0.788135\pi$$
0.141517 + 0.989936i $$0.454802\pi$$
$$278$$ 3.56083 0.954121i 0.213564 0.0572244i
$$279$$ 2.91477 + 16.9220i 0.174502 + 1.01310i
$$280$$ 0.428261 + 1.72709i 0.0255935 + 0.103214i
$$281$$ −7.15435 + 7.15435i −0.426793 + 0.426793i −0.887534 0.460742i $$-0.847583\pi$$
0.460742 + 0.887534i $$0.347583\pi$$
$$282$$ −0.658015 + 14.4160i −0.0391842 + 0.858459i
$$283$$ 18.9127 10.9192i 1.12424 0.649081i 0.181761 0.983343i $$-0.441820\pi$$
0.942480 + 0.334262i $$0.108487\pi$$
$$284$$ −25.9774 6.96064i −1.54148 0.413038i
$$285$$ −0.473081 + 10.3644i −0.0280229 + 0.613934i
$$286$$ −10.1200 13.0760i −0.598406 0.773201i
$$287$$ 23.1804 + 0.434353i 1.36830 + 0.0256390i
$$288$$ 22.5395 3.88235i 1.32815 0.228770i
$$289$$ 6.07475 10.5218i 0.357338 0.618928i
$$290$$ 6.19267 + 10.7260i 0.363646 + 0.629854i
$$291$$ −1.03265 + 0.226790i −0.0605353 + 0.0132947i
$$292$$ 3.58734 + 13.3882i 0.209933 + 0.783482i
$$293$$ 5.41525 5.41525i 0.316362 0.316362i −0.531006 0.847368i $$-0.678186\pi$$
0.847368 + 0.531006i $$0.178186\pi$$
$$294$$ −7.93726 + 22.0945i −0.462910 + 1.28858i
$$295$$ 10.1342 0.590036
$$296$$ −1.24804 + 2.16166i −0.0725406 + 0.125644i
$$297$$ −4.77682 + 11.3413i −0.277179 + 0.658087i
$$298$$ 1.21053 0.698898i 0.0701239 0.0404861i
$$299$$ −2.59208 + 0.352191i −0.149904 + 0.0203677i
$$300$$ −8.28293 + 4.29100i −0.478215 + 0.247741i
$$301$$ −2.72905 2.83328i −0.157300 0.163308i
$$302$$ 35.3615i 2.03483i
$$303$$ 1.52479 33.4055i 0.0875967 1.91909i
$$304$$ 18.5264 + 4.96413i 1.06256 + 0.284713i
$$305$$ −2.99911 + 11.1928i −0.171728 + 0.640899i
$$306$$ 4.42328 12.0048i 0.252862 0.686266i
$$307$$ −8.74360 8.74360i −0.499024 0.499024i 0.412110 0.911134i $$-0.364792\pi$$
−0.911134 + 0.412110i $$0.864792\pi$$
$$308$$ 5.65786 9.38896i 0.322386 0.534986i
$$309$$ 15.6373 + 30.1848i 0.889576 + 1.71715i
$$310$$ 14.8394 3.97621i 0.842822 0.225833i
$$311$$ 2.78775 + 4.82853i 0.158079 + 0.273801i 0.934176 0.356813i $$-0.116137\pi$$
−0.776097 + 0.630614i $$0.782803\pi$$
$$312$$ 2.32535 + 1.94263i 0.131647 + 0.109980i
$$313$$ −4.96467 + 8.59906i −0.280620 + 0.486048i −0.971538 0.236886i $$-0.923873\pi$$
0.690918 + 0.722933i $$0.257207\pi$$
$$314$$ 12.0580 + 12.0580i 0.680472 + 0.680472i
$$315$$ −10.9358 1.20739i −0.616161 0.0680288i
$$316$$ 11.5312i 0.648682i
$$317$$ −10.9373 + 2.93063i −0.614297 + 0.164600i −0.552534 0.833490i $$-0.686339\pi$$
−0.0617632 + 0.998091i $$0.519672\pi$$
$$318$$ −39.1170 + 8.59080i −2.19357 + 0.481748i
$$319$$ −2.82848 + 10.5560i −0.158365 + 0.591025i
$$320$$ −2.11153 7.88032i −0.118038 0.440523i
$$321$$ −4.41369 8.51977i −0.246348 0.475527i
$$322$$ −1.79782 3.25318i −0.100188 0.181293i
$$323$$ 6.72982 6.72982i 0.374457 0.374457i
$$324$$ −2.85678 + 15.4835i −0.158710 + 0.860195i
$$325$$ −10.2726 4.20524i −0.569821 0.233265i
$$326$$ 15.5579 8.98236i 0.861673 0.497487i
$$327$$ −14.0712 15.4172i −0.778140 0.852574i
$$328$$ 4.25170 0.234761
$$329$$ −9.75062 5.87580i −0.537569 0.323943i
$$330$$ 10.4940 + 3.33161i 0.577678 + 0.183399i
$$331$$ 0.208395 + 0.777741i 0.0114544 + 0.0427485i 0.971417 0.237381i $$-0.0762891\pi$$
−0.959962 + 0.280130i $$0.909622\pi$$
$$332$$ −2.47914 0.664283i −0.136060 0.0364573i
$$333$$ −9.87357 11.8619i −0.541068 0.650030i
$$334$$ −7.76084 + 13.4422i −0.424654 + 0.735523i
$$335$$ −0.832247 −0.0454705
$$336$$ −6.51658 + 19.2669i −0.355509 + 1.05110i
$$337$$ 12.9314i 0.704420i −0.935921 0.352210i $$-0.885430\pi$$
0.935921 0.352210i $$-0.114570\pi$$
$$338$$ −0.208695 25.1716i −0.0113515 1.36916i
$$339$$ −12.6260 + 19.7325i −0.685750 + 1.07172i
$$340$$ −5.15874 1.38228i −0.279772 0.0749647i
$$341$$ 11.7396 + 6.77785i 0.635734 + 0.367041i
$$342$$ −14.4799 + 20.5061i −0.782984 + 1.10885i
$$343$$ −12.3394 13.8108i −0.666267 0.745714i
$$344$$ −0.510115 0.510115i −0.0275036 0.0275036i
$$345$$ 1.28658 1.17426i 0.0692672 0.0632199i
$$346$$ 5.33619 19.9149i 0.286875 1.07063i
$$347$$ 5.66698 3.27183i 0.304219 0.175641i −0.340118 0.940383i $$-0.610467\pi$$
0.644337 + 0.764742i $$0.277134\pi$$
$$348$$ −0.637547 + 13.9676i −0.0341761 + 0.748739i
$$349$$ −16.8430 16.8430i −0.901585 0.901585i 0.0939883 0.995573i $$-0.470038\pi$$
−0.995573 + 0.0939883i $$0.970038\pi$$
$$350$$ 0.295480 15.7691i 0.0157941 0.842894i
$$351$$ −16.2418 + 9.33837i −0.866921 + 0.498445i
$$352$$ 9.02783 15.6367i 0.481185 0.833437i
$$353$$ 8.07679 30.1430i 0.429884 1.60435i −0.323137 0.946352i $$-0.604737\pi$$
0.753021 0.657997i $$-0.228596\pi$$
$$354$$ 20.6539 + 13.2156i 1.09774 + 0.702399i
$$355$$ 18.4543 + 10.6546i 0.979452 + 0.565487i
$$356$$ −13.8794 13.8794i −0.735608 0.735608i
$$357$$ 6.66286 + 7.58069i 0.352636 + 0.401212i
$$358$$ 17.5399 + 17.5399i 0.927014 + 0.927014i
$$359$$ 5.21338 + 19.4566i 0.275152 + 1.02688i 0.955740 + 0.294213i $$0.0950576\pi$$
−0.680588 + 0.732666i $$0.738276\pi$$
$$360$$ −2.00926 0.183807i −0.105897 0.00968750i
$$361$$ 0.281861 0.162733i 0.0148348 0.00856488i
$$362$$ 1.55004 + 5.78482i 0.0814682 + 0.304043i
$$363$$ −4.29518 8.29101i −0.225439 0.435165i
$$364$$ 15.5097 6.16078i 0.812928 0.322913i
$$365$$ 10.9822i 0.574837i
$$366$$ −20.7084 + 18.9004i −1.08244 + 0.987941i
$$367$$ 9.40991 + 16.2984i 0.491193 + 0.850772i 0.999949 0.0101393i $$-0.00322751\pi$$
−0.508755 + 0.860911i $$0.669894\pi$$
$$368$$ −1.61006 2.78870i −0.0839300 0.145371i
$$369$$ −9.08902 + 24.6675i −0.473156 + 1.28414i
$$370$$ −9.76385 + 9.76385i −0.507598 + 0.507598i
$$371$$ 8.74733 30.3586i 0.454139 1.57614i
$$372$$ 16.5304 + 5.24803i 0.857063 + 0.272098i
$$373$$ −3.91334 + 6.77811i −0.202625 + 0.350957i −0.949374 0.314150i $$-0.898281\pi$$
0.746748 + 0.665107i $$0.231614\pi$$
$$374$$ −5.04996 8.74678i −0.261127 0.452285i
$$375$$ 18.9443 4.16051i 0.978277 0.214848i
$$376$$ −1.80800 1.04385i −0.0932403 0.0538323i
$$377$$ −13.1573 + 10.1829i −0.677635 + 0.524445i
$$378$$ −20.7131 16.7216i −1.06536 0.860065i
$$379$$ 7.03400 7.03400i 0.361312 0.361312i −0.502984 0.864296i $$-0.667764\pi$$
0.864296 + 0.502984i $$0.167764\pi$$
$$380$$ 9.07532 + 5.23964i 0.465554 + 0.268788i
$$381$$ −4.22525 + 6.60342i −0.216466 + 0.338303i
$$382$$ 23.2243 + 6.22293i 1.18826 + 0.318393i
$$383$$ −16.4146 + 4.39829i −0.838749 + 0.224742i −0.652527 0.757766i $$-0.726291\pi$$
−0.186222 + 0.982508i $$0.559624\pi$$
$$384$$ −2.01838 + 6.35756i −0.103000 + 0.324433i
$$385$$ −6.25565 + 6.02552i −0.318817 + 0.307089i
$$386$$ 41.0834i 2.09109i
$$387$$ 4.05008 1.86910i 0.205877 0.0950115i
$$388$$ −0.276386 + 1.03149i −0.0140314 + 0.0523658i
$$389$$ −17.6555 30.5803i −0.895170 1.55048i −0.833594 0.552378i $$-0.813721\pi$$
−0.0615764 0.998102i $$-0.519613\pi$$
$$390$$ 9.64398 + 13.7098i 0.488342 + 0.694220i
$$391$$ −1.59787 −0.0808080
$$392$$ −2.30992 2.48986i −0.116669 0.125757i
$$393$$ 8.93822 + 17.2535i 0.450873 + 0.870323i
$$394$$ 13.3817 + 7.72595i 0.674162 + 0.389228i
$$395$$ −2.36475 + 8.82538i −0.118984 + 0.444053i
$$396$$ 7.95186 + 9.55323i 0.399596 + 0.480068i
$$397$$ 16.8391 4.51203i 0.845132 0.226452i 0.189828 0.981817i $$-0.439207\pi$$
0.655304 + 0.755365i $$0.272540\pi$$
$$398$$ −19.5442 + 19.5442i −0.979665 + 0.979665i
$$399$$ −8.77826 17.7513i −0.439463 0.888675i
$$400$$ 13.6639i 0.683194i
$$401$$ 9.39391 + 35.0585i 0.469109 + 1.75074i 0.642893 + 0.765956i $$0.277734\pi$$
−0.173784 + 0.984784i $$0.555599\pi$$
$$402$$ −1.69615 1.08530i −0.0845965 0.0541297i
$$403$$ 7.97650 + 19.0334i 0.397338 + 0.948122i
$$404$$ −29.2507 16.8879i −1.45527 0.840203i
$$405$$ 5.36169 11.2644i 0.266424 0.559732i
$$406$$ −20.2478 12.2015i −1.00488 0.605548i
$$407$$ −12.1839 −0.603931
$$408$$ 1.24770 + 1.36705i 0.0617705 + 0.0676792i
$$409$$ −22.9709 6.15503i −1.13584 0.304347i −0.358561 0.933506i $$-0.616732\pi$$
−0.777276 + 0.629160i $$0.783399\pi$$
$$410$$ 22.7188 + 6.08748i 1.12200 + 0.300639i
$$411$$ −11.9769 13.1226i −0.590778 0.647290i
$$412$$ 34.3359 1.69161
$$413$$ −16.9299 + 9.35606i −0.833068 + 0.460382i
$$414$$ 4.15340 0.715411i 0.204129 0.0351605i
$$415$$ 1.76117 + 1.01681i 0.0864525 + 0.0499133i
$$416$$ 25.3518 10.6244i 1.24297 0.520903i
$$417$$ −2.77757 1.77725i −0.136018 0.0870323i
$$418$$ 5.12915 + 19.1422i 0.250875 + 0.936278i
$$419$$ 17.4455i 0.852269i −0.904660 0.426134i $$-0.859875\pi$$
0.904660 0.426134i $$-0.140125\pi$$
$$420$$ −6.16366 + 9.24659i −0.300756 + 0.451187i
$$421$$ 0.682835 0.682835i 0.0332793 0.0332793i −0.690271 0.723551i $$-0.742509\pi$$
0.723551 + 0.690271i $$0.242509\pi$$
$$422$$ 52.4647 14.0579i 2.55394 0.684326i
$$423$$ 9.92122 8.25817i 0.482386 0.401526i
$$424$$ 1.49955 5.59640i 0.0728246 0.271785i
$$425$$ −5.87186 3.39012i −0.284827 0.164445i
$$426$$ 23.7164 + 45.7799i 1.14907 + 2.21804i
$$427$$ −5.32316 21.4673i −0.257606 1.03887i
$$428$$ −9.69143 −0.468453
$$429$$ −2.53674 + 14.5710i −0.122475 + 0.703496i
$$430$$ −1.99541 3.45615i −0.0962272 0.166670i
$$431$$ 0.151236 0.564422i 0.00728480 0.0271872i −0.962188 0.272387i $$-0.912187\pi$$
0.969473 + 0.245200i $$0.0788536\pi$$
$$432$$ −18.2129 14.1479i −0.876269 0.680692i
$$433$$ 24.1411i 1.16015i −0.814564 0.580074i $$-0.803024\pi$$
0.814564 0.580074i $$-0.196976\pi$$
$$434$$ −21.1195 + 20.3425i −1.01377 + 0.976473i
$$435$$ 3.35232 10.5593i 0.160732 0.506278i
$$436$$ −20.3642 + 5.45658i −0.975270 + 0.261323i
$$437$$ 3.02843 + 0.811466i 0.144870 + 0.0388177i
$$438$$ 14.3215 22.3823i 0.684306 1.06947i
$$439$$ 32.3732 + 18.6907i 1.54509 + 0.892056i 0.998506 + 0.0546506i $$0.0174045\pi$$
0.546582 + 0.837406i $$0.315929\pi$$
$$440$$ −1.12629 + 1.12629i −0.0536939 + 0.0536939i
$$441$$ 19.3837 8.07905i 0.923035 0.384717i
$$442$$ 1.94378 15.2528i 0.0924561 0.725501i
$$443$$ 13.3228 + 7.69193i 0.632986 + 0.365455i 0.781908 0.623394i $$-0.214247\pi$$
−0.148922 + 0.988849i $$0.547580\pi$$
$$444$$ −15.2255 + 3.34380i −0.722570 + 0.158690i
$$445$$ 7.77626 + 13.4689i 0.368630 + 0.638486i
$$446$$ −15.7132 + 27.2160i −0.744040 + 1.28871i
$$447$$ −1.19171 0.378339i −0.0563658 0.0178948i
$$448$$ 10.8027 + 11.2153i 0.510380 + 0.529872i
$$449$$ 24.2044 24.2044i 1.14228 1.14228i 0.154243 0.988033i $$-0.450706\pi$$
0.988033 0.154243i $$-0.0492938\pi$$
$$450$$ 16.7808 + 6.18306i 0.791052 + 0.291472i
$$451$$ 10.3767 + 17.9730i 0.488621 + 0.846316i
$$452$$ 11.8306 + 20.4913i 0.556466 + 0.963828i
$$453$$ 23.3629 21.3232i 1.09768 1.00185i
$$454$$ 37.8001i 1.77405i
$$455$$ −13.1337 + 1.53450i −0.615717 + 0.0719383i
$$456$$ −1.67051 3.22459i −0.0782288 0.151005i
$$457$$ 6.02561 + 22.4879i 0.281866 + 1.05194i 0.951099 + 0.308886i $$0.0999563\pi$$
−0.669233 + 0.743053i $$0.733377\pi$$
$$458$$ 1.83884 1.06165i 0.0859232 0.0496078i
$$459$$ −10.5986 + 4.31653i −0.494702 + 0.201478i
$$460$$ −0.455357 1.69941i −0.0212311 0.0792356i
$$461$$ 24.0178 + 24.0178i 1.11862 + 1.11862i 0.991944 + 0.126677i $$0.0404310\pi$$
0.126677 + 0.991944i $$0.459569\pi$$
$$462$$ −20.6069 + 4.12256i −0.958719 + 0.191799i
$$463$$ −6.56142 6.56142i −0.304935 0.304935i 0.538006 0.842941i $$-0.319178\pi$$
−0.842941 + 0.538006i $$0.819178\pi$$
$$464$$ −17.7365 10.2402i −0.823397 0.475388i
$$465$$ −11.5753 7.40652i −0.536790 0.343469i
$$466$$ 9.20696 34.3608i 0.426504 1.59173i
$$467$$ −13.3120 + 23.0571i −0.616006 + 1.06695i 0.374201 + 0.927347i $$0.377917\pi$$
−0.990207 + 0.139606i $$0.955416\pi$$
$$468$$ 0.828914 + 18.9048i 0.0383166 + 0.873875i
$$469$$ 1.39033 0.768345i 0.0641996 0.0354789i
$$470$$ −8.16640 8.16640i −0.376688 0.376688i
$$471$$ 0.695517 15.2376i 0.0320477 0.702111i
$$472$$ −3.07202 + 1.77363i −0.141401 + 0.0816379i
$$473$$ 0.911396 3.40138i 0.0419060 0.156395i
$$474$$ −16.3283 + 14.9027i −0.749982 + 0.684505i
$$475$$ 9.40722 + 9.40722i 0.431633 + 0.431633i
$$476$$ 9.89421 2.45343i 0.453500 0.112453i
$$477$$ 29.2636 + 20.6638i 1.33989 + 0.946128i
$$478$$ −46.8794 27.0658i −2.14421 1.23796i
$$479$$ −13.2078 3.53902i −0.603479 0.161702i −0.0558729 0.998438i $$-0.517794\pi$$
−0.547606 + 0.836736i $$0.684461\pi$$
$$480$$ −9.86520 + 15.4178i −0.450283 + 0.703723i
$$481$$ −14.7624 11.2307i −0.673107 0.512074i
$$482$$ 13.4890i 0.614407i
$$483$$ −1.06524 + 3.14948i −0.0484700 + 0.143306i
$$484$$ −9.43121 −0.428692
$$485$$ 0.423061 0.732764i 0.0192102 0.0332731i
$$486$$ 25.6168 15.9654i 1.16200 0.724204i
$$487$$ −0.828582 0.222018i −0.0375466 0.0100606i 0.239997 0.970774i $$-0.422854\pi$$
−0.277543 + 0.960713i $$0.589520\pi$$
$$488$$ −1.04977 3.91781i −0.0475210 0.177351i
$$489$$ −15.3160 4.86249i −0.692615 0.219889i
$$490$$ −8.77806 16.6118i −0.396552 0.750444i
$$491$$ 2.60011 0.117342 0.0586708 0.998277i $$-0.481314\pi$$
0.0586708 + 0.998277i $$0.481314\pi$$
$$492$$ 17.8998 + 19.6120i 0.806985 + 0.884178i
$$493$$ −8.80115 + 5.08135i −0.396384 + 0.228852i
$$494$$ −11.4300 + 27.9213i −0.514261 + 1.25624i
$$495$$ −4.12681 8.94225i −0.185486 0.401924i
$$496$$ −17.9633 + 17.9633i −0.806578 + 0.806578i
$$497$$ −40.6658 0.761993i −1.82411 0.0341800i
$$498$$ 2.26336 + 4.36897i 0.101424 + 0.195778i
$$499$$ 1.43469 + 5.35433i 0.0642254 + 0.239693i 0.990575 0.136973i $$-0.0437373\pi$$
−0.926349 + 0.376665i $$0.877071\pi$$
$$500$$ 5.07035 18.9228i 0.226753 0.846254i
$$501$$ 13.5609 2.97822i 0.605855 0.133057i
$$502$$ −24.0410 + 6.44175i −1.07300 + 0.287510i
$$503$$ 39.5365i 1.76284i 0.472329 + 0.881422i $$0.343413\pi$$
−0.472329 + 0.881422i $$0.656587\pi$$
$$504$$ 3.52631 1.54792i 0.157074 0.0689497i
$$505$$ 18.9236 + 18.9236i 0.842090 + 0.842090i
$$506$$ 1.66358 2.88140i 0.0739551 0.128094i
$$507$$ −16.5047 + 15.3165i −0.732999 + 0.680230i
$$508$$ 3.95908 + 6.85733i 0.175656 + 0.304245i
$$509$$ 19.8987 5.33184i 0.881994 0.236330i 0.210727 0.977545i $$-0.432417\pi$$
0.671267 + 0.741215i $$0.265750\pi$$
$$510$$ 4.70974 + 9.09122i 0.208551 + 0.402566i
$$511$$ 10.1390 + 18.3467i 0.448522 + 0.811609i
$$512$$ 20.8810 + 20.8810i 0.922820 + 0.922820i
$$513$$ 22.2796 2.79864i 0.983668 0.123563i
$$514$$ −5.03585 + 18.7940i −0.222122 + 0.828969i
$$515$$ −26.2788 7.04139i −1.15798 0.310281i
$$516$$ 0.205431 4.50064i 0.00904359 0.198130i
$$517$$ 10.1905i 0.448177i
$$518$$ 7.29710 25.3254i 0.320616 1.11273i
$$519$$ −16.3753 + 8.48326i −0.718794 + 0.372374i
$$520$$ −2.40283 + 0.326478i −0.105371 + 0.0143170i
$$521$$ −8.86791 + 5.11989i −0.388510 + 0.224307i −0.681514 0.731805i $$-0.738678\pi$$
0.293004 + 0.956111i $$0.405345\pi$$
$$522$$ 20.6020 17.1486i 0.901727 0.750574i
$$523$$ 6.10685 10.5774i 0.267034 0.462516i −0.701061 0.713102i $$-0.747290\pi$$
0.968095 + 0.250585i $$0.0806231\pi$$
$$524$$ 19.6262 0.857375
$$525$$ −10.5966 + 9.31363i −0.462474 + 0.406480i
$$526$$ −16.6771 + 16.6771i −0.727157 + 0.727157i
$$527$$ 3.26264 + 12.1763i 0.142123 + 0.530410i
$$528$$ −17.7826 + 3.90539i −0.773889 + 0.169960i
$$529$$ 11.2368 + 19.4627i 0.488557 + 0.846206i
$$530$$ 16.0256 27.7571i 0.696107 1.20569i
$$531$$ −3.72308 21.6148i −0.161568 0.938003i
$$532$$ −19.9983 0.374727i −0.867038 0.0162465i
$$533$$ −3.99410 + 31.3416i −0.173004 + 1.35756i
$$534$$ −1.71583 + 37.5908i −0.0742511 + 1.62671i
$$535$$ 7.41730 + 1.98746i 0.320678 + 0.0859253i
$$536$$ 0.252282 0.145655i 0.0108969 0.00629135i
$$537$$ 1.01172 22.1651i 0.0436590 0.956493i
$$538$$ −3.49015 + 3.49015i −0.150471 + 0.150471i
$$539$$ 4.88767 15.8414i 0.210527 0.682338i
$$540$$ −7.61119 10.0420i −0.327534 0.432141i
$$541$$ −8.53926 + 2.28809i −0.367132 + 0.0983726i −0.437668 0.899137i $$-0.644196\pi$$
0.0705366 + 0.997509i $$0.477529\pi$$
$$542$$ 24.3543 14.0610i 1.04611 0.603970i
$$543$$ 2.88727 4.51237i 0.123905 0.193644i
$$544$$ 16.2184 4.34571i 0.695359 0.186321i
$$545$$ 16.7047 0.715550
$$546$$ −28.7681 13.9997i −1.23116 0.599132i
$$547$$ 10.7037 0.457659 0.228830 0.973466i $$-0.426510\pi$$
0.228830 + 0.973466i $$0.426510\pi$$
$$548$$ −17.3333 + 4.64445i −0.740443 + 0.198401i
$$549$$ 24.9745 + 2.28468i 1.06589 + 0.0975076i
$$550$$ 12.2266 7.05904i 0.521345 0.300999i
$$551$$ 19.2612 5.16103i 0.820556 0.219867i
$$552$$ −0.184494 + 0.581127i −0.00785261 + 0.0247344i
$$553$$ −4.19724 16.9267i −0.178485 0.719794i
$$554$$ 16.9730 16.9730i 0.721116 0.721116i
$$555$$ 12.3385 + 0.563188i 0.523740 + 0.0239060i
$$556$$ −2.88437 + 1.66529i −0.122325 + 0.0706242i
$$557$$ 8.70078 + 2.33137i 0.368664 + 0.0987831i 0.438394 0.898783i $$-0.355547\pi$$
−0.0697307 + 0.997566i $$0.522214\pi$$
$$558$$ −13.9324 30.1896i −0.589804 1.27803i
$$559$$ 4.23955 3.28114i 0.179314 0.138777i
$$560$$ −7.87311 14.2465i −0.332700 0.602026i
$$561$$ −2.73373 + 8.61079i −0.115418 + 0.363548i
$$562$$ 9.79575 16.9667i 0.413209 0.715698i
$$563$$ 6.65130 + 11.5204i 0.280319 + 0.485527i 0.971463 0.237190i $$-0.0762264\pi$$
−0.691144 + 0.722717i $$0.742893\pi$$
$$564$$ −2.79672 12.7345i −0.117763 0.536218i
$$565$$ −4.85231 18.1091i −0.204138 0.761854i
$$566$$ −29.9013 + 29.9013i −1.25684 + 1.25684i
$$567$$ 1.44237 + 23.7680i 0.0605739 + 0.998164i
$$568$$ −7.45883 −0.312965
$$569$$ 11.2617 19.5058i 0.472115 0.817727i −0.527376 0.849632i $$-0.676824\pi$$
0.999491 + 0.0319049i $$0.0101574\pi$$
$$570$$ −4.30941 19.6223i −0.180501 0.821887i
$$571$$ −30.7521 + 17.7548i −1.28694 + 0.743013i −0.978107 0.208104i $$-0.933271\pi$$
−0.308830 + 0.951117i $$0.599937\pi$$
$$572$$ 11.8892 + 9.04483i 0.497111 + 0.378183i
$$573$$ −9.89297 19.0964i −0.413285 0.797765i
$$574$$ −43.5735 + 10.8048i −1.81872 + 0.450982i
$$575$$ 2.23358i 0.0931466i
$$576$$ −16.0319 + 7.39865i −0.667995 + 0.308277i
$$577$$ −18.4532 4.94452i −0.768218 0.205843i −0.146634 0.989191i $$-0.546844\pi$$
−0.621584 + 0.783348i $$0.713511\pi$$
$$578$$ −6.08888 + 22.7240i −0.253264 + 0.945194i
$$579$$ −27.1432 + 24.7735i −1.12803 + 1.02955i
$$580$$ −7.91237 7.91237i −0.328543 0.328543i
$$581$$ −3.88091 0.0727202i −0.161007 0.00301694i
$$582$$ 1.81778 0.941708i 0.0753495 0.0390350i
$$583$$ 27.3172 7.31963i 1.13136 0.303148i
$$584$$ 1.92205 + 3.32909i 0.0795350 + 0.137759i
$$585$$ 3.24247 14.6387i 0.134060 0.605236i
$$586$$ −7.41457 + 12.8424i −0.306293 + 0.530515i
$$587$$ 5.45570 + 5.45570i 0.225181 + 0.225181i 0.810676 0.585495i $$-0.199100\pi$$
−0.585495 + 0.810676i $$0.699100\pi$$
$$588$$ 1.76026 21.1375i 0.0725917 0.871697i
$$589$$ 24.7346i 1.01917i
$$590$$ −18.9546 + 5.07888i −0.780350 + 0.209094i
$$591$$ −2.96483 13.4999i −0.121957 0.555312i
$$592$$ 5.90965 22.0551i 0.242885 0.906459i
$$593$$ −1.37797 5.14265i −0.0565864 0.211183i 0.931844 0.362860i $$-0.118200\pi$$
−0.988430 + 0.151676i $$0.951533\pi$$
$$594$$ 3.25058 23.6063i 0.133373 0.968577i
$$595$$ −8.07563 0.151321i −0.331068 0.00620354i
$$596$$ −0.892982 + 0.892982i −0.0365779 + 0.0365779i
$$597$$ 24.6979 + 1.12733i 1.01082 + 0.0461386i
$$598$$ 4.67163 1.95778i 0.191037 0.0800596i
$$599$$ −27.4491 + 15.8477i −1.12154 + 0.647521i −0.941793 0.336193i $$-0.890861\pi$$
−0.179745 + 0.983713i $$0.557527\pi$$
$$600$$ −1.91092 + 1.74409i −0.0780132 + 0.0712022i
$$601$$ 29.8604 1.21803 0.609016 0.793158i $$-0.291565\pi$$
0.609016 + 0.793158i $$0.291565\pi$$
$$602$$ 6.52426 + 3.93157i 0.265909 + 0.160239i
$$603$$ 0.305749 + 1.77507i 0.0124511 + 0.0722863i
$$604$$ −8.26877 30.8595i −0.336451 1.25565i
$$605$$ 7.21814 + 1.93410i 0.293459 + 0.0786321i
$$606$$ 13.8897 + 63.2446i 0.564229 + 2.56914i
$$607$$ 18.0891 31.3312i 0.734214 1.27170i −0.220854 0.975307i $$-0.570884\pi$$
0.955068 0.296388i $$-0.0957822\pi$$
$$608$$ −32.9455 −1.33612
$$609$$ 4.14818 + 20.7350i 0.168093 + 0.840224i
$$610$$ 22.4377i 0.908476i
$$611$$ 9.39324 12.3471i 0.380010 0.499512i
$$612$$ −1.05300 + 11.5107i −0.0425650 + 0.465292i
$$613$$ 38.7241 + 10.3761i 1.56405 + 0.419086i 0.933943 0.357421i $$-0.116344\pi$$
0.630108 + 0.776507i $$0.283010\pi$$
$$614$$ 20.7357 + 11.9718i 0.836824 + 0.483141i
$$615$$ −9.67763 18.6808i −0.390240 0.753281i
$$616$$ 0.841745 2.92137i 0.0339149 0.117705i
$$617$$ −33.0811 33.0811i −1.33180 1.33180i −0.903763 0.428034i $$-0.859206\pi$$
−0.428034 0.903763i $$-0.640794\pi$$
$$618$$ −44.3750 48.6197i −1.78502 1.95577i
$$619$$ 2.13272 7.95941i 0.0857212 0.319916i −0.909729 0.415203i $$-0.863710\pi$$
0.995450 + 0.0952876i $$0.0303771\pi$$
$$620$$ −12.0203 + 6.93995i −0.482749 + 0.278715i
$$621$$ −2.97719 2.31270i −0.119470 0.0928055i
$$622$$ −7.63399 7.63399i −0.306095 0.306095i
$$623$$ −25.4255 15.3216i −1.01865 0.613847i
$$624$$ −25.1459 11.6595i −1.00664 0.466754i
$$625$$ −0.0646763 + 0.112023i −0.00258705 + 0.00448091i
$$626$$ 4.97622 18.5715i 0.198890 0.742266i
$$627$$ 9.55412 14.9316i 0.381555 0.596312i
$$628$$ −13.3424 7.70325i −0.532420 0.307393i
$$629$$ −8.01164 8.01164i −0.319445 0.319445i
$$630$$ 21.0590 3.22234i 0.839010 0.128381i
$$631$$ 18.8858 + 18.8858i 0.751833 + 0.751833i 0.974821 0.222988i $$-0.0715811\pi$$
−0.222988 + 0.974821i $$0.571581\pi$$
$$632$$ −0.827732 3.08914i −0.0329254 0.122879i
$$633$$ −40.9243 26.1857i −1.62660 1.04079i
$$634$$ 18.9879 10.9627i 0.754107 0.435384i
$$635$$ −1.62381 6.06013i −0.0644388 0.240489i
$$636$$ 32.1280 16.6440i 1.27396 0.659977i
$$637$$ 20.5242 14.6887i 0.813197 0.581989i
$$638$$ 21.1612i 0.837779i
$$639$$ 15.9450 43.2747i 0.630776 1.71192i
$$640$$ −2.66908 4.62299i −0.105505 0.182740i
$$641$$ 18.8454 + 32.6411i 0.744347 + 1.28925i 0.950499 + 0.310727i $$0.100573\pi$$
−0.206152 + 0.978520i $$0.566094\pi$$
$$642$$ 12.5250 + 13.7231i 0.494323 + 0.541607i
$$643$$ −26.5007 + 26.5007i −1.04508 + 1.04508i −0.0461500 + 0.998935i $$0.514695\pi$$
−0.998935 + 0.0461500i $$0.985305\pi$$
$$644$$ 2.32964 + 2.41861i 0.0918005 + 0.0953065i
$$645$$ −1.08019 + 3.40242i −0.0425324 + 0.133970i
$$646$$ −9.21448 + 15.9599i −0.362539 + 0.627936i
$$647$$ 9.44143 + 16.3530i 0.371181 + 0.642904i 0.989748 0.142828i $$-0.0456196\pi$$
−0.618566 + 0.785732i $$0.712286\pi$$
$$648$$ 0.346122 + 4.35299i 0.0135970 + 0.171002i
$$649$$ −14.9952 8.65746i −0.588612 0.339835i
$$650$$ 21.3210 + 2.71710i 0.836279 + 0.106573i
$$651$$ 26.1752 + 1.68667i 1.02589 + 0.0661059i
$$652$$ −11.4768 + 11.4768i −0.449465 + 0.449465i
$$653$$ −27.2368 15.7252i −1.06586 0.615373i −0.138811 0.990319i $$-0.544328\pi$$
−0.927047 + 0.374945i $$0.877661\pi$$
$$654$$ 34.0448 + 21.7838i 1.33126 + 0.851816i
$$655$$ −15.0208 4.02482i −0.586913 0.157263i
$$656$$ −37.5677 + 10.0662i −1.46677 + 0.393020i
$$657$$ −23.4236 + 4.03463i −0.913840 + 0.157406i
$$658$$ 21.1819 + 6.10323i 0.825758 + 0.237929i
$$659$$ 2.46575i 0.0960519i 0.998846 + 0.0480259i $$0.0152930\pi$$
−0.998846 + 0.0480259i $$0.984707\pi$$
$$660$$ −9.93704 0.453574i −0.386799 0.0176554i
$$661$$ 4.51394 16.8462i 0.175572 0.655243i −0.820882 0.571098i $$-0.806518\pi$$
0.996454 0.0841448i $$-0.0268158\pi$$
$$662$$ −0.779550 1.35022i −0.0302981 0.0524778i
$$663$$ −11.2494 + 7.91329i −0.436891 + 0.307327i
$$664$$ −0.711827 −0.0276242
$$665$$ 15.2288 + 4.38793i 0.590548 + 0.170157i
$$666$$ 24.4119 + 17.2379i 0.945943 + 0.667954i
$$667$$ −2.89931 1.67392i −0.112262 0.0648144i
$$668$$ 3.62951 13.5455i 0.140430 0.524092i
$$669$$ 27.4564 6.02992i 1.06152 0.233130i
$$670$$ 1.55661 0.417091i 0.0601369 0.0161136i
$$671$$ 13.9995 13.9995i 0.540444 0.540444i
$$672$$ 2.24658 34.8643i 0.0866639 1.34492i
$$673$$ 11.2854i 0.435020i −0.976058 0.217510i $$-0.930207\pi$$
0.976058 0.217510i $$-0.0697934\pi$$
$$674$$ 6.48075 + 24.1865i 0.249629 + 0.931629i
$$675$$ −6.03382 14.8152i −0.232242 0.570238i
$$676$$ 6.06813 + 21.9181i 0.233390 + 0.843003i
$$677$$ 8.62267 + 4.97830i 0.331396 + 0.191332i 0.656461 0.754360i $$-0.272053\pi$$
−0.325065 + 0.945692i $$0.605386\pi$$
$$678$$ 13.7260 43.2347i 0.527145 1.66042i
$$679$$ −0.0302564 + 1.61472i −0.00116113 + 0.0619671i
$$680$$ −1.48121 −0.0568019
$$681$$ −24.9740 + 22.7937i −0.957006 + 0.873455i
$$682$$ −25.3541 6.79361i −0.970858 0.260141i
$$683$$ −39.8038 10.6654i −1.52305 0.408100i −0.602305 0.798266i $$-0.705751\pi$$
−0.920745 + 0.390166i $$0.872418\pi$$
$$684$$ 7.84134 21.2813i 0.299821 0.813711i
$$685$$ 14.2184 0.543259
$$686$$ 30.0007 + 19.6472i 1.14543 + 0.750133i
$$687$$ −1.81025 0.574712i −0.0690653 0.0219266i
$$688$$ 5.71508 + 3.29960i 0.217885 + 0.125796i
$$689$$ 39.8455 + 16.3114i 1.51799 + 0.621413i
$$690$$ −1.81788 + 2.84108i −0.0692056 + 0.108158i
$$691$$ 4.87743 + 18.2028i 0.185546 + 0.692467i 0.994513 + 0.104613i $$0.0333604\pi$$
−0.808967 + 0.587854i $$0.799973\pi$$
$$692$$ 18.6272i 0.708101i
$$693$$ 15.1498 + 11.1288i 0.575493 + 0.422747i
$$694$$ −8.95959 + 8.95959i −0.340101 + 0.340101i
$$695$$ 2.54905 0.683016i 0.0966910 0.0259083i
$$696$$ 0.831821 + 3.78758i 0.0315301 + 0.143568i
$$697$$ −4.99503 + 18.6417i −0.189200 + 0.706104i
$$698$$ 39.9436 + 23.0615i 1.51189 + 0.872889i
$$699$$ −28.2536 + 14.6369i −1.06865 + 0.553617i
$$700$$ 3.42951 + 13.8306i 0.129623 + 0.522746i
$$701$$ 38.6302 1.45904 0.729522 0.683957i $$-0.239743\pi$$
0.729522 + 0.683957i $$0.239743\pi$$
$$702$$ 25.6980 25.6059i 0.969908 0.966433i
$$703$$ 11.1157 + 19.2530i 0.419238 + 0.726141i
$$704$$ −3.60768 + 13.4640i −0.135970 + 0.507445i
$$705$$ −0.471046 + 10.3198i −0.0177406 + 0.388666i
$$706$$ 60.4262i 2.27417i
$$707$$ −49.0839 14.1427i −1.84599 0.531893i
$$708$$ −21.1146 6.70340i −0.793536 0.251929i
$$709$$ −30.8334 + 8.26177i −1.15797 + 0.310277i −0.786155 0.618029i $$-0.787931\pi$$
−0.371816 + 0.928307i $$0.621265\pi$$
$$710$$ −39.8559 10.6794i −1.49577 0.400789i
$$711$$ 19.6921 + 1.80143i 0.738510 + 0.0675591i
$$712$$ −4.71449 2.72191i −0.176683 0.102008i
$$713$$ −2.93639 + 2.93639i −0.109969 + 0.109969i
$$714$$ −16.2611 10.8395i −0.608558 0.405657i
$$715$$ −7.24448 9.36058i −0.270928 0.350066i
$$716$$ −19.4083 11.2054i −0.725322 0.418765i
$$717$$ 10.3865 + 47.2934i 0.387891 + 1.76621i
$$718$$ −19.5018 33.7782i −0.727802 1.26059i
$$719$$ 10.6104 18.3777i 0.395700 0.685373i −0.597490 0.801876i $$-0.703835\pi$$
0.993190 + 0.116503i $$0.0371686\pi$$
$$720$$ 18.1888 3.13297i 0.677858 0.116759i
$$721$$ 50.4015 12.4979i 1.87705 0.465445i
$$722$$ −0.445628 + 0.445628i −0.0165846 + 0.0165846i
$$723$$ 8.91200 8.13394i 0.331441 0.302505i
$$724$$ −2.70539 4.68587i −0.100545 0.174149i
$$725$$ −7.10292 12.3026i −0.263796 0.456908i
$$726$$ 12.1887 + 13.3546i 0.452365 + 0.495637i
$$727$$ 22.5796i 0.837432i 0.908117 + 0.418716i $$0.137520\pi$$
−0.908117 + 0.418716i $$0.862480\pi$$
$$728$$ 3.71271 2.76374i 0.137602 0.102431i
$$729$$ −25.9951 7.29744i −0.962783 0.270275i
$$730$$ 5.50389 + 20.5408i 0.203708 + 0.760249i
$$731$$ 2.83591 1.63732i 0.104890 0.0605583i
$$732$$ 13.6523 21.3365i 0.504603 0.788619i
$$733$$ 7.49980 + 27.9896i 0.277011 + 1.03382i 0.954482 + 0.298270i $$0.0964096\pi$$
−0.677470 + 0.735550i $$0.736924\pi$$
$$734$$ −25.7681 25.7681i −0.951119 0.951119i
$$735$$ −5.68196 + 15.8165i −0.209582 + 0.583402i
$$736$$ 3.91116 + 3.91116i 0.144167 + 0.144167i
$$737$$ 1.23144 + 0.710974i 0.0453608 + 0.0261891i
$$738$$ 4.63735 50.6923i 0.170703 1.86601i
$$739$$ −11.8341 + 44.1656i −0.435326 + 1.62466i 0.304959 + 0.952366i $$0.401357\pi$$
−0.740285 + 0.672293i $$0.765309\pi$$
$$740$$ 6.23763 10.8039i 0.229300 0.397159i
$$741$$ 25.3396 9.28505i 0.930873 0.341095i
$$742$$ −1.14611 + 61.1655i −0.0420752 + 2.24545i
$$743$$ −12.5735 12.5735i −0.461277 0.461277i 0.437797 0.899074i $$-0.355759\pi$$
−0.899074 + 0.437797i $$0.855759\pi$$
$$744$$ 4.80510 + 0.219328i 0.176164 + 0.00804096i
$$745$$ 0.866567 0.500313i 0.0317486 0.0183300i
$$746$$ 3.92244 14.6388i 0.143611 0.535963i
$$747$$ 1.52170 4.12988i 0.0556762 0.151105i
$$748$$ 6.45233 + 6.45233i 0.235920 + 0.235920i
$$749$$ −14.2260 + 3.52757i −0.519807 + 0.128895i
$$750$$ −33.3476 + 17.2758i −1.21768 + 0.630824i
$$751$$ −12.0283 6.94455i −0.438919 0.253410i 0.264220 0.964462i $$-0.414886\pi$$
−0.703139 + 0.711052i $$0.748219\pi$$
$$752$$ 18.4467 + 4.94278i 0.672682 + 0.180245i
$$753$$ 18.7528 + 11.9991i 0.683390 + 0.437272i
$$754$$ 19.5057 25.6396i 0.710354 0.933740i
$$755$$ 25.3139i 0.921266i
$$756$$ 21.9861 + 9.74922i 0.799626 + 0.354576i
$$757$$ −42.8297 −1.55667 −0.778336 0.627848i $$-0.783936\pi$$
−0.778336 + 0.627848i $$0.783936\pi$$
$$758$$ −9.63097 + 16.6813i −0.349812 + 0.605893i
$$759$$ −2.90685 + 0.638398i −0.105512 + 0.0231724i
$$760$$ 2.80733 + 0.752221i 0.101832 + 0.0272859i
$$761$$ 2.47352 + 9.23131i 0.0896651 + 0.334635i 0.996157 0.0875891i $$-0.0279163\pi$$
−0.906492 + 0.422224i $$0.861250\pi$$
$$762$$ 4.59336 14.4683i 0.166400 0.524133i
$$763$$ −27.9064 + 15.4220i −1.01028 + 0.558316i
$$764$$ −21.7226 −0.785897
$$765$$ 3.16645 8.59371i 0.114483 0.310706i
$$766$$ 28.4971 16.4528i 1.02964 0.594464i
$$767$$ −10.1885 24.3117i −0.367886 0.877846i
$$768$$ 1.51858 33.2696i 0.0547972 1.20051i
$$769$$ −1.62419 + 1.62419i −0.0585700 + 0.0585700i −0.735785 0.677215i $$-0.763187\pi$$
0.677215 + 0.735785i $$0.263187\pi$$
$$770$$ 8.68057 14.4050i 0.312826 0.519121i
$$771$$ 15.4536 8.00579i 0.556548 0.288321i
$$772$$ 9.60674 + 35.8528i 0.345754 + 1.29037i
$$773$$ &minu