# Properties

 Label 273.2.by.c.76.4 Level $273$ Weight $2$ Character 273.76 Analytic conductor $2.180$ Analytic rank $0$ Dimension $32$ CM no Inner twists $2$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$273 = 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 273.by (of order $$12$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.17991597518$$ Analytic rank: $$0$$ Dimension: $$32$$ Relative dimension: $$8$$ over $$\Q(\zeta_{12})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 76.4 Character $$\chi$$ $$=$$ 273.76 Dual form 273.2.by.c.97.4

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.189683 + 0.707908i) q^{2} +(0.866025 - 0.500000i) q^{3} +(1.26690 + 0.731443i) q^{4} +(1.23329 - 1.23329i) q^{5} +(0.189683 + 0.707908i) q^{6} +(2.32720 - 1.25862i) q^{7} +(-1.79455 + 1.79455i) q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})$$ $$q+(-0.189683 + 0.707908i) q^{2} +(0.866025 - 0.500000i) q^{3} +(1.26690 + 0.731443i) q^{4} +(1.23329 - 1.23329i) q^{5} +(0.189683 + 0.707908i) q^{6} +(2.32720 - 1.25862i) q^{7} +(-1.79455 + 1.79455i) q^{8} +(0.500000 - 0.866025i) q^{9} +(0.639122 + 1.10699i) q^{10} +(-3.18977 - 0.854696i) q^{11} +1.46289 q^{12} +(-2.53031 - 2.56856i) q^{13} +(0.449558 + 1.88618i) q^{14} +(0.451416 - 1.68471i) q^{15} +(0.532906 + 0.923019i) q^{16} +(0.433708 - 0.751205i) q^{17} +(0.518224 + 0.518224i) q^{18} +(1.01858 + 3.80140i) q^{19} +(2.46454 - 0.660371i) q^{20} +(1.38610 - 2.25360i) q^{21} +(1.21009 - 2.09594i) q^{22} +(-3.77196 + 2.17774i) q^{23} +(-0.656852 + 2.45140i) q^{24} +1.95798i q^{25} +(2.29826 - 1.30401i) q^{26} -1.00000i q^{27} +(3.86894 + 0.107671i) q^{28} +(2.65427 + 4.59734i) q^{29} +(1.10699 + 0.639122i) q^{30} +(-0.220754 + 0.220754i) q^{31} +(-5.65731 + 1.51587i) q^{32} +(-3.18977 + 0.854696i) q^{33} +(0.449517 + 0.449517i) q^{34} +(1.31787 - 4.42237i) q^{35} +(1.26690 - 0.731443i) q^{36} +(-3.57217 - 0.957160i) q^{37} -2.88425 q^{38} +(-3.47560 - 0.959284i) q^{39} +4.42641i q^{40} +(-1.90334 - 0.509998i) q^{41} +(1.33242 + 1.40870i) q^{42} +(9.99342 + 5.76970i) q^{43} +(-3.41595 - 3.41595i) q^{44} +(-0.451416 - 1.68471i) q^{45} +(-0.826162 - 3.08328i) q^{46} +(-3.68984 - 3.68984i) q^{47} +(0.923019 + 0.532906i) q^{48} +(3.83174 - 5.85814i) q^{49} +(-1.38607 - 0.371397i) q^{50} -0.867417i q^{51} +(-1.32689 - 5.10489i) q^{52} -3.55843 q^{53} +(0.707908 + 0.189683i) q^{54} +(-4.98801 + 2.87983i) q^{55} +(-1.91762 + 6.43495i) q^{56} +(2.78282 + 2.78282i) q^{57} +(-3.75796 + 1.00694i) q^{58} +(-8.89645 + 2.38380i) q^{59} +(1.80417 - 1.80417i) q^{60} +(-4.78192 - 2.76084i) q^{61} +(-0.114400 - 0.198147i) q^{62} +(0.0736014 - 2.64473i) q^{63} -2.16076i q^{64} +(-6.28840 - 0.0471733i) q^{65} -2.42019i q^{66} +(1.01969 - 3.80552i) q^{67} +(1.09893 - 0.634466i) q^{68} +(-2.17774 + 3.77196i) q^{69} +(2.88065 + 1.77178i) q^{70} +(11.9487 - 3.20164i) q^{71} +(0.656852 + 2.45140i) q^{72} +(-5.55302 - 5.55302i) q^{73} +(1.35516 - 2.34721i) q^{74} +(0.978991 + 1.69566i) q^{75} +(-1.49007 + 5.56101i) q^{76} +(-8.49898 + 2.02567i) q^{77} +(1.33835 - 2.27844i) q^{78} -15.7334 q^{79} +(1.79558 + 0.481124i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(0.722063 - 1.25065i) q^{82} +(3.80823 - 3.80823i) q^{83} +(3.40443 - 1.84122i) q^{84} +(-0.391566 - 1.46134i) q^{85} +(-5.98000 + 5.98000i) q^{86} +(4.59734 + 2.65427i) q^{87} +(7.25801 - 4.19041i) q^{88} +(3.26801 - 12.1964i) q^{89} +1.27824 q^{90} +(-9.12140 - 2.79285i) q^{91} -6.37158 q^{92} +(-0.0808014 + 0.301555i) q^{93} +(3.31197 - 1.91217i) q^{94} +(5.94444 + 3.43202i) q^{95} +(-4.14143 + 4.14143i) q^{96} +(-0.756697 - 2.82403i) q^{97} +(3.42021 + 3.82371i) q^{98} +(-2.33507 + 2.33507i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$32q - 2q^{2} + 6q^{4} - 2q^{5} + 2q^{6} - 2q^{7} + 2q^{8} + 16q^{9} + O(q^{10})$$ $$32q - 2q^{2} + 6q^{4} - 2q^{5} + 2q^{6} - 2q^{7} + 2q^{8} + 16q^{9} - 2q^{10} - 4q^{11} - 32q^{12} - 6q^{13} + 34q^{14} + 4q^{15} + 14q^{16} + 8q^{17} + 2q^{18} - 2q^{19} - 44q^{20} + 2q^{21} - 4q^{22} - 18q^{23} - 4q^{24} + 28q^{26} - 18q^{28} - 18q^{29} + 14q^{31} - 8q^{32} - 4q^{33} + 66q^{34} - 20q^{35} + 6q^{36} - 24q^{37} - 24q^{38} + 8q^{39} + 16q^{42} - 6q^{43} - 20q^{44} - 4q^{45} - 58q^{46} + 28q^{47} + 60q^{48} + 10q^{49} + 70q^{50} - 28q^{52} - 80q^{53} + 4q^{54} - 60q^{55} - 120q^{56} + 16q^{57} - 4q^{58} + 42q^{59} - 58q^{60} - 36q^{61} - 52q^{62} + 2q^{63} + 14q^{65} + 26q^{67} + 72q^{68} - 2q^{69} + 68q^{70} - 4q^{71} + 4q^{72} - 12q^{73} - 18q^{74} - 16q^{75} + 48q^{76} - 28q^{77} - 14q^{78} - 4q^{79} + 98q^{80} - 16q^{81} - 20q^{82} + 36q^{83} + 32q^{84} - 10q^{85} - 40q^{86} + 96q^{88} + 54q^{89} - 4q^{90} - 54q^{91} - 4q^{92} + 2q^{93} + 60q^{95} - 22q^{96} + 40q^{97} + 4q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/273\mathbb{Z}\right)^\times$$.

 $$n$$ $$92$$ $$106$$ $$157$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.189683 + 0.707908i −0.134126 + 0.500566i 0.865874 + 0.500263i $$0.166763\pi$$
−1.00000 0.000303559i $$0.999903\pi$$
$$3$$ 0.866025 0.500000i 0.500000 0.288675i
$$4$$ 1.26690 + 0.731443i 0.633449 + 0.365722i
$$5$$ 1.23329 1.23329i 0.551545 0.551545i −0.375342 0.926887i $$-0.622475\pi$$
0.926887 + 0.375342i $$0.122475\pi$$
$$6$$ 0.189683 + 0.707908i 0.0774379 + 0.289002i
$$7$$ 2.32720 1.25862i 0.879600 0.475715i
$$8$$ −1.79455 + 1.79455i −0.634470 + 0.634470i
$$9$$ 0.500000 0.866025i 0.166667 0.288675i
$$10$$ 0.639122 + 1.10699i 0.202108 + 0.350062i
$$11$$ −3.18977 0.854696i −0.961752 0.257701i −0.256410 0.966568i $$-0.582540\pi$$
−0.705342 + 0.708867i $$0.749206\pi$$
$$12$$ 1.46289 0.422299
$$13$$ −2.53031 2.56856i −0.701783 0.712391i
$$14$$ 0.449558 + 1.88618i 0.120149 + 0.504104i
$$15$$ 0.451416 1.68471i 0.116555 0.434990i
$$16$$ 0.532906 + 0.923019i 0.133226 + 0.230755i
$$17$$ 0.433708 0.751205i 0.105190 0.182194i −0.808626 0.588323i $$-0.799788\pi$$
0.913816 + 0.406129i $$0.133122\pi$$
$$18$$ 0.518224 + 0.518224i 0.122147 + 0.122147i
$$19$$ 1.01858 + 3.80140i 0.233679 + 0.872100i 0.978740 + 0.205105i $$0.0657535\pi$$
−0.745061 + 0.666996i $$0.767580\pi$$
$$20$$ 2.46454 0.660371i 0.551087 0.147663i
$$21$$ 1.38610 2.25360i 0.302473 0.491776i
$$22$$ 1.21009 2.09594i 0.257993 0.446856i
$$23$$ −3.77196 + 2.17774i −0.786508 + 0.454090i −0.838732 0.544545i $$-0.816702\pi$$
0.0522240 + 0.998635i $$0.483369\pi$$
$$24$$ −0.656852 + 2.45140i −0.134079 + 0.500391i
$$25$$ 1.95798i 0.391596i
$$26$$ 2.29826 1.30401i 0.450727 0.255738i
$$27$$ 1.00000i 0.192450i
$$28$$ 3.86894 + 0.107671i 0.731160 + 0.0203478i
$$29$$ 2.65427 + 4.59734i 0.492886 + 0.853704i 0.999966 0.00819474i $$-0.00260850\pi$$
−0.507080 + 0.861899i $$0.669275\pi$$
$$30$$ 1.10699 + 0.639122i 0.202108 + 0.116687i
$$31$$ −0.220754 + 0.220754i −0.0396485 + 0.0396485i −0.726653 0.687005i $$-0.758925\pi$$
0.687005 + 0.726653i $$0.258925\pi$$
$$32$$ −5.65731 + 1.51587i −1.00008 + 0.267971i
$$33$$ −3.18977 + 0.854696i −0.555268 + 0.148784i
$$34$$ 0.449517 + 0.449517i 0.0770915 + 0.0770915i
$$35$$ 1.31787 4.42237i 0.222761 0.747517i
$$36$$ 1.26690 0.731443i 0.211150 0.121907i
$$37$$ −3.57217 0.957160i −0.587261 0.157356i −0.0470599 0.998892i $$-0.514985\pi$$
−0.540201 + 0.841536i $$0.681652\pi$$
$$38$$ −2.88425 −0.467887
$$39$$ −3.47560 0.959284i −0.556541 0.153608i
$$40$$ 4.42641i 0.699878i
$$41$$ −1.90334 0.509998i −0.297251 0.0796483i 0.107111 0.994247i $$-0.465840\pi$$
−0.404363 + 0.914599i $$0.632507\pi$$
$$42$$ 1.33242 + 1.40870i 0.205597 + 0.217368i
$$43$$ 9.99342 + 5.76970i 1.52398 + 0.879872i 0.999597 + 0.0283909i $$0.00903832\pi$$
0.524386 + 0.851481i $$0.324295\pi$$
$$44$$ −3.41595 3.41595i −0.514974 0.514974i
$$45$$ −0.451416 1.68471i −0.0672931 0.251141i
$$46$$ −0.826162 3.08328i −0.121811 0.454605i
$$47$$ −3.68984 3.68984i −0.538219 0.538219i 0.384786 0.923006i $$-0.374275\pi$$
−0.923006 + 0.384786i $$0.874275\pi$$
$$48$$ 0.923019 + 0.532906i 0.133226 + 0.0769183i
$$49$$ 3.83174 5.85814i 0.547391 0.836877i
$$50$$ −1.38607 0.371397i −0.196020 0.0525234i
$$51$$ 0.867417i 0.121463i
$$52$$ −1.32689 5.10489i −0.184006 0.707920i
$$53$$ −3.55843 −0.488788 −0.244394 0.969676i $$-0.578589\pi$$
−0.244394 + 0.969676i $$0.578589\pi$$
$$54$$ 0.707908 + 0.189683i 0.0963341 + 0.0258126i
$$55$$ −4.98801 + 2.87983i −0.672583 + 0.388316i
$$56$$ −1.91762 + 6.43495i −0.256253 + 0.859907i
$$57$$ 2.78282 + 2.78282i 0.368593 + 0.368593i
$$58$$ −3.75796 + 1.00694i −0.493445 + 0.132218i
$$59$$ −8.89645 + 2.38380i −1.15822 + 0.310344i −0.786255 0.617903i $$-0.787983\pi$$
−0.371965 + 0.928247i $$0.621316\pi$$
$$60$$ 1.80417 1.80417i 0.232917 0.232917i
$$61$$ −4.78192 2.76084i −0.612262 0.353490i 0.161588 0.986858i $$-0.448338\pi$$
−0.773850 + 0.633369i $$0.781672\pi$$
$$62$$ −0.114400 0.198147i −0.0145288 0.0251646i
$$63$$ 0.0736014 2.64473i 0.00927291 0.333204i
$$64$$ 2.16076i 0.270095i
$$65$$ −6.28840 0.0471733i −0.779980 0.00585112i
$$66$$ 2.42019i 0.297904i
$$67$$ 1.01969 3.80552i 0.124575 0.464919i −0.875250 0.483672i $$-0.839303\pi$$
0.999824 + 0.0187529i $$0.00596958\pi$$
$$68$$ 1.09893 0.634466i 0.133265 0.0769403i
$$69$$ −2.17774 + 3.77196i −0.262169 + 0.454090i
$$70$$ 2.88065 + 1.77178i 0.344304 + 0.211768i
$$71$$ 11.9487 3.20164i 1.41805 0.379965i 0.533258 0.845952i $$-0.320967\pi$$
0.884791 + 0.465987i $$0.154301\pi$$
$$72$$ 0.656852 + 2.45140i 0.0774107 + 0.288901i
$$73$$ −5.55302 5.55302i −0.649932 0.649932i 0.303044 0.952977i $$-0.401997\pi$$
−0.952977 + 0.303044i $$0.901997\pi$$
$$74$$ 1.35516 2.34721i 0.157534 0.272858i
$$75$$ 0.978991 + 1.69566i 0.113044 + 0.195798i
$$76$$ −1.49007 + 5.56101i −0.170923 + 0.637892i
$$77$$ −8.49898 + 2.02567i −0.968549 + 0.230846i
$$78$$ 1.33835 2.27844i 0.151538 0.257983i
$$79$$ −15.7334 −1.77015 −0.885073 0.465453i $$-0.845891\pi$$
−0.885073 + 0.465453i $$0.845891\pi$$
$$80$$ 1.79558 + 0.481124i 0.200752 + 0.0537913i
$$81$$ −0.500000 0.866025i −0.0555556 0.0962250i
$$82$$ 0.722063 1.25065i 0.0797385 0.138111i
$$83$$ 3.80823 3.80823i 0.418007 0.418007i −0.466509 0.884516i $$-0.654488\pi$$
0.884516 + 0.466509i $$0.154488\pi$$
$$84$$ 3.40443 1.84122i 0.371454 0.200894i
$$85$$ −0.391566 1.46134i −0.0424713 0.158505i
$$86$$ −5.98000 + 5.98000i −0.644841 + 0.644841i
$$87$$ 4.59734 + 2.65427i 0.492886 + 0.284568i
$$88$$ 7.25801 4.19041i 0.773706 0.446700i
$$89$$ 3.26801 12.1964i 0.346409 1.29282i −0.544549 0.838729i $$-0.683299\pi$$
0.890958 0.454086i $$-0.150034\pi$$
$$90$$ 1.27824 0.134739
$$91$$ −9.12140 2.79285i −0.956183 0.292771i
$$92$$ −6.37158 −0.664283
$$93$$ −0.0808014 + 0.301555i −0.00837872 + 0.0312698i
$$94$$ 3.31197 1.91217i 0.341604 0.197225i
$$95$$ 5.94444 + 3.43202i 0.609887 + 0.352118i
$$96$$ −4.14143 + 4.14143i −0.422683 + 0.422683i
$$97$$ −0.756697 2.82403i −0.0768309 0.286737i 0.916811 0.399321i $$-0.130754\pi$$
−0.993642 + 0.112584i $$0.964087\pi$$
$$98$$ 3.42021 + 3.82371i 0.345493 + 0.386253i
$$99$$ −2.33507 + 2.33507i −0.234684 + 0.234684i
$$100$$ −1.43215 + 2.48056i −0.143215 + 0.248056i
$$101$$ 4.75389 + 8.23397i 0.473029 + 0.819311i 0.999523 0.0308679i $$-0.00982712\pi$$
−0.526494 + 0.850179i $$0.676494\pi$$
$$102$$ 0.614051 + 0.164534i 0.0608001 + 0.0162913i
$$103$$ 8.04351 0.792551 0.396275 0.918132i $$-0.370303\pi$$
0.396275 + 0.918132i $$0.370303\pi$$
$$104$$ 9.15020 + 0.0686414i 0.897251 + 0.00673085i
$$105$$ −1.06988 4.48882i −0.104409 0.438064i
$$106$$ 0.674975 2.51904i 0.0655594 0.244671i
$$107$$ 5.49111 + 9.51088i 0.530845 + 0.919451i 0.999352 + 0.0359912i $$0.0114588\pi$$
−0.468507 + 0.883460i $$0.655208\pi$$
$$108$$ 0.731443 1.26690i 0.0703832 0.121907i
$$109$$ −2.13897 2.13897i −0.204876 0.204876i 0.597209 0.802086i $$-0.296276\pi$$
−0.802086 + 0.597209i $$0.796276\pi$$
$$110$$ −1.09251 4.07731i −0.104167 0.388756i
$$111$$ −3.57217 + 0.957160i −0.339055 + 0.0908496i
$$112$$ 2.40191 + 1.47733i 0.226959 + 0.139594i
$$113$$ 7.04028 12.1941i 0.662294 1.14713i −0.317718 0.948185i $$-0.602916\pi$$
0.980011 0.198941i $$-0.0637503\pi$$
$$114$$ −2.49783 + 1.44212i −0.233943 + 0.135067i
$$115$$ −1.96614 + 7.33772i −0.183343 + 0.684246i
$$116$$ 7.76581i 0.721037i
$$117$$ −3.48960 + 0.907034i −0.322613 + 0.0838553i
$$118$$ 6.75004i 0.621391i
$$119$$ 0.0638431 2.29408i 0.00585249 0.210298i
$$120$$ 2.21321 + 3.83339i 0.202037 + 0.349939i
$$121$$ −0.0821489 0.0474287i −0.00746808 0.00431170i
$$122$$ 2.86147 2.86147i 0.259066 0.259066i
$$123$$ −1.90334 + 0.509998i −0.171618 + 0.0459849i
$$124$$ −0.441141 + 0.118203i −0.0396156 + 0.0106150i
$$125$$ 8.58122 + 8.58122i 0.767528 + 0.767528i
$$126$$ 1.85826 + 0.553764i 0.165547 + 0.0493332i
$$127$$ 4.95962 2.86344i 0.440095 0.254089i −0.263543 0.964648i $$-0.584891\pi$$
0.703638 + 0.710559i $$0.251558\pi$$
$$128$$ −9.78499 2.62188i −0.864879 0.231744i
$$129$$ 11.5394 1.01599
$$130$$ 1.22620 4.44266i 0.107545 0.389647i
$$131$$ 21.7908i 1.90387i 0.306294 + 0.951937i $$0.400911\pi$$
−0.306294 + 0.951937i $$0.599089\pi$$
$$132$$ −4.66627 1.25032i −0.406147 0.108827i
$$133$$ 7.15497 + 7.56461i 0.620415 + 0.655935i
$$134$$ 2.50054 + 1.44369i 0.216014 + 0.124716i
$$135$$ −1.23329 1.23329i −0.106145 0.106145i
$$136$$ 0.569764 + 2.12639i 0.0488569 + 0.182336i
$$137$$ 0.00993599 + 0.0370816i 0.000848889 + 0.00316810i 0.966349 0.257235i $$-0.0828113\pi$$
−0.965500 + 0.260403i $$0.916145\pi$$
$$138$$ −2.25712 2.25712i −0.192139 0.192139i
$$139$$ 14.5766 + 8.41579i 1.23637 + 0.713818i 0.968350 0.249596i $$-0.0802979\pi$$
0.268018 + 0.963414i $$0.413631\pi$$
$$140$$ 4.90432 4.63874i 0.414490 0.392045i
$$141$$ −5.04042 1.35058i −0.424480 0.113739i
$$142$$ 9.06588i 0.760792i
$$143$$ 5.87578 + 10.3558i 0.491357 + 0.865994i
$$144$$ 1.06581 0.0888176
$$145$$ 8.94335 + 2.39636i 0.742705 + 0.199007i
$$146$$ 4.98435 2.87771i 0.412507 0.238161i
$$147$$ 0.389311 6.98917i 0.0321099 0.576457i
$$148$$ −3.82546 3.82546i −0.314451 0.314451i
$$149$$ 13.8533 3.71198i 1.13491 0.304097i 0.358005 0.933720i $$-0.383457\pi$$
0.776901 + 0.629622i $$0.216790\pi$$
$$150$$ −1.38607 + 0.371397i −0.113172 + 0.0303244i
$$151$$ −16.8022 + 16.8022i −1.36735 + 1.36735i −0.503142 + 0.864204i $$0.667823\pi$$
−0.864204 + 0.503142i $$0.832177\pi$$
$$152$$ −8.64971 4.99391i −0.701584 0.405060i
$$153$$ −0.433708 0.751205i −0.0350632 0.0607313i
$$154$$ 0.178129 6.40073i 0.0143540 0.515786i
$$155$$ 0.544507i 0.0437359i
$$156$$ −3.70156 3.75752i −0.296362 0.300842i
$$157$$ 15.4058i 1.22952i −0.788715 0.614758i $$-0.789254\pi$$
0.788715 0.614758i $$-0.210746\pi$$
$$158$$ 2.98436 11.1378i 0.237423 0.886075i
$$159$$ −3.08169 + 1.77922i −0.244394 + 0.141101i
$$160$$ −5.10760 + 8.84662i −0.403791 + 0.699387i
$$161$$ −6.03715 + 9.81552i −0.475794 + 0.773571i
$$162$$ 0.707908 0.189683i 0.0556185 0.0149029i
$$163$$ −0.340861 1.27211i −0.0266983 0.0996393i 0.951291 0.308294i $$-0.0997581\pi$$
−0.977989 + 0.208655i $$0.933091\pi$$
$$164$$ −2.03830 2.03830i −0.159164 0.159164i
$$165$$ −2.87983 + 4.98801i −0.224194 + 0.388316i
$$166$$ 1.97352 + 3.41823i 0.153175 + 0.265306i
$$167$$ 6.28848 23.4689i 0.486617 1.81608i −0.0860480 0.996291i $$-0.527424\pi$$
0.572665 0.819789i $$-0.305909\pi$$
$$168$$ 1.55677 + 6.53164i 0.120107 + 0.503927i
$$169$$ −0.195031 + 12.9985i −0.0150024 + 0.999887i
$$170$$ 1.10877 0.0850388
$$171$$ 3.80140 + 1.01858i 0.290700 + 0.0778929i
$$172$$ 8.44042 + 14.6192i 0.643576 + 1.11471i
$$173$$ 0.316932 0.548943i 0.0240959 0.0417353i −0.853726 0.520722i $$-0.825663\pi$$
0.877822 + 0.478987i $$0.158996\pi$$
$$174$$ −2.75102 + 2.75102i −0.208554 + 0.208554i
$$175$$ 2.46436 + 4.55662i 0.186288 + 0.344448i
$$176$$ −0.910945 3.39969i −0.0686651 0.256261i
$$177$$ −6.51266 + 6.51266i −0.489521 + 0.489521i
$$178$$ 8.01403 + 4.62691i 0.600677 + 0.346801i
$$179$$ 12.6821 7.32204i 0.947908 0.547275i 0.0554778 0.998460i $$-0.482332\pi$$
0.892431 + 0.451185i $$0.148998\pi$$
$$180$$ 0.660371 2.46454i 0.0492211 0.183696i
$$181$$ −6.41112 −0.476535 −0.238267 0.971200i $$-0.576579\pi$$
−0.238267 + 0.971200i $$0.576579\pi$$
$$182$$ 3.70726 5.92735i 0.274800 0.439365i
$$183$$ −5.52169 −0.408175
$$184$$ 2.86091 10.6770i 0.210909 0.787122i
$$185$$ −5.58598 + 3.22507i −0.410690 + 0.237112i
$$186$$ −0.198147 0.114400i −0.0145288 0.00838821i
$$187$$ −2.02548 + 2.02548i −0.148118 + 0.148118i
$$188$$ −1.97574 7.37357i −0.144096 0.537773i
$$189$$ −1.25862 2.32720i −0.0915514 0.169279i
$$190$$ −3.55712 + 3.55712i −0.258060 + 0.258060i
$$191$$ 2.37706 4.11718i 0.171998 0.297909i −0.767120 0.641503i $$-0.778311\pi$$
0.939118 + 0.343594i $$0.111644\pi$$
$$192$$ −1.08038 1.87128i −0.0779698 0.135048i
$$193$$ −9.10651 2.44008i −0.655501 0.175641i −0.0842861 0.996442i $$-0.526861\pi$$
−0.571215 + 0.820801i $$0.693528\pi$$
$$194$$ 2.14269 0.153836
$$195$$ −5.46950 + 3.10335i −0.391679 + 0.222235i
$$196$$ 9.13931 4.61896i 0.652808 0.329926i
$$197$$ 2.90812 10.8532i 0.207195 0.773262i −0.781574 0.623812i $$-0.785583\pi$$
0.988769 0.149450i $$-0.0477503\pi$$
$$198$$ −1.21009 2.09594i −0.0859975 0.148952i
$$199$$ 6.27981 10.8770i 0.445164 0.771047i −0.552899 0.833248i $$-0.686479\pi$$
0.998064 + 0.0622009i $$0.0198120\pi$$
$$200$$ −3.51370 3.51370i −0.248456 0.248456i
$$201$$ −1.01969 3.80552i −0.0719232 0.268421i
$$202$$ −6.73063 + 1.80347i −0.473565 + 0.126891i
$$203$$ 11.9633 + 7.35820i 0.839662 + 0.516445i
$$204$$ 0.634466 1.09893i 0.0444215 0.0769403i
$$205$$ −2.97635 + 1.71839i −0.207877 + 0.120018i
$$206$$ −1.52572 + 5.69406i −0.106302 + 0.396724i
$$207$$ 4.35548i 0.302727i
$$208$$ 1.02242 3.70433i 0.0708918 0.256849i
$$209$$ 12.9962i 0.898963i
$$210$$ 3.38061 + 0.0940806i 0.233284 + 0.00649218i
$$211$$ −5.70417 9.87991i −0.392691 0.680161i 0.600112 0.799916i $$-0.295123\pi$$
−0.992804 + 0.119755i $$0.961789\pi$$
$$212$$ −4.50817 2.60279i −0.309622 0.178760i
$$213$$ 8.74706 8.74706i 0.599338 0.599338i
$$214$$ −7.77440 + 2.08314i −0.531447 + 0.142401i
$$215$$ 19.4405 5.20908i 1.32583 0.355256i
$$216$$ 1.79455 + 1.79455i 0.122104 + 0.122104i
$$217$$ −0.235893 + 0.791584i −0.0160134 + 0.0537362i
$$218$$ 1.91992 1.10847i 0.130034 0.0750749i
$$219$$ −7.58557 2.03255i −0.512585 0.137347i
$$220$$ −8.42572 −0.568062
$$221$$ −3.02693 + 0.786776i −0.203614 + 0.0529243i
$$222$$ 2.71032i 0.181905i
$$223$$ −7.03645 1.88541i −0.471196 0.126257i 0.0154044 0.999881i $$-0.495096\pi$$
−0.486600 + 0.873625i $$0.661763\pi$$
$$224$$ −11.2578 + 10.6482i −0.752192 + 0.711459i
$$225$$ 1.69566 + 0.978991i 0.113044 + 0.0652661i
$$226$$ 7.29689 + 7.29689i 0.485382 + 0.485382i
$$227$$ 6.07133 + 22.6585i 0.402968 + 1.50390i 0.807772 + 0.589495i $$0.200673\pi$$
−0.404804 + 0.914404i $$0.632660\pi$$
$$228$$ 1.49007 + 5.56101i 0.0986822 + 0.368287i
$$229$$ −16.2331 16.2331i −1.07271 1.07271i −0.997140 0.0755720i $$-0.975922\pi$$
−0.0755720 0.997140i $$-0.524078\pi$$
$$230$$ −4.82148 2.78368i −0.317919 0.183551i
$$231$$ −6.34750 + 6.00377i −0.417635 + 0.395019i
$$232$$ −13.0134 3.48693i −0.854372 0.228928i
$$233$$ 16.5274i 1.08274i −0.840783 0.541372i $$-0.817905\pi$$
0.840783 0.541372i $$-0.182095\pi$$
$$234$$ 0.0198220 2.64236i 0.00129581 0.172737i
$$235$$ −9.10131 −0.593704
$$236$$ −13.0145 3.48723i −0.847172 0.226999i
$$237$$ −13.6255 + 7.86670i −0.885073 + 0.510997i
$$238$$ 1.61189 + 0.480344i 0.104483 + 0.0311361i
$$239$$ 18.8339 + 18.8339i 1.21826 + 1.21826i 0.968239 + 0.250025i $$0.0804389\pi$$
0.250025 + 0.968239i $$0.419561\pi$$
$$240$$ 1.79558 0.481124i 0.115904 0.0310564i
$$241$$ −1.11909 + 0.299860i −0.0720871 + 0.0193157i −0.294682 0.955595i $$-0.595214\pi$$
0.222595 + 0.974911i $$0.428547\pi$$
$$242$$ 0.0491574 0.0491574i 0.00315996 0.00315996i
$$243$$ −0.866025 0.500000i −0.0555556 0.0320750i
$$244$$ −4.03880 6.99541i −0.258558 0.447835i
$$245$$ −2.49915 11.9504i −0.159665 0.763486i
$$246$$ 1.44413i 0.0920741i
$$247$$ 7.18680 12.2350i 0.457285 0.778495i
$$248$$ 0.792308i 0.0503116i
$$249$$ 1.39391 5.20214i 0.0883354 0.329672i
$$250$$ −7.70243 + 4.44700i −0.487144 + 0.281253i
$$251$$ −6.82617 + 11.8233i −0.430864 + 0.746278i −0.996948 0.0780693i $$-0.975124\pi$$
0.566084 + 0.824348i $$0.308458\pi$$
$$252$$ 2.02771 3.29676i 0.127734 0.207676i
$$253$$ 13.8930 3.72262i 0.873445 0.234039i
$$254$$ 1.08629 + 4.05410i 0.0681600 + 0.254377i
$$255$$ −1.06978 1.06978i −0.0669921 0.0669921i
$$256$$ 5.87286 10.1721i 0.367054 0.635756i
$$257$$ 0.128138 + 0.221941i 0.00799302 + 0.0138443i 0.869994 0.493062i $$-0.164122\pi$$
−0.862001 + 0.506906i $$0.830789\pi$$
$$258$$ −2.18883 + 8.16884i −0.136271 + 0.508570i
$$259$$ −9.51786 + 2.26851i −0.591411 + 0.140958i
$$260$$ −7.93225 4.65937i −0.491938 0.288962i
$$261$$ 5.30855 0.328591
$$262$$ −15.4259 4.13336i −0.953015 0.255360i
$$263$$ 6.21656 + 10.7674i 0.383329 + 0.663946i 0.991536 0.129833i $$-0.0414441\pi$$
−0.608206 + 0.793779i $$0.708111\pi$$
$$264$$ 4.19041 7.25801i 0.257902 0.446700i
$$265$$ −4.38858 + 4.38858i −0.269589 + 0.269589i
$$266$$ −6.71222 + 3.63018i −0.411553 + 0.222581i
$$267$$ −3.26801 12.1964i −0.199999 0.746407i
$$268$$ 4.07536 4.07536i 0.248942 0.248942i
$$269$$ −23.9300 13.8160i −1.45904 0.842375i −0.460072 0.887882i $$-0.652176\pi$$
−0.998964 + 0.0455067i $$0.985510\pi$$
$$270$$ 1.10699 0.639122i 0.0673694 0.0388957i
$$271$$ −7.85980 + 29.3332i −0.477449 + 1.78186i 0.134442 + 0.990921i $$0.457076\pi$$
−0.611891 + 0.790942i $$0.709591\pi$$
$$272$$ 0.924502 0.0560562
$$273$$ −9.29579 + 2.14202i −0.562607 + 0.129641i
$$274$$ −0.0281351 −0.00169970
$$275$$ 1.67348 6.24551i 0.100915 0.376619i
$$276$$ −5.51795 + 3.18579i −0.332141 + 0.191762i
$$277$$ 9.29180 + 5.36462i 0.558290 + 0.322329i 0.752459 0.658639i $$-0.228868\pi$$
−0.194169 + 0.980968i $$0.562201\pi$$
$$278$$ −8.72253 + 8.72253i −0.523143 + 0.523143i
$$279$$ 0.0808014 + 0.301555i 0.00483746 + 0.0180536i
$$280$$ 5.57119 + 10.3012i 0.332942 + 0.615612i
$$281$$ −17.6179 + 17.6179i −1.05099 + 1.05099i −0.0523655 + 0.998628i $$0.516676\pi$$
−0.998628 + 0.0523655i $$0.983324\pi$$
$$282$$ 1.91217 3.31197i 0.113868 0.197225i
$$283$$ 4.91523 + 8.51342i 0.292180 + 0.506070i 0.974325 0.225147i $$-0.0722861\pi$$
−0.682145 + 0.731217i $$0.738953\pi$$
$$284$$ 17.4796 + 4.68364i 1.03722 + 0.277923i
$$285$$ 6.86405 0.406591
$$286$$ −8.44547 + 2.19519i −0.499391 + 0.129804i
$$287$$ −5.07134 + 1.20872i −0.299352 + 0.0713483i
$$288$$ −1.51587 + 5.65731i −0.0893235 + 0.333360i
$$289$$ 8.12379 + 14.0708i 0.477870 + 0.827696i
$$290$$ −3.39281 + 5.87652i −0.199233 + 0.345081i
$$291$$ −2.06733 2.06733i −0.121189 0.121189i
$$292$$ −2.97339 11.0968i −0.174004 0.649393i
$$293$$ 24.9107 6.67480i 1.45530 0.389946i 0.557435 0.830221i $$-0.311786\pi$$
0.897863 + 0.440275i $$0.145119\pi$$
$$294$$ 4.87384 + 1.60132i 0.284248 + 0.0933912i
$$295$$ −8.03201 + 13.9118i −0.467641 + 0.809979i
$$296$$ 8.12812 4.69277i 0.472437 0.272762i
$$297$$ −0.854696 + 3.18977i −0.0495945 + 0.185089i
$$298$$ 10.5110i 0.608883i
$$299$$ 15.1379 + 4.17815i 0.875447 + 0.241628i
$$300$$ 2.86431i 0.165371i
$$301$$ 30.5186 + 0.849317i 1.75906 + 0.0489538i
$$302$$ −8.70733 15.0815i −0.501050 0.867845i
$$303$$ 8.23397 + 4.75389i 0.473029 + 0.273104i
$$304$$ −2.96596 + 2.96596i −0.170109 + 0.170109i
$$305$$ −9.30243 + 2.49258i −0.532656 + 0.142725i
$$306$$ 0.614051 0.164534i 0.0351030 0.00940581i
$$307$$ 3.13433 + 3.13433i 0.178886 + 0.178886i 0.790870 0.611984i $$-0.209628\pi$$
−0.611984 + 0.790870i $$0.709628\pi$$
$$308$$ −12.2490 3.65021i −0.697951 0.207990i
$$309$$ 6.96588 4.02175i 0.396275 0.228790i
$$310$$ −0.385461 0.103284i −0.0218927 0.00586614i
$$311$$ −22.3642 −1.26816 −0.634078 0.773269i $$-0.718620\pi$$
−0.634078 + 0.773269i $$0.718620\pi$$
$$312$$ 7.95863 4.51566i 0.450569 0.255649i
$$313$$ 5.32563i 0.301022i 0.988608 + 0.150511i $$0.0480919\pi$$
−0.988608 + 0.150511i $$0.951908\pi$$
$$314$$ 10.9059 + 2.92222i 0.615455 + 0.164911i
$$315$$ −3.17095 3.35249i −0.178663 0.188892i
$$316$$ −19.9326 11.5081i −1.12130 0.647380i
$$317$$ 9.55320 + 9.55320i 0.536561 + 0.536561i 0.922517 0.385956i $$-0.126128\pi$$
−0.385956 + 0.922517i $$0.626128\pi$$
$$318$$ −0.674975 2.51904i −0.0378507 0.141261i
$$319$$ −4.53720 16.9331i −0.254034 0.948069i
$$320$$ −2.66485 2.66485i −0.148970 0.148970i
$$321$$ 9.51088 + 5.49111i 0.530845 + 0.306484i
$$322$$ −5.80333 6.13559i −0.323407 0.341923i
$$323$$ 3.29740 + 0.883534i 0.183472 + 0.0491612i
$$324$$ 1.46289i 0.0812715i
$$325$$ 5.02920 4.95431i 0.278970 0.274816i
$$326$$ 0.965192 0.0534571
$$327$$ −2.92189 0.782918i −0.161581 0.0432955i
$$328$$ 4.33086 2.50042i 0.239132 0.138063i
$$329$$ −13.2311 3.94289i −0.729456 0.217379i
$$330$$ −2.98479 2.98479i −0.164308 0.164308i
$$331$$ 9.25799 2.48067i 0.508865 0.136350i 0.00475394 0.999989i $$-0.498487\pi$$
0.504111 + 0.863639i $$0.331820\pi$$
$$332$$ 7.61014 2.03913i 0.417661 0.111912i
$$333$$ −2.61501 + 2.61501i −0.143302 + 0.143302i
$$334$$ 15.4210 + 8.90333i 0.843801 + 0.487169i
$$335$$ −3.43575 5.95089i −0.187715 0.325132i
$$336$$ 2.81878 + 0.0784452i 0.153777 + 0.00427954i
$$337$$ 27.7219i 1.51011i −0.655663 0.755053i $$-0.727611\pi$$
0.655663 0.755053i $$-0.272389\pi$$
$$338$$ −9.16477 2.60367i −0.498498 0.141621i
$$339$$ 14.0806i 0.764751i
$$340$$ 0.572817 2.13778i 0.0310653 0.115937i
$$341$$ 0.892831 0.515476i 0.0483495 0.0279146i
$$342$$ −1.44212 + 2.49783i −0.0779811 + 0.135067i
$$343$$ 1.54403 18.4558i 0.0833700 0.996519i
$$344$$ −28.2878 + 7.57968i −1.52517 + 0.408669i
$$345$$ 1.96614 + 7.33772i 0.105853 + 0.395049i
$$346$$ 0.328484 + 0.328484i 0.0176594 + 0.0176594i
$$347$$ −11.5943 + 20.0819i −0.622413 + 1.07805i 0.366622 + 0.930370i $$0.380514\pi$$
−0.989035 + 0.147681i $$0.952819\pi$$
$$348$$ 3.88290 + 6.72538i 0.208145 + 0.360518i
$$349$$ −4.20372 + 15.6885i −0.225020 + 0.839787i 0.757376 + 0.652979i $$0.226481\pi$$
−0.982396 + 0.186808i $$0.940186\pi$$
$$350$$ −3.69312 + 0.880226i −0.197405 + 0.0470501i
$$351$$ −2.56856 + 2.53031i −0.137100 + 0.135058i
$$352$$ 19.3411 1.03088
$$353$$ −12.1897 3.26621i −0.648790 0.173843i −0.0806085 0.996746i $$-0.525686\pi$$
−0.568182 + 0.822903i $$0.692353\pi$$
$$354$$ −3.37502 5.84570i −0.179380 0.310696i
$$355$$ 10.7877 18.6848i 0.572550 0.991686i
$$356$$ 13.0612 13.0612i 0.692243 0.692243i
$$357$$ −1.09175 2.01865i −0.0577816 0.106838i
$$358$$ 2.77774 + 10.3667i 0.146808 + 0.547895i
$$359$$ −2.03793 + 2.03793i −0.107558 + 0.107558i −0.758838 0.651280i $$-0.774232\pi$$
0.651280 + 0.758838i $$0.274232\pi$$
$$360$$ 3.83339 + 2.21321i 0.202037 + 0.116646i
$$361$$ 3.04137 1.75593i 0.160072 0.0924176i
$$362$$ 1.21608 4.53848i 0.0639159 0.238537i
$$363$$ −0.0948573 −0.00497872
$$364$$ −9.51306 10.2100i −0.498620 0.535152i
$$365$$ −13.6970 −0.716934
$$366$$ 1.04737 3.90885i 0.0547470 0.204319i
$$367$$ 24.3990 14.0868i 1.27362 0.735325i 0.297953 0.954581i $$-0.403696\pi$$
0.975667 + 0.219256i $$0.0703629\pi$$
$$368$$ −4.02019 2.32106i −0.209567 0.120994i
$$369$$ −1.39334 + 1.39334i −0.0725344 + 0.0725344i
$$370$$ −1.22348 4.56610i −0.0636059 0.237380i
$$371$$ −8.28119 + 4.47872i −0.429938 + 0.232524i
$$372$$ −0.322938 + 0.322938i −0.0167435 + 0.0167435i
$$373$$ 12.9669 22.4593i 0.671400 1.16290i −0.306107 0.951997i $$-0.599026\pi$$
0.977507 0.210902i $$-0.0676402\pi$$
$$374$$ −1.04965 1.81805i −0.0542763 0.0940094i
$$375$$ 11.7222 + 3.14095i 0.605330 + 0.162198i
$$376$$ 13.2432 0.682968
$$377$$ 5.09241 18.4504i 0.262272 0.950243i
$$378$$ 1.88618 0.449558i 0.0970148 0.0231228i
$$379$$ −8.41204 + 31.3942i −0.432097 + 1.61261i 0.315821 + 0.948819i $$0.397720\pi$$
−0.747918 + 0.663791i $$0.768946\pi$$
$$380$$ 5.02066 + 8.69604i 0.257555 + 0.446098i
$$381$$ 2.86344 4.95962i 0.146698 0.254089i
$$382$$ 2.46370 + 2.46370i 0.126054 + 0.126054i
$$383$$ 1.42917 + 5.33373i 0.0730271 + 0.272541i 0.992779 0.119960i $$-0.0382767\pi$$
−0.919752 + 0.392501i $$0.871610\pi$$
$$384$$ −9.78499 + 2.62188i −0.499338 + 0.133797i
$$385$$ −7.98348 + 12.9800i −0.406876 + 0.661520i
$$386$$ 3.45471 5.98373i 0.175840 0.304564i
$$387$$ 9.99342 5.76970i 0.507994 0.293291i
$$388$$ 1.10696 4.13124i 0.0561975 0.209732i
$$389$$ 24.3224i 1.23319i −0.787279 0.616597i $$-0.788511\pi$$
0.787279 0.616597i $$-0.211489\pi$$
$$390$$ −1.15941 4.46056i −0.0587090 0.225869i
$$391$$ 3.77802i 0.191063i
$$392$$ 3.63649 + 17.3890i 0.183670 + 0.878277i
$$393$$ 10.8954 + 18.8714i 0.549601 + 0.951937i
$$394$$ 7.13148 + 4.11736i 0.359279 + 0.207430i
$$395$$ −19.4039 + 19.4039i −0.976315 + 0.976315i
$$396$$ −4.66627 + 1.25032i −0.234489 + 0.0628312i
$$397$$ 10.3563 2.77495i 0.519765 0.139271i 0.0106073 0.999944i $$-0.496624\pi$$
0.509158 + 0.860673i $$0.329957\pi$$
$$398$$ 6.50871 + 6.50871i 0.326252 + 0.326252i
$$399$$ 9.97869 + 2.97366i 0.499559 + 0.148869i
$$400$$ −1.80726 + 1.04342i −0.0903628 + 0.0521710i
$$401$$ 25.6010 + 6.85977i 1.27845 + 0.342561i 0.833264 0.552875i $$-0.186469\pi$$
0.445190 + 0.895436i $$0.353136\pi$$
$$402$$ 2.88738 0.144009
$$403$$ 1.12560 + 0.00844380i 0.0560699 + 0.000420616i
$$404$$ 13.9088i 0.691988i
$$405$$ −1.68471 0.451416i −0.0837138 0.0224310i
$$406$$ −7.47818 + 7.07322i −0.371136 + 0.351038i
$$407$$ 10.5763 + 6.10624i 0.524249 + 0.302675i
$$408$$ 1.55662 + 1.55662i 0.0770644 + 0.0770644i
$$409$$ −0.225314 0.840884i −0.0111411 0.0415790i 0.960132 0.279549i $$-0.0901848\pi$$
−0.971273 + 0.237970i $$0.923518\pi$$
$$410$$ −0.651902 2.43293i −0.0321951 0.120154i
$$411$$ 0.0271456 + 0.0271456i 0.00133900 + 0.00133900i
$$412$$ 10.1903 + 5.88337i 0.502040 + 0.289853i
$$413$$ −17.7035 + 16.7449i −0.871134 + 0.823961i
$$414$$ −3.08328 0.826162i −0.151535 0.0406037i
$$415$$ 9.39332i 0.461100i
$$416$$ 18.2084 + 10.6955i 0.892738 + 0.524391i
$$417$$ 16.8316 0.824246
$$418$$ 9.20009 + 2.46516i 0.449991 + 0.120575i
$$419$$ 24.0763 13.9005i 1.17621 0.679083i 0.221072 0.975257i $$-0.429044\pi$$
0.955134 + 0.296174i $$0.0957110\pi$$
$$420$$ 1.92789 6.46942i 0.0940716 0.315676i
$$421$$ 6.14872 + 6.14872i 0.299670 + 0.299670i 0.840885 0.541214i $$-0.182035\pi$$
−0.541214 + 0.840885i $$0.682035\pi$$
$$422$$ 8.07605 2.16397i 0.393136 0.105340i
$$423$$ −5.04042 + 1.35058i −0.245074 + 0.0656673i
$$424$$ 6.38579 6.38579i 0.310122 0.310122i
$$425$$ 1.47085 + 0.849193i 0.0713465 + 0.0411919i
$$426$$ 4.53294 + 7.85128i 0.219622 + 0.380396i
$$427$$ −14.6034 0.406404i −0.706706 0.0196673i
$$428$$ 16.0657i 0.776567i
$$429$$ 10.2665 + 6.03048i 0.495669 + 0.291154i
$$430$$ 14.7502i 0.711317i
$$431$$ −7.07164 + 26.3917i −0.340629 + 1.27124i 0.557007 + 0.830507i $$0.311949\pi$$
−0.897636 + 0.440737i $$0.854717\pi$$
$$432$$ 0.923019 0.532906i 0.0444088 0.0256394i
$$433$$ −11.5716 + 20.0425i −0.556094 + 0.963182i 0.441724 + 0.897151i $$0.354367\pi$$
−0.997818 + 0.0660314i $$0.978966\pi$$
$$434$$ −0.515624 0.317141i −0.0247507 0.0152232i
$$435$$ 8.94335 2.39636i 0.428801 0.114897i
$$436$$ −1.14532 4.27440i −0.0548509 0.204706i
$$437$$ −12.1205 12.1205i −0.579802 0.579802i
$$438$$ 2.87771 4.98435i 0.137502 0.238161i
$$439$$ −20.4076 35.3470i −0.974003 1.68702i −0.683188 0.730242i $$-0.739407\pi$$
−0.290814 0.956779i $$-0.593926\pi$$
$$440$$ 3.78324 14.1192i 0.180359 0.673109i
$$441$$ −3.15743 6.24745i −0.150354 0.297498i
$$442$$ 0.0171940 2.29203i 0.000817833 0.109021i
$$443$$ −6.05837 −0.287842 −0.143921 0.989589i $$-0.545971\pi$$
−0.143921 + 0.989589i $$0.545971\pi$$
$$444$$ −5.22568 1.40022i −0.248000 0.0664513i
$$445$$ −11.0113 19.0721i −0.521986 0.904106i
$$446$$ 2.66940 4.62353i 0.126400 0.218930i
$$447$$ 10.1413 10.1413i 0.479668 0.479668i
$$448$$ −2.71959 5.02853i −0.128488 0.237576i
$$449$$ −1.65796 6.18758i −0.0782438 0.292010i 0.915705 0.401850i $$-0.131633\pi$$
−0.993949 + 0.109840i $$0.964966\pi$$
$$450$$ −1.01467 + 1.01467i −0.0478322 + 0.0478322i
$$451$$ 5.63532 + 3.25355i 0.265357 + 0.153204i
$$452$$ 17.8386 10.2991i 0.839058 0.484430i
$$453$$ −6.15004 + 22.9523i −0.288954 + 1.07839i
$$454$$ −17.1918 −0.806850
$$455$$ −14.6938 + 7.80495i −0.688854 + 0.365902i
$$456$$ −9.98782 −0.467723
$$457$$ −7.61312 + 28.4126i −0.356127 + 1.32908i 0.522934 + 0.852373i $$0.324837\pi$$
−0.879061 + 0.476710i $$0.841829\pi$$
$$458$$ 14.5707 8.41238i 0.680843 0.393085i
$$459$$ −0.751205 0.433708i −0.0350632 0.0202438i
$$460$$ −7.85801 + 7.85801i −0.366382 + 0.366382i
$$461$$ 3.01129 + 11.2383i 0.140250 + 0.523419i 0.999921 + 0.0125715i $$0.00400175\pi$$
−0.859671 + 0.510848i $$0.829332\pi$$
$$462$$ −3.04610 5.63226i −0.141717 0.262036i
$$463$$ 8.42591 8.42591i 0.391585 0.391585i −0.483667 0.875252i $$-0.660695\pi$$
0.875252 + 0.483667i $$0.160695\pi$$
$$464$$ −2.82895 + 4.89989i −0.131331 + 0.227472i
$$465$$ 0.272254 + 0.471557i 0.0126255 + 0.0218679i
$$466$$ 11.6999 + 3.13497i 0.541985 + 0.145225i
$$467$$ 21.2254 0.982195 0.491097 0.871105i $$-0.336596\pi$$
0.491097 + 0.871105i $$0.336596\pi$$
$$468$$ −5.08440 1.40332i −0.235027 0.0648687i
$$469$$ −2.41670 10.1396i −0.111593 0.468204i
$$470$$ 1.72637 6.44289i 0.0796314 0.297188i
$$471$$ −7.70290 13.3418i −0.354931 0.614758i
$$472$$ 11.6873 20.2430i 0.537952 0.931760i
$$473$$ −26.9454 26.9454i −1.23895 1.23895i
$$474$$ −2.98436 11.1378i −0.137076 0.511576i
$$475$$ −7.44307 + 1.99436i −0.341511 + 0.0915077i
$$476$$ 1.75887 2.85967i 0.0806178 0.131073i
$$477$$ −1.77922 + 3.08169i −0.0814647 + 0.141101i
$$478$$ −16.9052 + 9.76019i −0.773224 + 0.446421i
$$479$$ 5.66017 21.1241i 0.258620 0.965183i −0.707421 0.706793i $$-0.750141\pi$$
0.966041 0.258390i $$-0.0831920\pi$$
$$480$$ 10.2152i 0.466258i
$$481$$ 6.58018 + 11.5973i 0.300030 + 0.528789i
$$482$$ 0.849093i 0.0386751i
$$483$$ −0.320570 + 11.5191i −0.0145864 + 0.524135i
$$484$$ −0.0693828 0.120174i −0.00315376 0.00546248i
$$485$$ −4.41608 2.54963i −0.200524 0.115773i
$$486$$ 0.518224 0.518224i 0.0235071 0.0235071i
$$487$$ 28.6992 7.68994i 1.30049 0.348464i 0.458852 0.888512i $$-0.348261\pi$$
0.841634 + 0.540048i $$0.181594\pi$$
$$488$$ 13.5359 3.62693i 0.612741 0.164183i
$$489$$ −0.931249 0.931249i −0.0421125 0.0421125i
$$490$$ 8.93386 + 0.497635i 0.403591 + 0.0224809i
$$491$$ −23.9204 + 13.8105i −1.07951 + 0.623258i −0.930765 0.365617i $$-0.880858\pi$$
−0.148749 + 0.988875i $$0.547525\pi$$
$$492$$ −2.78437 0.746069i −0.125529 0.0336354i
$$493$$ 4.60472 0.207386
$$494$$ 7.29805 + 7.40837i 0.328355 + 0.333318i
$$495$$ 5.75966i 0.258877i
$$496$$ −0.321401 0.0861191i −0.0144313 0.00386686i
$$497$$ 23.7774 22.4898i 1.06656 1.00880i
$$498$$ 3.41823 + 1.97352i 0.153175 + 0.0884354i
$$499$$ 5.32994 + 5.32994i 0.238601 + 0.238601i 0.816271 0.577670i $$-0.196038\pi$$
−0.577670 + 0.816271i $$0.696038\pi$$
$$500$$ 4.59485 + 17.1482i 0.205488 + 0.766891i
$$501$$ −6.28848 23.4689i −0.280949 1.04851i
$$502$$ −7.07498 7.07498i −0.315772 0.315772i
$$503$$ −16.3880 9.46160i −0.730703 0.421872i 0.0879761 0.996123i $$-0.471960\pi$$
−0.818679 + 0.574251i $$0.805293\pi$$
$$504$$ 4.61402 + 4.87818i 0.205525 + 0.217292i
$$505$$ 16.0178 + 4.29196i 0.712784 + 0.190990i
$$506$$ 10.5411i 0.468608i
$$507$$ 6.33037 + 11.3546i 0.281141 + 0.504275i
$$508$$ 8.37777 0.371703
$$509$$ −19.9100 5.33488i −0.882497 0.236464i −0.211013 0.977483i $$-0.567676\pi$$
−0.671484 + 0.741019i $$0.734343\pi$$
$$510$$ 0.960223 0.554385i 0.0425194 0.0245486i
$$511$$ −19.9122 5.93384i −0.880863 0.262498i
$$512$$ −8.23930 8.23930i −0.364129 0.364129i
$$513$$ 3.80140 1.01858i 0.167836 0.0449715i
$$514$$ −0.181420 + 0.0486112i −0.00800208 + 0.00214415i
$$515$$ 9.91999 9.91999i 0.437127 0.437127i
$$516$$ 14.6192 + 8.44042i 0.643576 + 0.371569i
$$517$$ 8.61606 + 14.9235i 0.378934 + 0.656333i
$$518$$ 0.199484 7.16807i 0.00876481 0.314947i
$$519$$ 0.633864i 0.0278236i
$$520$$ 11.3695 11.2002i 0.498587 0.491162i
$$521$$ 8.90519i 0.390144i 0.980789 + 0.195072i $$0.0624940\pi$$
−0.980789 + 0.195072i $$0.937506\pi$$
$$522$$ −1.00694 + 3.75796i −0.0440727 + 0.164482i
$$523$$ −36.0214 + 20.7970i −1.57511 + 0.909387i −0.579577 + 0.814917i $$0.696782\pi$$
−0.995528 + 0.0944702i $$0.969884\pi$$
$$524$$ −15.9388 + 27.6067i −0.696288 + 1.20601i
$$525$$ 4.41251 + 2.71397i 0.192578 + 0.118447i
$$526$$ −8.80150 + 2.35835i −0.383764 + 0.102829i
$$527$$ 0.0700885 + 0.261574i 0.00305310 + 0.0113943i
$$528$$ −2.48875 2.48875i −0.108309 0.108309i
$$529$$ −2.01489 + 3.48989i −0.0876038 + 0.151734i
$$530$$ −2.27427 3.93915i −0.0987881 0.171106i
$$531$$ −2.38380 + 8.89645i −0.103448 + 0.386073i
$$532$$ 3.53153 + 14.8170i 0.153111 + 0.642400i
$$533$$ 3.50608 + 6.17930i 0.151865 + 0.267655i
$$534$$ 9.25381 0.400452
$$535$$ 18.5018 + 4.95755i 0.799904 + 0.214334i
$$536$$ 4.99933 + 8.65909i 0.215938 + 0.374016i
$$537$$ 7.32204 12.6821i 0.315969 0.547275i
$$538$$ 14.3196 14.3196i 0.617360 0.617360i
$$539$$ −17.2293 + 15.4111i −0.742118 + 0.663805i
$$540$$ −0.660371 2.46454i −0.0284178 0.106057i
$$541$$ 22.8055 22.8055i 0.980484 0.980484i −0.0193293 0.999813i $$-0.506153\pi$$
0.999813 + 0.0193293i $$0.00615308\pi$$
$$542$$ −19.2743 11.1280i −0.827903 0.477990i
$$543$$ −5.55219 + 3.20556i −0.238267 + 0.137564i
$$544$$ −1.31489 + 4.90724i −0.0563755 + 0.210396i
$$545$$ −5.27596 −0.225997
$$546$$ 0.246905 6.98687i 0.0105666 0.299010i
$$547$$ 15.4775 0.661769 0.330884 0.943671i $$-0.392653\pi$$
0.330884 + 0.943671i $$0.392653\pi$$
$$548$$ −0.0145352 + 0.0542462i −0.000620914 + 0.00231728i
$$549$$ −4.78192 + 2.76084i −0.204087 + 0.117830i
$$550$$ 4.10382 + 2.36934i 0.174987 + 0.101029i
$$551$$ −14.7727 + 14.7727i −0.629339 + 0.629339i
$$552$$ −2.86091 10.6770i −0.121768 0.454445i
$$553$$ −36.6148 + 19.8024i −1.55702 + 0.842084i
$$554$$ −5.56016 + 5.56016i −0.236228 + 0.236228i
$$555$$ −3.22507 + 5.58598i −0.136897 + 0.237112i
$$556$$ 12.3113 + 21.3239i 0.522117 + 0.904333i
$$557$$ −16.8975 4.52767i −0.715969 0.191843i −0.117597 0.993061i $$-0.537519\pi$$
−0.598373 + 0.801218i $$0.704186\pi$$
$$558$$ −0.228800 −0.00968587
$$559$$ −10.4666 40.2679i −0.442692 1.70315i
$$560$$ 4.78423 1.14029i 0.202171 0.0481859i
$$561$$ −0.741378 + 2.76686i −0.0313010 + 0.116817i
$$562$$ −9.13001 15.8136i −0.385126 0.667058i
$$563$$ −13.0176 + 22.5472i −0.548628 + 0.950251i 0.449741 + 0.893159i $$0.351516\pi$$
−0.998369 + 0.0570920i $$0.981817\pi$$
$$564$$ −5.39783 5.39783i −0.227289 0.227289i
$$565$$ −6.35619 23.7216i −0.267407 0.997977i
$$566$$ −6.95905 + 1.86467i −0.292511 + 0.0783780i
$$567$$ −2.25360 1.38610i −0.0946423 0.0582109i
$$568$$ −15.6971 + 27.1881i −0.658634 + 1.14079i
$$569$$ −5.70128 + 3.29163i −0.239010 + 0.137992i −0.614722 0.788744i $$-0.710732\pi$$
0.375712 + 0.926737i $$0.377398\pi$$
$$570$$ −1.30200 + 4.85911i −0.0545346 + 0.203526i
$$571$$ 9.46828i 0.396235i −0.980178 0.198118i $$-0.936517\pi$$
0.980178 0.198118i $$-0.0634828\pi$$
$$572$$ −0.130660 + 17.4175i −0.00546315 + 0.728262i
$$573$$ 4.75411i 0.198606i
$$574$$ 0.106290 3.81932i 0.00443645 0.159415i
$$575$$ −4.26398 7.38543i −0.177820 0.307994i
$$576$$ −1.87128 1.08038i −0.0779698 0.0450159i
$$577$$ −14.5583 + 14.5583i −0.606069 + 0.606069i −0.941916 0.335847i $$-0.890977\pi$$
0.335847 + 0.941916i $$0.390977\pi$$
$$578$$ −11.5018 + 3.08190i −0.478412 + 0.128190i
$$579$$ −9.10651 + 2.44008i −0.378454 + 0.101406i
$$580$$ 9.57750 + 9.57750i 0.397684 + 0.397684i
$$581$$ 4.06939 13.6556i 0.168827 0.566531i
$$582$$ 1.85562 1.07134i 0.0769180 0.0444086i
$$583$$ 11.3506 + 3.04138i 0.470093 + 0.125961i
$$584$$ 19.9304 0.824725
$$585$$ −3.18505 + 5.42233i −0.131686 + 0.224186i
$$586$$ 18.9006i 0.780775i
$$587$$ −28.3013 7.58332i −1.16812 0.312997i −0.377916 0.925840i $$-0.623359\pi$$
−0.790205 + 0.612843i $$0.790026\pi$$
$$588$$ 5.60540 8.56979i 0.231163 0.353412i
$$589$$ −1.06403 0.614317i −0.0438425 0.0253125i
$$590$$ −8.32476 8.32476i −0.342725 0.342725i
$$591$$ −2.90812 10.8532i −0.119624 0.446443i
$$592$$ −1.02015 3.80726i −0.0419280 0.156477i
$$593$$ −21.9121 21.9121i −0.899821 0.899821i 0.0955990 0.995420i $$-0.469523\pi$$
−0.995420 + 0.0955990i $$0.969523\pi$$
$$594$$ −2.09594 1.21009i −0.0859975 0.0496507i
$$595$$ −2.75053 2.90801i −0.112761 0.119217i
$$596$$ 20.2658 + 5.43021i 0.830120 + 0.222430i
$$597$$ 12.5596i 0.514031i
$$598$$ −5.82915 + 9.92371i −0.238372 + 0.405811i
$$599$$ 15.8653 0.648240 0.324120 0.946016i $$-0.394932\pi$$
0.324120 + 0.946016i $$0.394932\pi$$
$$600$$ −4.79981 1.28610i −0.195951 0.0525050i
$$601$$ 0.177063 0.102227i 0.00722256 0.00416995i −0.496384 0.868103i $$-0.665339\pi$$
0.503607 + 0.863933i $$0.332006\pi$$
$$602$$ −6.39011 + 21.4432i −0.260441 + 0.873962i
$$603$$ −2.78584 2.78584i −0.113448 0.113448i
$$604$$ −33.5766 + 8.99681i −1.36621 + 0.366075i
$$605$$ −0.159807 + 0.0428201i −0.00649707 + 0.00174089i
$$606$$ −4.92716 + 4.92716i −0.200152 + 0.200152i
$$607$$ −24.0567 13.8891i −0.976430 0.563742i −0.0752394 0.997165i $$-0.523972\pi$$
−0.901190 + 0.433423i $$0.857305\pi$$
$$608$$ −11.5249 19.9616i −0.467394 0.809551i
$$609$$ 14.0397 + 0.390717i 0.568916 + 0.0158326i
$$610$$ 7.05806i 0.285773i
$$611$$ −0.141136 + 18.8141i −0.00570976 + 0.761135i
$$612$$ 1.26893i 0.0512935i
$$613$$ 1.20950 4.51392i 0.0488513 0.182315i −0.937189 0.348822i $$-0.886582\pi$$
0.986040 + 0.166506i $$0.0532486\pi$$
$$614$$ −2.81335 + 1.62429i −0.113537 + 0.0655508i
$$615$$ −1.71839 + 2.97635i −0.0692924 + 0.120018i
$$616$$ 11.6167 18.8870i 0.468050 0.760980i
$$617$$ 0.205999 0.0551971i 0.00829319 0.00222215i −0.254670 0.967028i $$-0.581967\pi$$
0.262963 + 0.964806i $$0.415300\pi$$
$$618$$ 1.52572 + 5.69406i 0.0613734 + 0.229049i
$$619$$ 10.1547 + 10.1547i 0.408152 + 0.408152i 0.881094 0.472941i $$-0.156808\pi$$
−0.472941 + 0.881094i $$0.656808\pi$$
$$620$$ −0.398276 + 0.689835i −0.0159952 + 0.0277044i
$$621$$ 2.17774 + 3.77196i 0.0873897 + 0.151363i
$$622$$ 4.24211 15.8318i 0.170093 0.634797i
$$623$$ −7.74533 32.4967i −0.310310 1.30195i
$$624$$ −0.966727 3.71925i −0.0387000 0.148889i
$$625$$ 11.3764 0.455056
$$626$$ −3.77005 1.01018i −0.150682 0.0403750i
$$627$$ −6.49808 11.2550i −0.259508 0.449482i
$$628$$ 11.2685 19.5176i 0.449661 0.778836i
$$629$$ −2.26830 + 2.26830i −0.0904431 + 0.0904431i
$$630$$ 2.97473 1.60883i 0.118516 0.0640972i
$$631$$ −2.58932 9.66347i −0.103079 0.384697i 0.895041 0.445984i $$-0.147146\pi$$
−0.998120 + 0.0612871i $$0.980479\pi$$
$$632$$ 28.2344 28.2344i 1.12310 1.12310i
$$633$$ −9.87991 5.70417i −0.392691 0.226720i
$$634$$ −8.57487 + 4.95070i −0.340551 + 0.196617i
$$635$$ 2.58520 9.64811i 0.102591 0.382873i
$$636$$ −5.20558 −0.206415
$$637$$ −24.7425 + 4.98087i −0.980333 + 0.197349i
$$638$$ 12.8477 0.508644
$$639$$ 3.20164 11.9487i 0.126655 0.472683i
$$640$$ −15.3013 + 8.83420i −0.604837 + 0.349203i
$$641$$ −19.6180 11.3265i −0.774866 0.447369i 0.0597418 0.998214i $$-0.480972\pi$$
−0.834608 + 0.550845i $$0.814306\pi$$
$$642$$ −5.69125 + 5.69125i −0.224616 + 0.224616i
$$643$$ 4.29092 + 16.0139i 0.169217 + 0.631527i 0.997465 + 0.0711645i $$0.0226715\pi$$
−0.828247 + 0.560363i $$0.810662\pi$$
$$644$$ −14.8279 + 8.01941i −0.584303 + 0.316009i
$$645$$ 14.2315 14.2315i 0.560363 0.560363i
$$646$$ −1.25092 + 2.16666i −0.0492169 + 0.0852461i
$$647$$ −12.5163 21.6789i −0.492068 0.852287i 0.507890 0.861422i $$-0.330426\pi$$
−0.999958 + 0.00913503i $$0.997092\pi$$
$$648$$ 2.45140 + 0.656852i 0.0963003 + 0.0258036i
$$649$$ 30.4151 1.19390
$$650$$ 2.55324 + 4.49996i 0.100146 + 0.176503i
$$651$$ 0.191503 + 0.803478i 0.00750559 + 0.0314908i
$$652$$ 0.498641 1.86095i 0.0195283 0.0728805i
$$653$$ −9.18955 15.9168i −0.359615 0.622871i 0.628282 0.777986i $$-0.283759\pi$$
−0.987896 + 0.155115i $$0.950425\pi$$
$$654$$ 1.10847 1.91992i 0.0433445 0.0750749i
$$655$$ 26.8745 + 26.8745i 1.05007 + 1.05007i
$$656$$ −0.543561 2.02860i −0.0212225 0.0792034i
$$657$$ −7.58557 + 2.03255i −0.295941 + 0.0792972i
$$658$$ 5.30093 8.61853i 0.206652 0.335985i
$$659$$ −2.47281 + 4.28303i −0.0963269 + 0.166843i −0.910162 0.414253i $$-0.864043\pi$$
0.813835 + 0.581096i $$0.197376\pi$$
$$660$$ −7.29689 + 4.21286i −0.284031 + 0.163985i
$$661$$ 0.736202 2.74754i 0.0286349 0.106867i −0.950129 0.311856i $$-0.899049\pi$$
0.978764 + 0.204989i $$0.0657159\pi$$
$$662$$ 7.02435i 0.273009i
$$663$$ −2.22801 + 2.19484i −0.0865289 + 0.0852404i
$$664$$ 13.6681i 0.530426i
$$665$$ 18.1535 + 0.505204i 0.703964 + 0.0195910i
$$666$$ −1.35516 2.34721i −0.0525115 0.0909525i
$$667$$ −20.0236 11.5606i −0.775318 0.447630i
$$668$$ 25.1331 25.1331i 0.972427 0.972427i
$$669$$ −7.03645 + 1.88541i −0.272045 + 0.0728942i
$$670$$ 4.86439 1.30341i 0.187928 0.0503551i
$$671$$ 12.8935 + 12.8935i 0.497750 + 0.497750i
$$672$$ −4.42545 + 14.8505i −0.170715 + 0.572869i
$$673$$ −23.4111 + 13.5164i −0.902431 + 0.521019i −0.877988 0.478682i $$-0.841115\pi$$
−0.0244432 + 0.999701i $$0.507781\pi$$
$$674$$ 19.6245 + 5.25838i 0.755909 + 0.202545i
$$675$$ 1.95798 0.0753628
$$676$$ −9.75478 + 16.3252i −0.375184 + 0.627891i
$$677$$ 1.97396i 0.0758653i 0.999280 + 0.0379327i $$0.0120772\pi$$
−0.999280 + 0.0379327i $$0.987923\pi$$
$$678$$ 9.96774 + 2.67085i 0.382809 + 0.102573i
$$679$$ −5.31538 5.61970i −0.203985 0.215664i
$$680$$ 3.32514 + 1.91977i 0.127513 + 0.0736199i
$$681$$ 16.5872 + 16.5872i 0.635622 + 0.635622i
$$682$$ 0.195554 + 0.729819i 0.00748817 + 0.0279462i
$$683$$ −0.854547 3.18921i −0.0326983 0.122032i 0.947648 0.319318i $$-0.103454\pi$$
−0.980346 + 0.197286i $$0.936787\pi$$
$$684$$ 4.07094 + 4.07094i 0.155656 + 0.155656i
$$685$$ 0.0579865 + 0.0334785i 0.00221555 + 0.00127915i
$$686$$ 12.7721 + 4.59379i 0.487642 + 0.175392i
$$687$$ −22.1748 5.94172i −0.846022 0.226691i
$$688$$ 12.2988i 0.468889i
$$689$$ 9.00395 + 9.14006i 0.343023 + 0.348208i
$$690$$ −5.56737 −0.211946
$$691$$ −43.3678 11.6204i −1.64979 0.442060i −0.690236 0.723585i $$-0.742493\pi$$
−0.959554 + 0.281525i $$0.909160\pi$$
$$692$$ 0.803041 0.463636i 0.0305270 0.0176248i
$$693$$ −2.49521 + 8.37317i −0.0947852 + 0.318070i
$$694$$ −12.0169 12.0169i −0.456154 0.456154i
$$695$$ 28.3563 7.59804i 1.07562 0.288210i
$$696$$ −13.0134 + 3.48693i −0.493272 + 0.132172i
$$697$$ −1.20861 + 1.20861i −0.0457792 + 0.0457792i
$$698$$ −10.3086 5.95170i −0.390188 0.225275i
$$699$$ −8.26369 14.3131i −0.312561 0.541372i
$$700$$ −0.210817 + 7.57531i −0.00796813 + 0.286320i
$$701$$ 23.5928i 0.891086i 0.895260 + 0.445543i $$0.146989\pi$$
−0.895260 + 0.445543i $$0.853011\pi$$
$$702$$ −1.30401 2.29826i −0.0492169 0.0867424i
$$703$$ 14.5542i 0.548921i
$$704$$ −1.84680 + 6.89234i −0.0696038 + 0.259765i
$$705$$ −7.88197 + 4.55066i −0.296852 + 0.171388i
$$706$$ 4.62435 8.00961i 0.174040 0.301446i
$$707$$ 21.4267 + 13.1788i 0.805835 + 0.495638i
$$708$$ −13.0145 + 3.48723i −0.489115 + 0.131058i
$$709$$ 9.42663 + 35.1807i 0.354025 + 1.32124i 0.881708 + 0.471796i $$0.156394\pi$$
−0.527683 + 0.849441i $$0.676939\pi$$
$$710$$ 11.1809 + 11.1809i 0.419611 + 0.419611i
$$711$$ −7.86670 + 13.6255i −0.295024 + 0.510997i
$$712$$ 16.0224 + 27.7517i 0.600467 + 1.04004i
$$713$$ 0.351929 1.31342i 0.0131799 0.0491879i
$$714$$ 1.63611 0.389954i 0.0612298 0.0145937i
$$715$$ 20.0182 + 5.52515i 0.748640 + 0.206629i
$$716$$ 21.4226 0.800602
$$717$$ 25.7276 + 6.89369i 0.960815 + 0.257450i
$$718$$ −1.05610 1.82922i −0.0394134 0.0682660i
$$719$$ 26.2044 45.3874i 0.977260 1.69266i 0.304994 0.952354i $$-0.401346\pi$$
0.672266 0.740309i $$-0.265321\pi$$
$$720$$ 1.31446 1.31446i 0.0489869 0.0489869i
$$721$$ 18.7189 10.1237i 0.697127 0.377028i
$$722$$ 0.666143 + 2.48608i 0.0247913 + 0.0925223i
$$723$$ −0.819232 + 0.819232i −0.0304676 + 0.0304676i
$$724$$ −8.12223 4.68937i −0.301860 0.174279i
$$725$$ −9.00151 + 5.19702i −0.334308 + 0.193013i
$$726$$ 0.0179929 0.0671502i 0.000667777 0.00249218i
$$727$$ 27.7907 1.03070 0.515350 0.856980i $$-0.327662\pi$$
0.515350 + 0.856980i $$0.327662\pi$$
$$728$$ 21.3808 11.3569i 0.792424 0.420915i
$$729$$ −1.00000 −0.0370370
$$730$$ 2.59809 9.69621i 0.0961597 0.358873i
$$731$$ 8.66846 5.00474i 0.320615 0.185107i
$$732$$ −6.99541 4.03880i −0.258558 0.149278i
$$733$$ −5.10977 + 5.10977i −0.188734 + 0.188734i −0.795149 0.606415i $$-0.792607\pi$$
0.606415 + 0.795149i $$0.292607\pi$$
$$734$$ 5.34406 + 19.9443i 0.197253 + 0.736158i
$$735$$ −8.13955 9.09982i −0.300232 0.335652i
$$736$$ 18.0379 18.0379i 0.664887 0.664887i
$$737$$ −6.50513 + 11.2672i −0.239620 + 0.415034i
$$738$$ −0.722063 1.25065i −0.0265795 0.0460370i
$$739$$ 0.0573095 + 0.0153560i 0.00210816 + 0.000564880i 0.259873 0.965643i $$-0.416319\pi$$
−0.257765 + 0.966208i $$0.582986\pi$$
$$740$$ −9.43582 −0.346868
$$741$$ 0.106442 14.1892i 0.00391026 0.521255i
$$742$$ −1.59972 6.71186i −0.0587276 0.246400i
$$743$$ 9.83505 36.7049i 0.360813 1.34657i −0.512196 0.858868i $$-0.671168\pi$$
0.873009 0.487704i $$-0.162165\pi$$
$$744$$ −0.396154 0.686159i −0.0145237 0.0251558i
$$745$$ 12.5072 21.6631i 0.458228 0.793675i
$$746$$ 13.4395 + 13.4395i 0.492056 + 0.492056i
$$747$$ −1.39391 5.20214i −0.0510004 0.190336i
$$748$$ −4.04760 + 1.08455i −0.147995 + 0.0396551i
$$749$$ 24.7495 + 15.2225i 0.904328 + 0.556218i
$$750$$ −4.44700 + 7.70243i −0.162381 + 0.281253i
$$751$$ −9.18336 + 5.30202i −0.335106 + 0.193473i −0.658106 0.752926i $$-0.728642\pi$$
0.323000 + 0.946399i $$0.395309\pi$$
$$752$$ 1.43946 5.37214i 0.0524917 0.195902i
$$753$$ 13.6523i 0.497519i
$$754$$ 12.0952 + 7.10468i 0.440482 + 0.258737i
$$755$$ 41.4441i 1.50831i
$$756$$ 0.107671 3.86894i 0.00391594 0.140712i
$$757$$ −7.44655 12.8978i −0.270649 0.468778i 0.698379 0.715728i $$-0.253905\pi$$
−0.969028 + 0.246950i $$0.920572\pi$$
$$758$$ −20.6285 11.9099i −0.749263 0.432587i
$$759$$ 10.1704 10.1704i 0.369161 0.369161i
$$760$$ −16.8266 + 4.50866i −0.610364 + 0.163546i
$$761$$ 44.9797 12.0523i 1.63051 0.436895i 0.676448 0.736490i $$-0.263518\pi$$
0.954066 + 0.299595i $$0.0968517\pi$$
$$762$$ 2.96781 + 2.96781i 0.107512 + 0.107512i
$$763$$ −7.66998 2.28566i −0.277672 0.0827465i
$$764$$ 6.02297 3.47737i 0.217904 0.125807i
$$765$$ −1.46134 0.391566i −0.0528350 0.0141571i
$$766$$ −4.04688 −0.146220
$$767$$ 28.6337 + 16.8193i 1.03390 + 0.607311i
$$768$$ 11.7457i 0.423837i
$$769$$ 6.79488 + 1.82068i 0.245030 + 0.0656555i 0.379244 0.925297i $$-0.376184\pi$$
−0.134214 + 0.990952i $$0.542851\pi$$
$$770$$ −7.67428 8.11365i −0.276562 0.292396i
$$771$$ 0.221941 + 0.128138i 0.00799302 + 0.00461477i
$$772$$ −9.75223 9.75223i −0.350990 0.350990i
$$773$$ −2.05344 7.66353i −0.0738570 0.275638i 0.919115 0.393990i $$-0.128906\pi$$
−0.992972 +