Defining parameters
Level: | \( N \) | \(=\) | \( 273 = 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 273.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(74\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(273, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 40 | 16 | 24 |
Cusp forms | 32 | 16 | 16 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(273, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
273.2.c.a | $2$ | $2.180$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(2\) | \(0\) | \(0\) | \(q+2iq^{2}+q^{3}-2q^{4}+3iq^{5}+2iq^{6}+\cdots\) |
273.2.c.b | $6$ | $2.180$ | 6.0.350464.1 | None | \(0\) | \(6\) | \(0\) | \(0\) | \(q-\beta _{4}q^{2}+q^{3}+(-\beta _{1}+\beta _{2})q^{4}+(-\beta _{3}+\cdots)q^{5}+\cdots\) |
273.2.c.c | $8$ | $2.180$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(-8\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}-q^{3}+(-2+\beta _{2})q^{4}+(-\beta _{3}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(273, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(273, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)